| 研究生: |
陳思螢 Chen, Sih-Ying |
|---|---|
| 論文名稱: |
超臨界二氧化碳環境下對套管水泥斷裂韌度影響之研究 A Study of the Fracture Toughness of API-G Well Cement with Additives Exposed to Supercritical CO2 Environment Using Chevron Notched Brazilian Disc Specimen Test |
| 指導教授: |
王建力
Wang, Chien-Li |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 136 |
| 中文關鍵詞: | API-G級套管水泥 、超臨界二氧化碳 、斷裂力學 |
| 外文關鍵詞: | API-G well cement, supercritical carbon dioxide, fracture mechanics |
| 相關次數: | 點閱:103 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
二氧化碳存入地下以地質封存方式進行減量是一項可行的工程手段。前人研究表明二氧化碳與水結合會形成碳酸,形成一個對水泥侵蝕的酸性環境。因此評估保護井孔的套管水泥在長期的封存下是否能安全且有效的封存二氧化碳為必須進行的研究課題。
本研究針對API-G級套管水泥材料及添加飛灰之水泥材料在超臨界二氧化碳環境反應後進行試驗,先將其水泥漿體製備成巴西缺口試體,放進超臨界二氧化碳環境下 (溫度70℃、壓力20 MPa) 個別反應不同天數 (7-28天),以模擬進行二氧化碳封存時井底下1500 m~2000 m套管水泥材料基本力學性質、斷裂力學性質及化學結構性質上之變化。實驗觀察發現隨著不同的反應天數,而試體本身有不同程度碳化現象,其中以添加飛灰之水泥有最佳的強度且有最深的碳酸鈣堆積層。
The carbon dioxide (CO2) deposition in underground geologic sequestration is a feasible approach to reduce CO2 emission. Previous studies have shown that CO2 combines with water to form carbonic acid (H2CO3) which is the formation of an acidic environment of cement erosion. Therefore, the long-term wellbore integrity of the cement sheath should be carefully evaluated to ensure the safe and efficient storage of the CO2.
In this study, the Brazilian notched cement specimens along with other appropriate samples were prepared and were placed into the supercritical carbon dioxide environment over a period of days. The experimental temperature is 70oC and the experimental pressure is 20 MPa. The basic mechanical properties, fracture mechanical properties and chemical structure properties of the API-G well cement with fly ash were investigated. This study finds that the cement specimens have varying degrees of carbonization with the different number of reaction days,. This study also concludes that the API-G cement with fly ash displays the best strength with deepest penetrating depth of carbonization.
[1]中國國家標準 (CNS),「鋁質水泥墁料抗壓及抗彎強度試驗法」,經濟部中央標準局,1996。
[2]王建力,「岩石斷裂力學講義」,國立成功大學資源工程所,2011。
[3]李彥佑,「儲氣田氣井套管水泥之封固性之研究」,國立成功大學資源工程研究所碩士論文,2006。
[4]李冠穎,「二氧化碳環境下對油井水泥物理性質及化學性質之影響」,國立成功大學資源工程研究所碩士論文,2011。
[5]吳柏裕,「天然氣儲氣窖注氣功能及效益」,台灣天然氣供需輸儲現況及展望研討會論文集,第63-64頁,台灣,2010。
[6]林炳炎,「飛灰用在混凝土中」,現代營建雜誌社,1991。
[7]宣大衡、范振暉,「二氧化碳的捕獲與封存」,地質,第26卷,第2期,第40-47頁,2007。
[8]張元曦,「儲氣田氣井套管水泥之應力分析」,國立成功大學資源工程研究所碩士論文,2005。
[9]郭淑德,「飛灰的利用與發展」,如何使用飛灰以提生混凝土品質研討會論文集,財團法人台灣營建研究院,第1-26頁,1998。
[10]黃作賓,「斷裂力學基礎」,中國地質大學出版社,武漢,1991。
[11]楊昀叡,「二氧化碳環境下纖維摻料對套管水泥性質之研究」,國立成功大學資源工程研究所碩士論文,2011。
[12]萬曉明、游宗翰、陳建志、許妙行、林東緯、談駿嵩、楊鏡堂,「減碳科技之前瞻發展」,科技發展政策報導,第3期,2008。
[13]詹穎雯,「飛灰爐石混凝土之原理、性質與應用」,飛灰爐石於混凝土工程之合理運用研討會論文集,台灣營建研究院,第1-16頁,1999。
[14]顏聰,「飛灰混凝土之工程性質」,正確使用飛灰以提昇混凝土品質論文集,第105-121頁,台中,1996。
[15]鐘翊珊,「二氧化碳封存機制下對岩石力學性質之影響」,國立成功大學資源工程研究所碩士論文,2011。
[16]Aliha, M. R. M., Ayatollahi, M. R., “Geometry effects on fracture behaviour of polymethyl methacrylate,” Materials Science and Engineering A 527, pp. 526-530,2010.
[17]Amrollahi, H., Baghbanan, A., Hashemolhosseini, H., “Measuring fracture toughness of crystalline marbles under modes I and II and mixed mode I–II loading conditions using CCNBD and HCCD specimens,” International Journal of Rock Mechanics & Mining Sciences 48, pp.1123-1134, 2011.
[18]Atkinson, C., Smelser, R. E. and Sanchez, J., “Combined mode fracture via the cracked Brazilian disk test,” Int. J. Fracture, Vol. 18, No. 4, pp. 279-291, 1982.
[19]Awaji, H. and Sato, S., “Combined mode fracture toughness measurement by the disk test,” J. Eng. Mater. Tech. Trans. ASME, Vol. 100, No. 4, pp. 175-182, 1978.
[20]Bachu, S., “Sequestration of CO2 in geological media in response to climate change: Road map for site selection using the transform of the geological space into the CO2 phase space,” Energy Conversion and Management, 43(1), pp. 87-102, 2002.
[21]Bachu, S., “CO2 storage in geological media: Role, means, status and barriers to deployment,” Progress in Energy and Combustion Science 34, pp. 254-273, 2008.
[22]Broek, D., “Elementary engineering fracture mechanics,” 4th ed., Martinus Nijhoff, Hauge, 1986.
[23]Chadwick, A., Arts, R., Bernstone, C., May, F., Thibeau, S., Zweigel, P., “Best Practice for the Storage of CO2 in Saline Aquifers: Observations and Guidelines from the SACS and CO2STORE Projects,” European Union, 2007.
[24]Chang, S. H., Lee, C. I., Jeon, S., “Measurement of rock fracture toughness under modes I and II and mixed-mode conditions by using disc-type specimens,” Engineering Geology 66, pp. 79-97, 2002.
[25]Cook, P.J., “Sustainability and nonrenewable resources,” Environmental Geosciences, 6(4), pp. 185-190, 1999.
[26]Enick, R. M., Klara, S. M., “CO2 solubility in water and brine under reservoir conditions,” Chem Eng Commun, pp.23-33, 1990.
[27]Fowell, R. J. and Xu, C., “The use of the cracked Brazilian disc geometry for rock fracture investigations,” Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., Vol. 31, No. 6, pp. 571-579, 1994.
[28]Gaus, I., “Role and impact of CO2–rock interactions during CO2 storage in sedimentary rocks,” International Journal of Greenhouse Gas Control 4, pp. 73-89, 2010.
[29]Griffith, A.A, “The phenomena of rupture and flow in solids,” Phil. Trans. Roy. Soc. of London, A221, pp. 163-197, 1921.
[30]Inglis, C.E., “Stresses in a plate due to the presence of cracks and sharp corners,” Trans. Inst. Naval Architects, Vol. 55, pp. 219-241, 1913.
[31]IPCC, “Carbon dioxide capture and ctorage,” IPCC Special Report, 2005.
[32]Irwin, G.R., “Fracture dynamics,” Fracturing of Metals, ASM publ, pp. 147-166, 1948.
[33]Irwin, G.R., “Fracture,” Handbuch der Physik VI. Flüge Ed., Springer, pp. 551-590, 1958.
[34]ISRM, “Suggested method for determining water content, porosity, density, absorption and related properties,” International Society for Rock Mechanics, pp. 85-90, 1981.
[35]ISRM, “Suggested method for determining mode I fracture toughness using cracked chevron notched Brazilian disc (CCNBD) specimens,” Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., Vol. 32, No. I, pp. 57-64, 1995.
[36]Kohl, A. L., Nielsen, R. B., “Gas purification,” Houston, TX, USA: Gulf Publishing Company, 1997.
[37]Kreft, E., Bernstone, C., Meyer, R., May, F., Arts, R., Obdam, A., Svensson, R., Eriksson, S., Durst, P., Gaus, I., van der Meer, B., Geel, C., “The Schweinrich structure: a potential site for industrial scale CO2 storage and a test case for safety assessment in Germany,” International Journal of Greenhouse Gas Control 1, pp. 69-74, 2007.
[38]Kutchko, B., Strazizar, B.R., Dzombak, D.A., Lowry, G.V., Thaulow, N., ”Degradation of well cement by CO2 under geologic sequestration conditions,” Environmental Science & Technology 41, pp. 4787-4792, 2007.
[39]Liteanu, E., Spiers, C.J., “Fracture healing and transport properties of wellbore cement in the presence of supercritical CO2,” Chemical Geology 281, pp. 195-210, 2011.
[40]Makaratat, N., Jaturapitakkul, C., Laosamathikul, T., “Effects of Calcium Carbide Residue–Fly Ash Binder on Mechanical Properties of Concrete,” Journal of Materials in Civil Engineering, Vol. 22, No. 11, pp. 1164-1170, 2010.
[41]Rice, J.R., “A path independent integral and the approximate analysis of strain concentrations by notachs and cracks,” Journal of Applied Mechanics, vol. 35, pp. 379-386, 1968.
[42]Shetty, D. K., Rosenfield, A. R., Duckworth, W. H., “Fracture Toughness of Ceramics Measured by a Chevron-Notch Diametral-Compression Test,” Communications of the American Ceramic Society, J . Am. Cerarn. Sac., 68 [12], pp. 325-327, 1985.
[43]Wadsworth, M.E., “Hydrometallurgical processes,” in: Sohn, H.Y. and Wadsworth, M.E. (Eds.), Rate Processes of Extractive Metallurgy. Plenum Press, New York, pp. 133-186, 1979.
[44]Wigand, M., Kaszuba, J. P., Carey, J. W., Hollis, W. K., “Geochemical effects of CO2 sequestration on fractured wellbore cement at the cement/caprock interface,” Chemical Geology 265, pp. 122-133, 2009.