| 研究生: |
陳睿慈 Chen, Jui-Tzu |
|---|---|
| 論文名稱: |
覆晶封裝搭配無芯基板之凸塊崩裂分析及改善 Analysis and Improvement of Bump Crack for Flip Chip with Coreless Substrate |
| 指導教授: |
趙隆山
Chao, Long-Sun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系碩士在職專班 Department of Engineering Science (on the job class) |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 57 |
| 中文關鍵詞: | 覆晶封裝 、無芯基板 、凸塊崩裂 |
| 外文關鍵詞: | Flip Chip, Coreless substrate, Bump crack |
| 相關次數: | 點閱:71 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著人工智慧、物聯網、自動駕駛與5G等科技持續發展,如何將龐大資料量迅速於系統間相互溝通儼然成為一大課題。為使訊號傳遞路徑縮短,進而提升傳輸速率並減少傳輸過程的損耗,覆晶 (flip chip) 與陣列式 (ball grid array) 的結構成為較佳的構裝方式,其可透過凸塊與錫球作為晶片、基板與電路板之間的溝通媒介,相較於傳統的銲線 (wire bond) 與導線架 (lead frame) 構裝方式,不僅訊號傳遞效率高,更可提供輕、薄、短、小的構裝體。而近年來,無芯基板技術也被開發應用於高頻傳輸產品,其透過移除基板結構中的玻璃纖維層,以降低高頻傳輸時的阻抗 (impedance),並改善訊號傳遞時的介入損失 (insertion loss)。然而,移除纖維層後的基板,猶如失去鋼筋的水泥結構體,會使基板結構鋼性降低,且對溫度變化相當敏感,易因構裝產生之熱應力導致凸塊崩裂等失效模式。本文主要研究封裝製程中之迴焊冷卻速率、底膠材料性質、烘烤條件及凸塊成分等因子對無芯基板結構及凸塊崩裂的影響。
This thesis focuses on investigation of stress-induced bump crack for flip chip packaging with coreless substrate. Reflow cooling rate, baking and curing condition, underfill material property and bump material composition be consider as the key factors in the study. The microstructure of bump joint was observed with a scanning electron microscope (SEM). Firstly, the higher reflow cooling rate and the fewer high-temperature processes can significantly improve the microstructure of Sn/37Pb bump to resist bump crack. Secondly, the lower CTE and higher elasticity modulus of underfill material can provide good protection and be helpful for avoiding crack initiation even in the reliability test. Finally, the lead free bump is found to provide homogeneous microstructure and good bump joint shape. The experimental results show that the high temperature treatment and the underfill material to the bump protection ability are the most critical conditions for the coreless substrate packaging.
[1] 徐祥禎,“電子構裝結構分析”,2009年。
[2] 羅金龍,“58Bi-42Sn無鉛銲料與球矩陣封裝Au/Ni/Cu墊層界面反應之研究”,國立中央大學化學工程與材料工程研究所碩士論文,2001年。
[3] Yole Development, “3DIC & TSV interconnects”, Semicon Taiwan, 2012.
[4] Sandeep Mallampati, Zaeem Baig, Scott Pozder and Eng Chye Chua, “A Comparison of Environmental Stressing Data and Simulation at the Corner of a Test Chip in a FC-BGA Package”, IEEE International Reliability Physics Symposium, 2019.
[5] Toppan Printing Co., Ltd., “Coreless FC-BGA Substrates”, Electronics Division, Retrieved Jun 24, 2019, from https://www.toppan.co.jp, n.d..
[6] Yuji Nishitani, “Coreless Packaging Technology for High-Performance Application”, SONY, Japan, Electronic Components and Technology Conference (ECTC), May29-June 1, 2012.
[7] Chih-Yi Huang, Chen-Chao Wang, Tsun-Lung Hsieh, Cheng-Yu Tsai, “Design and Electrical Performance Analysis on Coreless Flip Chip BGA Substrate”, Electrical Design of Advanced Packaging and Systems Symposium, 2017.
[8] David Chang, Y.P. Wang, and C.S. Hsiao, “High Performance Coreless Flip-Chip BGA Packaging Technology”, 2007 Electronic Components and Technology Conference, 2006.
[9] 徐元辰,“新穎底部填膠材料對覆晶封裝可靠度之研究”,國立交通大學材料科學與工程學研究所碩士論文,2006年。
[10] 張庭偉,“錫球添加鉍元素對於上板等級溫度循環測試之改善”,國立高雄大學電機工程研究所碩士論文,2017年。
[11] S. H. Fan, Y. C. Chan, etc., “Effect of Cooling Rate on the Isothermal Fatigue Behavior of CBGA Solder Joints in Shear”, IEEE Transactions on Advanced Packaging, Vol.24, No. 1, pp.10-16, 2001.
[12] Z. MEI, J. W. MORRIS, JR., M. C. SHINE and T. S. E. SUMMERS, “Effects of cooling rate on mechanical properties of near-eutectic tin-lead solder joints”, Journal of Electronic Materials, Vol.20, No. 10, pp.599-608, 1991.
[13] 郭育宏,“Sn-Ag-Cu-In-Zn-Bi 無鉛銲錫的常溫和高溫機械性質”,中華大學機械工程研究所碩士論文,2010年。
[14] 葉曉謙,“覆晶晶粒尺寸構裝之熱應力分析”,國立中山大學機械工程研究所碩士論文,2001年。
[15] Chun-Chih Chuang, Tsung-Fu Yang, Jin-Ye Juang, etc., “Influence of underfill materials on the reliability of coreless flip chip package” , Microelectronics Reliability, Vol.48, No. 11, pp.1875-1881, 2008.
[16] Jing-Yao Chang, Tung-Han Chaung and Tao-Chih Chang, “An Investigation into the Package and Printed Circuit Board Assembly Solutions of an Ultrathin Coreless Flip-Chip Substrate”, Journal of Electronic Materials, Vol.44, No. 10, pp.3855-3862, 2015.
校內:2024-07-25公開