簡易檢索 / 詳目顯示

研究生: 黃珏蓉
Huang, Jyue-Rong
論文名稱: 應用於電極材料之苯醌聚醯亞胺的合成與鑑定
Synthesis and Characterization of Benzoquinoid Polyimides as Electrode Materials
指導教授: 柯碧蓮
Watchareeya, Kaveevivitchai
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 102
中文關鍵詞: 聚醯亞胺鋰離子電池有機電極正極
外文關鍵詞: Polyimide, Organic electrode, Cathode, Lithium-ion batteries
相關次數: 點閱:22下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著工業和科技的發展,能源的使用量大幅增加。然而我們普遍使用的能源均來自不可再生的化石燃料,這有可能導致能源短缺。而且燃燒還會產生一氧化碳、二氧化碳等溫室氣體,加劇溫室效應。全球暖化造成氣候異常。為緩解能源問題與全球暖化,台灣響應聯合國決定,推出2050年淨零碳排放政策。該政策的部分要點包括利用太陽能、風能等再生能源,取代一般火力發電,從而減少化石燃料的使用,然而太陽能和風能受到時間和地理位置的限制,因此發展儲能系統是必需的工作。
    在各種類型的儲能系統中,鋰有機電池(LOB)是有前途的系統之一。與傳統鋰離子電池相比,鋰有機電池的電極材料普遍含有碳、氮、氧、氫、硫等。因此,它被認為是一種環保且可持續的選擇。有機電極材料具有設計靈活、氧化還原位點可調整性、可回收、成本低廉的優點。然而有機小分子材料在常用的有機電解質中溶解度較高,造成實際應用造成一定的困難。
    本文的主要目的是減少有機電極在電解質溶劑中的溶解。因此,採用聚合法合成了四種新型聚合物有機電極材料。 Q-聚醯亞胺,即Q1和Q2,是由均苯四甲酸二酐(PMDA)與2,3-二氨基-1,4-萘醌(DANQ)和6,7-二鄰苯二甲醯亞胺-5,8-二氫喹啉二酮( DADQ),而以六氮雜三萘為基礎的共價有機骨架(HAT-COF) 則由四氨基苯醌(TABQ) 和HAT-COOH 合成。第四種材料我們使用2,3,7,8-四氨基吩嗪-1,4, 6,9-四酮(TAPT)和PMDA合成聚醯亞胺COF。 這四種化合物在電化學電池中進行了測試,發現它們會發生可逆的氧化還原反應。 Q-聚醯亞胺中的C=O官能基具有氧化還原活性,可在充電和放電過程中與LOB中的鋰離子配位。整體而言,Q-聚醯亞胺的表現優於小分子單體(DANQ 和 DADQ),儘管結果並不顯著。與Q-聚醯亞胺相比,HAT-COF與聚醯亞胺COF具有更週期性的結構。進而使其具有多孔且更具結晶性。透過電化學測試,HAT-COF和聚醯亞胺COF表現出比Q1和Q2更好的長期充放電能力和更高的循環穩定性。

    With the development of industry and technology, the use of energy has increased significantly. However, the energy we commonly use comes from non-renewable fossil fuels, which may cause energy shortage. Moreover, combustion will produce carbon monoxide, carbon dioxide, and other greenhouse gases, which intensifies the greenhouse effect. Global warming has caused climate anomalies. In order to alleviate energy problems and global warming, Taiwan has followed the United Nations' decision and launched a 2050 net zero carbon emissions policy. Some of the points of the policy are to use renewable energy such as solar and wind power, replace general thermal power generation, thereby reducing the use of fossil fuels, and promote electric vehicles to replace fossil-fuel vehicles. We also know that solar energy and wind energy are limited by time and geographical location; as a result, energy storage systems are necessary.
    Among various types of energy storage systems, lithium-organic batteries (LOBs) are one of the most promising. Compared with traditional lithium-ion batteries, the electrode materials of lithium-organic batteries commonly contain carbon, nitrogen, oxygen, hydrogen, and sulfur. Therefore, it is considered to be an environmentally friendly and sustainable option. Organic electrode materials have the advantages of design flexibility, redox tunability, recyclability, and low cost. However, the solubility of organic small molecule materials in commonly used organic electrolytes may be high, which causes a certain degree of difficulty in practical applications.
    The main objective of this work is to reduce the dissolution of organic electrodes in LOBs. Therefore, the polymerization method has synthesized four novel polymeric organic electrode materials. Q-polyimides, namely, Q1 and Q2, are prepared by the reactions of pyromellitic dianhydride (PMDA) with 2,3-diamino-1,4-naphthoquinone (DANQ) and 6,7-diphthalimido-5,8-dihydroquinoline dione (DADQ), respectively, while hexaazatrinaphthylene-based covalent organic framework (HAT-COF) and polyimide-based COF (PI-COF) are synthesized from the reaction between tetramino-benzoquinone (TABQ) and HAT-COOH, and the reaction between 2,3,7,8-tetraaminophenazine-1,4,6,9-tetraone (TAPT) and PMDA, respectively.
    The four compounds have been tested in electrochemical cells and found to undergo reversible redox reactions. The C=O functional groups in Q-polyimides are redox-active and can coordinate with lithium ions in LOBs during charge and discharge. Overall, Q-polyimides outperform the small-molecule monomers (DANQ and DADQ), although the results are not significant. Compared with Q-polyimides, HAT-COF and PI-COF have more periodic structures. Therefore, they are porous and more crystalline. Through electrochemical testing, HAT-COF and PI-COF show better long-term charge and discharge capabilities and higher cycling stability than those of Q1 and Q2.

    摘要 I Abstract III Acknowledgments V Table of Contents VI List of Figures IX List of Tables XIII Chapter 1 Introduction 1 1.1 Net-zero Carbon Emissions 1 1.2 General Studies of Li-ion Batteries 2 1.2.1 Energy Storage Systems 2 1.2.2 Battery Design 4 1.2.3 Basic Definition 6 1.3 Inorganic Electrode Materials in Li-ion Batteries 7 1.4 Organic Electrode Materials in Li-ion Batteries 8 1.4.1 Small Molecules Organic Electrode Materials in Li-ion Batteries 8 1.4.2 Organic Polymers Electrode Materials in Li-ion Batteries 11 1.5 Carbonyl-based Electrode Material in Li-ion Batteries 12 1.6 Covalent-organic Frameworks 15 1.6.1 Imide-linked COFs 18 Chapter 2 Experimental Section 26 2.1 Materials 26 2.2 Instruments 27 2.2.1 Powder X-ray Diffractometer 27 2.2.2 Fourier-transform Infrared Spectrometer 28 2.2.3 Thermogravimetric Analyzer 29 2.2.4 Gas Adsorption Analyzer 30 2.2.5 Materials Studio 31 2.3 Syntheses of Materials 31 2.3.1 Synthesis of 2,3-diamino-1,4-naphthoquinone (DANQ)43 31 2.3.2 Synthesis of Q-polyimides39 32 2.3.3 Synthesis of Tetramino-benzoquinone (TABQ)44, 45 34 2.3.4 Synthesis of 1,4,5,8,9,12-hexaazabenzophenanthrocarboxylic acid 35 2.3.5 Synthesis of HAT-COF 37 2.3.6 Synthesis of 2,3,7,8-Tetraaminophenazine-1,4,6,9-tetramine (TAPT) 38 2.3.7 Synthesis of PI-COF 39 2.4. Activation of COF materials 39 2.5. Cell Preparation 40 Chapter 3 Results and Discussion 42 3.1 Characterization of Materials 42 3.1.1 DANQ 42 3.1.2 Q1 Polymer 44 3.1.3 Q2 Polymer 48 3.1.4 TABQ 52 3.1.5 HATCOOH 54 3.1.6 HAT-COF 56 3.1.7 TAPT 61 3.1.8 PI-COF 63 3.2 Electrochemical Investigation 69 3.2.1 Q1 Polymer 69 3.3.2 Q2 polymer 72 3.2.3 HAT-COF 75 3.2.4 polyimide COF 78 3.3 Solubility test 80 Chapter 4 Conclusions 81 References 82

    (1)Dincer, I. Renewable Energy and Sustainable Development: a Crucial Review. Renewable and Sustainable Energy Reviews 2000, 4, 157-175.
    (2) Grätzel, M. Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells. Inorganic Chem. 2005, 44, 6841-6851.
    (3) Kamat, P. V. Meeting the Clean Energy Demand: Nanostructure Architectures for Solar Energy Conversion. J. Phys. Chem. 2007, 111, 2834-2860.
    (4) Mekhilef, S.; Saidur, R.; Safari, A. A Review on Solar Energy Use in Industries. Renewable and Sustainable Energy Reviews 2011, 15, 1777-1790.
    (5) Solangi, K.; Islam, M.; Saidur, R.; Rahim, N.; Fayaz, H. A Review on Global Solar Energy Policy. Renewable and Sustainable Energy Reviews 2011, 15, 2149-2163.
    (6) Ackermann, T.; Söder, L. Wind Energy Technology and Current Status: A Review. Renewable and Sustainable Energy Reviews 2000, 4, 315-374.
    (7) Herbert, G. J.; Iniyan, S.; Sreevalsan, E.; Rajapandian, S. A Review of Wind Energy Technologies. Renewable and Sustainable Energy Reviews 2007, 11, 1117-1145.
    (8) Saidur, R.; Islam, M.; Rahim, N.; Solangi, K. A Review on Global Wind Energy Policy. Renewable and Sustainable Energy Reviews 2010, 14, 1744-1762.
    (9) Poullikkas, A. A Comparative Overview of Large-Scale Battery Systems for Electricity Storage. Renewable and Sustainable Energy Reviews 2013, 27, 778-788.
    (10) 經濟部能源局. 04_電力系統與儲能關鍵戰略行動計畫. 2023. .
    (11) Lu, Y.; Zhang, Q.; Li, L.; Niu, Z.; Chen, J. Design Strategies toward Enhancing the Performance of Organic Electrode Materials in Metal-ion Batteries. Chem 2018, 4, 2786-2813.
    (12) Lu, Y.; Chen, J. Prospects of Organic Electrode Materials for Practical Lithium Batteries. Nature Reviews Chem. 2020, 4, 127-142.
    (13) Shea, J. J.; Luo, C. Organic Electrode Materials for Metal Ion Batteries. ACS Appl. Mater. Interfaces 2020, 12, 5361-5380.
    (14) Shi, R.; Liu, L.; Lu, Y.; Wang, C.; Li, Y.; Li, L.; Yan, Z.; Chen, J. Nitrogen-rich Covalent Organic Frameworks with Multiple Carbonyls for High-Performance Sodium Batteries. Nat. Commun 2020, 11, 178.
    (15) Poizot, P.; Dolhem, F. Clean Energy New Deal for a Sustainable World: from Nnon-CO2 Generating Energy Sources to Greener Electrochemical Storage Devices. Energy Environ. Sci. 2011, 4, 2003-2019.
    (16) Toprakci, O.; Toprakci, H.; Ji, L.; Zhang, X. Fabrication and Electrochemical Characteristics of LiFePO4 Powders for Lithium-ion Batteries. KONA Powder Part. J 2010, 28, 50-73.
    (17) Tirado, J. L. Inorganic Materials for The Negative Electrode of Lithium-Ion Batteries: State-of-the-art and Future Prospects. Materials Sci. and Engineering: R: Reports 2003, 40, 103-136.
    (18) Shetti, N. P.; Dias, S.; Reddy, K. R. Nanostructured Organic and Inorganic Materials for Li-ion Batteries: A review. Mater Sci Semicond Process 2019, 104, 104684.
    (19) Sasaki, Y. Organic Electrolytes of Secondary Lithium Batteries. Electrochemistry 2008, 76, 2-15.
    (20) Sun, W. Y. J. H. Z.; Jiang, C. W. C. Organic Sulfide Electrode Materials for Lithium-ion Batteries. Prog. Chem. 2009, 21, 1963.
    (21) Häupler, B.; Wild, A.; Schubert, U. S. Carbonyls: Powerful Organic Materials for Secondary Batteries. Adv. Energy Mater 2015, 5, 1402034.
    (22) Sun, C. W.; Liu, J.; Gong, Y. D.; Wilkinson, D. P.; Zhang, J. J. Recent Advances in all-Solid-state Rechargeable Lithium Batteries. Nano Energy 2017, 33, 363-386.
    (23) Zhao, Q.; Lu, Y.; Chen, J. Advanced Organic Electrode Materials for Rechargeable Sodium-Ion Batteries. Adv. Energy Mater 2017, 7, 1800212.
    (24) Lee, S.; Kwon, G.; Ku, K.; Yoon, K.; Jung, S. K.; Lim, H. D.; Kang, K. Recent Progress in Organic Electrodes for Li and Na Rechargeable Batteries. Adv0 Mater 2018, 30, 1870312.
    (25) Liang, Y. L.; Yao, Y. Positioning Organic Electrode Materials in the Battery Landscape. Joule 2018, 2, 1690-1706.
    (26) Sun, T.; Xie, J.; Guo, W.; Li, D. S.; Zhang, Q. C. Covalent-Organic Frameworks: Advanced Organic Electrode Materials for Rechargeable Batteries. Adv. Energy Mater 2020, 10, 1904199.
    (27) Yin, X. P.; Sarkar, S.; Shi, S. S.; Huang, Q. A.; Zhao, H. B.; Yan, L. M.; Zhao, Y. F.; Zhang, J. J. Recent Progress in Advanced Organic Electrode Materials for Sodium-Ion Batteries: Synthesis, Mechanisms, Challenges and Perspectives.Adv. Funct. Mater 2020, 30, 1908445.
    (28) Cheng, X. B.; Liu, H.; Yuan, H.; Peng, H. J.; Tang, C.; Huang, J. Q.; Zhang, Q. A Perspective on Sustainable Energy Materials for Lithium Batteries. Susmat 2021, 1, 38-50.
    (29) Esser, B.; Dolhem, F.; Becuwe, M.; Poizot, P.; Vlad, A.; Brandell, D. A Perspective on Organic Electrode Materials and Technologies for Next Generation Batteries. J. Power Sources 2021, 482, 228814.
    (30) Cao, Y.; Wang, M. D.; Wang, H. J.; Han, C. Y.; Pan, F. S.; Sun, J. Covalent Organic Framework for Rechargeable Batteries: Mechanisms and Properties of Ionic Conduction. Adv. Energy Mater 2022, 12, 2200057.
    (31) Zhang, L. Q.; Zhu, C. X.; Yu, S. C.; Ge, D. H.; Zhou, H. S. Status and Challenges Facing Representative Anode Materials for Rechargeable Lithium Batteries. J. Energy Chem 2022, 66, 260-294.
    (32) Kim, J.; Kim, Y.; Yoo, J.; Kwon, G.; Ko, Y.; Kang, K. Organic Batteries for a Greener Rechargeable World. Nat. Rev. Mater 2023, 8, 54-70.
    (33) Prajapati, A. K.; Bhatnagar, A. A review on Anode Materials for Lithium/Sodium-ion Batteries. J. Energy Chem 2023, 83, 509-540.
    (34) Xu, J. J.; Cai, X. Y.; Cai, S. M.; Shao, Y. X.; Hu, C.; Lu, S. R.; Ding, S. J. High-Energy Lithium-Ion Batteries: Recent Progress and a Promising Future in Applications. Energy environ. mater 2023, 6, e12450.
    (35) Shi, R.; Jiao, S.; Yue, Q.; Gu, G.; Zhang, K.; Zhao, Y. Challenges and Advances of Organic Electrode Materials for Sustainable Secondary Batteries. In Exploration, 2022; Wiley Online Library: Vol. 2, 20220066.
    (36) Lyu, H.; Sun, X.-G.; Dai, S. Organic Cathode Materials for Lithium‐ion Batteries: Past, Present, and Future. Adv. Energy and Sustainability Research 2021, 2, 2000044.
    (37) Kye, H.; Kang, Y.; Jang, D.; Kwon, J. E.; Kim, B.-G. p‐Type Redox‐Active Organic Electrode Materials for Next‐Generation Rechargeable Batteries. Adv. Energy and Sustainability Research 2022, 3, 2200030.
    (38) Guan, X.; Chen, F.; Fang, Q.; Qiu, S. Design and Applications of Three Dimensional Covalent Organic Frameworks. Chem. Soc. Rev 2020, 49, 1357-1384.
    (39) Luo, Z.; Liu, L.; Ning, J.; Lei, K.; Lu, Y.; Li, F.; Chen, J. A Microporous Covalent–Organic Framework with Abundant Accessible Carbonyl Groups for Lithium‐ion Batteries. Angew. Chem. Int. Ed. 2018, 57, 9443-9446.
    (40) Fang, L.; Cao, X.; Cao, Z. Covalent Organic Framework with High Capacity for The Lithium-ion Battery Anode: Insight into Intercalation of Li from First-principles Calculations. J. Phys. Condens. Matter 2019, 31, 205502.
    (41) Yang, D.-H.; Yao, Z.-Q.; Wu, D.; Zhang, Y.-H.; Zhou, Z.; Bu, X.-H. Structure-Modulated Crystalline Covalent Organic Frameworks as High-rate Cathodes for Li-ion Batteries. J. Mater. Chem. A 2016, 4, 18621-18627.
    (42) Wang, Z.; Li, Y.; Liu, P.; Qi, Q.; Zhang, F.; Lu, G.; Zhao, X.; Huang, X. Few Layer Covalent Organic Frameworks with Graphene Sheets as Cathode Materials for Lithium-ion Batteries. Nanoscale 2019, 11, 5330-5335.
    (43) Pan, L.; Zheng, Q.; Chen, Y.; Yang, R.; Yang, Y.; Li, Z.; Meng, X. Design, Synthesis and Biological Evaluation of Novel Naphthoquinone Derivatives as IDO1 Inhibitors. Eur. J. Med. Chem 2018, 157, 423-436.
    (44) Winkelmann, E. 2, 3, 5, 6-Tetra-amino-1, 4-benzochinon (TABC): Darstellung, Eigenschaften and Reaktionen. Tetrahedron 1969, 25, 2427-2454.
    (45) Beagan, D. M.; Huerfano, I. J.; Polezhaev, A. V.; Caulton, K. G. Reductive Silylation Using a Bis‐silylated Diaza‐2, 5‐cyclohexadiene. Chem. Eur. J 2019, 25, 8105-8111.
    (46) Yang, M.; Song, W. J. One-pot Two-step Synthesis of Micro-and Mesoporous Organic Fibrils for Efficient Pseudocapacitors. J. Mater. Chem. A 2022, 10, 17511-17519.
    (47) Ranjeesh, K. C.; Illathvalappil, R.; Veer, S. D.; Peter, J.; Wakchaure, V. C.; Goudappagouda; Raj, K. V.; Kurungot, S.; Babu, S. S. Imidazole-linked Crystalline Two-dimensional Polymer with Ultrahigh Proton-conductivity. J. Am. Chem. Soc. 2019, 141, 14950-14954.
    (48) Han, X. H.; Gong, K.; Huang, X.; Yang, J. W.; Feng, X.; Xie, J.; Wang, B. Syntheses of Covalent Organic Frameworks via a One‐Pot Suzuki Coupling and Schiff's Base Reaction for C2H4/C3H6 Separation. Angew. Chem. Int. Ed 2022, 61, e202202912.
    (49) Peng, X.; Xie, Y.; Baktash, A.; Tang, J.; Lin, T.; Huang, X.; Hu, Y.; Jia, Z.; Searles, D. J.; Yamauchi, Y. Heterocyclic Conjugated Polymer Nanoarchitectonics with Synergistic Redox‐Active Sites for High‐Performance Aluminium Organic Batteries. Angew. Chem. 2022, 134, e202203646.
    (50) Sun, T.; Liang, Y.; Luo, W.; Zhang, L.; Cao, X.; Xu, Y. A General Strategy for Kilogram‐Scale Preparation of Highly Crystalline Covalent Triazine Frameworks. Angew. Chem. Int. Ed 2022, 134, e202203327.
    (51) Li, Z.; Jia, Q.; Chen, Y.; Fan, K.; Zhang, C.; Zhang, G.; Xu, M.; Mao, M.; Ma, J.; Hu, W. A Small Molecular Symmetric All‐organic Lithium‐ion Battery. Angew. Chem. Int. Ed 2022, 61, e202207221.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE