簡易檢索 / 詳目顯示

研究生: 周傳文
Chou, Chuan-Wen
論文名稱: 非整型空氣層吸音特性之研究
A Study of Sound Characteristics on Air Layer with Irregular Shape
指導教授: 賴榮平
Lai, Rong-Ping
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 建築學系
Department of Architecture
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 133
中文關鍵詞: 空氣層非整型吸音係數角度穿孔板構造板狀構造
外文關鍵詞: air layer, irregular shape, acoustic absorption coefficient, perforated, panels
相關次數: 點閱:215下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 吸音構造常用於調整室內空間之吸音力,進而改善室內音響效果,
    空氣層常設置於吸音構造中,以達到中低頻的吸音效果。然而空氣層的
    設置一般多由表面材與構造體 (背貼材),或背貼材與構造面 (背貼材)
    以間隔一定空間裝設所產生。回顧國內外對吸音構造與吸音特性影響之
    相關研究,皆以表面材與構造體平行裝設的方式為探討對象較多,當構
    造之表面材不平行於壁面或背貼材裝設時,即表面材與壁面或背貼材間
    所產生之非整型空氣層中,並未探討其吸音特性的影響。因此,本研究
    彙整常用之吸音構造,以單軸傾斜之非整型空氣層為研究對象,由傾斜
    平面夾角 (0 度-20 度)、傾斜平面跨距 (60 公分-360 公分)與空氣隔室
    之設置做為空氣層形狀為主要變因,搭配非整型空氣層的板狀構造與穿
    孔板構造進行吸音係數之測試,由測試結果顯示非整型設置於吸音係數
    的影響,及空氣層隔室設置於非整型空氣層之吸音係數影響兩部分,探
    討非整型空氣層之吸音特性。
    實驗結果顯示,隨著角度加大,非整型之設置對構造吸音係數產生
    較大之差異;伴隨著跨距加大,發現至180 公分以上非整型之設置對構
    造吸音係數已較無影響;此外,非整型設置對板狀構造造成較大之吸音
    係數差異,於穿孔板構造吸音係數差亦多於0.1 以內。而空氣隔室的設
    置於120 公分以上跨距之吸音構造吸音係數較無明顯影響,僅於60 公
    分跨距之200Hz 以下頻率有較明顯影響。

    Air layer with u irregular shape in sound absorbing structure is formed by
    different structure mode of materials. With building multiform interior space
    by materials and structure mode, it makes the shape of air layer between the
    facing and the structure of building to be irregular shape.
    According to related study of absorbing structure, it shows less
    information about the influence of air layer with irregular shape. The factors
    of sound absorption of absorbing structure were focused on absorbing
    structure which facing paralleled structure of building in past research. For
    searching the influence of sound absorption of absorbing structure caused by
    the air layer with irregular shape, the subject in this study is set as the air
    layer with irregular shape which facing tilts with single-axis. The factors of
    air layer with irregular shape are the angle between tilting facing and
    horizontal face, the length of span of tilting facing, and if the setting is that
    the air layer is divided into several parts not to be interlinked. By these
    factors the sound absorption characteristics of air layer with irregular shape
    are shown.
    The results of the measurement in the study are displayed in two parts.
    One is the influence of absorption coefficient caused by irregular shape, and
    the other is the influence of absorption coefficient caused by setting that the
    air layer is divided into several parts not to be interlinked. The results reveal
    that there is more obvious difference of absorption coefficient as the angle
    of air layer with irregular shape is bigger, and that there is less influence of
    absorption coefficient as the span of tilting facing becomes bigger up to 180
    centimeters. In addition, the irregular shape causes larger difference of
    absorption coefficient to the panel structure, and the difference of absorption
    coefficient of structure with perforated facing is within 0.1. Furthermore,
    there is a little influence of the setting that the air layer is divided into
    several parts not to be interlinked only in frequencies below 200 hertz as the
    span of tilting facing is 60 centimeters.

    第一章 緒論 1-1 動機目的 1-1.1 空氣層於改善室內音響品質之運用 ……………………… 1-1 1-1.2 空氣層相關因子予吸音特性之影響 ……………………… 1-2 1-1.3 室內裝修形式之影響 ……………………………………… 1-2 1-2 文獻回顧 1-2.1 空氣層相關文獻 …………………………………………… 1-4 1-2.2 小結 ………………………………………………………… 1-10 1-3 研究對象及範圍 1-3.1 研究對象 …………………………………………………… 1-11 1-3.2 研究範圍 …………………………………………………… 1-11 1-4 研究方法與架構 1-4.1 研究方法 …………………………………………………… 1-13 1-4.2 研究架構 …………………………………………………… 1-14 1-5 研究內容與流程 ………………………………………… 1-15 第二章 空氣層設置之理論概述 2-1 空氣層設置之基本概述 2-1.1 板狀構造 …………………………………………………… 2-1 2-1.2 穿孔板構造 ………………………………………………… 2-2 2-2 空氣層之音響阻抗 2-2.1 板狀構造 …………………………………………………… 2-4 2-2.2 穿孔板構造 ………………………………………………… 2-5 2-3 小結 ……………………………………………………… 2-7 第三章 實驗測試條件設定 3-1 變因與條件設定 3-1.1 變因設定 …………………………………………………… 3-1 3-1.2 條件設定 …………………………………………………… 3-4 3-1.3 規格設定 …………………………………………………… 3-4 3-2 實驗方法設定 3-2.1 流程設定 …………………………………………………… 3-8 3-2.2 測試方法 …………………………………………………… 3-8 3-2.3 試體裝設 …………………………………………………… 3-9 3-3 小結 ……………………………………………………… 3-10 第四章 實驗量測結果分析 4-1 量測結果與分析 4-1.1 非整型空氣層設置之影響 ………………………………… 4-1 4-1.2 空氣隔室設置之影響 ……………………………………… 4-10 4-2 各因子相關性分析 4-2.1 各變因相關性 ……………………………………………… 4-17 4-2.2 表面性質 …………………………………………………… 4-18 4-2.3 非整型空氣層形狀 ………………………………………… 4-19 4-2.4 非整型空氣層厚度 ………………………………………… 4-24 4-2.5 非整型空氣層構成方式 …………………………………… 4-27 4-2.6 非整型空氣層構造因子予吸音係數之影響 ……………… 4-28 4-3 小結 ……………………………………………………… 4-33 第五章 結論與建議 5-1 結論 ………………………………………………………… 5-1 5-2 後續研究之建議 ………………………………………… 5-6 參考文獻 ………………………………………………………… 文獻-1 附錄 附錄一 量測空間與系統 附錄二 非整型空氣層吸音係數數據總表 附錄三 整型空氣層吸音係數數據總表 附錄四 整型與否吸音係數差異量變化量測數據 附錄五 空氣隔室設置吸音係數差異量變化量測數據

    中文文獻
    1. 賴榮平、江哲銘、趙以諾,成功大學建築音響實驗室音響性能,中
    華民國音響學刊,台灣,期1,頁151-156,1990。
    2. 車世光、王炳麟、秦佑國,建築聲環境,淑馨出版社,台灣,1994。
    3. 簡明傳,室內裝修材料及構造方法之吸音特性研究,台灣科技大學
    工程技術研究所碩士論文,台灣,2000。
    4. 蔡伯謙,多孔性吸音材質與空氣層之變化關係對吸音係數之影響研
    究,國立台灣大學造船及海洋工程研究所碩士論文,台灣,2000。
    5. 李芳慶,多層式吸音結構之吸音研究,國立清華大學動力機械工程
    研究所博士論文,台灣,2001。
    6. 吳明翰,穿孔鋼板吸音特性之研究,國立成功大學建築研究所碩士
    論文,台灣,2003。
    7. 蘇嘉瑩,以有限元素法預測天花板空氣層厚度對樓板衝擊音衰減影
    響之研究,國立成功大學建築研究所碩士論文,台灣,2004
    8. 經濟部中央標準局編,聲學-迴響室之吸音量測 (CNS 9056),經濟
    部標準檢驗局印行,台灣,2008。
    9. 陳瑞珍、林芳銘、江哲銘,建築聲學標準及法令增修訂之研究,內
    政部建築研究所,2008。
    英文文獻
    1. Robert Rogers, The Absorption of Sound by Vibrating Plates
    Backed with Air Space, J. Acoust. Soc. Am., America, Vol.10,
    Issue 4, pp.280-287, 1939.
    2. Bolt, R. H., On the design of perforated facings for acoustic
    materials, J. Acoust. Soc. Am., America, Vol.19, Issue 5,
    pp.917-921, 1947.
    3. Sacerdote, G. G., Gigli. A., Absorption of Sound by Resonant
    Panels, J. Acoust. Soc. Am., America, Vol.23, Issue 3,
    pp.394-352, 1951.
    4. Ingard, K.U., Bolt, R.H., Absorption Characteristics of
    Acoustic Material with Perforated Facing, J. Acoust. Soc. Am.,
    America, Vol.23, Issue 5, pp.533-540, 1951.
    5. Callaway, D. B., Ramer, L. G., The use of perforated facing
    in designing low frequency resonant absorbers, J. Acoust. Soc.
    Am., America, Vol.24, Issue 3, pp.309-312, 1952.
    6. Ingard, K.U., Perforated facing and sound absorption, J.
    Acoust. Soc. Am., America, Vol.26, Issue 2, pp.151-154, 1954.
    7. E. E. Mikeka, R. N. Lane, Measured Absorption Characteristics
    of Resonant Absorbers Employing Perforated Panel Facings, J.
    Acoust. Soc. Am., America, Vol.28, Issue 5, pp.987-992, 1956.
    8. Manuel Schwar-tz, Herbert D. Bradley, Jr., Effect of Air Space
    on the Acoustic Characteristic of Uncoated and Coated Foams,
    J. Acoust. Soc. Am., America, Vol.37, Issue 2, pp.278-285,
    1965.
    9. Takahashi, D., A new method for predicting the sound absorption
    of perforated absorber system, Applied Acoustics, England,
    Vol.51, pp.71-84, 1997.
    10. Chunqi Wang,Li Cheng, Jie Pan, Ganghua Yu, Sound absorption
    of a micro-perforated panel backed by an irregular-shaped
    cavity, J. Acoust. Soc. Am., America, Vol.127, Issue 1,
    pp.238-246, 2010.
    日文文獻
    1. 木村 翔,穿孔板の背後に大空氣層有する吸音構造体の吸音特性,
    日本音響學會誌,日本,Vol. 17. pp. 31-42,1961。
    2. 子安木盾,穴あき板構造体の吸音特性に關する二, 三の問題,日
    本建築學會論文報告集106 號,日本,pp. 20-30,1964。
    3. 日本音響材料協會編,吸音材料,技報堂出版株式會社,日本,1981。
    4. 木村 翔,建築音響と噪音防止計畫,彰國社,日本,1982。

    無法下載圖示 校內:2015-08-07公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE