簡易檢索 / 詳目顯示

研究生: 曾柏豪
Tseng, Po-Hao
論文名稱: 以陰離子交換樹脂分離鎢、釩之研究
Separation of Tungsten and Vanadium by Using Anion Exchange Resin
指導教授: 申永輝
Shen, Yung-Hui
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 63
中文關鍵詞: 分離離子交換
外文關鍵詞: tungsten, vanadium, separation, ion exchange
相關次數: 點閱:65下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 因為工業科技的進步帶給人類更便利的生活,但伴隨而來的是環境的污染與破壞,如氮氧化物NOx,雖然SCR觸媒能有效率地將NOx轉換為對環境無害的N2與H2O,但SCR觸媒有其使用年限而需汰舊換新,將所產生的廢觸媒回收會是對於未來環境保護的重要課題。
    在本研究當中,主要目的為針對主成分為V2O5/WO3/TiO2的SCR廢觸媒做分離及回收有價金屬鎢、釩,在以模擬SCR廢觸媒的鹼性焙燒浸漬液成分,試以陰離子交換樹脂來分離鎢、釩離子,離子交換法是一種能耗低且操作簡單的新興純化技術,利用離子交換樹脂對溶液中不同離子所產生吸附能力的差異,達到分離目標金屬離子的目的。
    此研究主要內容包括:
    1. 由三種不同的離子交換樹脂中篩選出適合分離鎢、釩的強鹼性陰離子交換樹脂IRA900_Cl。
    2. 因溶液在pH為12以下時,易產生沉澱,所以將此研究的進料pH值範圍設定於12.5以上,避免沉澱發生,阻礙離子交換的進行。
    3. 在以強鹼性陰離子交換樹脂IRA900_Cl為實驗基礎下,在吸附鎢、釩離子的混合溶液情況下,吸附鎢離子的傾向大於吸附釩離子。
    4. 在進料pH值為12.7以上時,鎢的吸附率在90%以上,而在pH值為13.5以上時,釩的吸附率會降到在10%以下。由此結果可以推論當pH值在13.5以上時,有機會將鎢、釩分離。為避免消耗過多調整pH值所用之氫氧化鈉成本考量下,本研究以pH值13.7為上限。而另外浸漬液的成分中含有較高成分的Si、Al在此條件下吸附率皆不高。
    5. 在離子交換樹脂的陰離子轉型上,以IRA900_Cl為Cl型為最佳條件,進料流速方面則以蠕動馬達的最低流速0.8ml/min為最佳值。
    6. 在進料之pH值為13.7,以強鹼性陰離子交換樹脂IRA900_Cl轉為Cl型,進料流速為0.8ml/min的條件下,釩離子以幾乎不吸附的狀況下存在於出流液中,而大部分的鎢離子吸附於樹脂之上。再以2M NaCl+1M NaOH為洗脫劑來脫附鎢離子,得到鎢的脫附率為97.86%。
    進而達到鎢、釩分離的目的。

    Separation of Tungsten and Vanadium by Using Anion Exchange Resin
    Author:Po-Hao Tseng
    Advisor:Yung-Hui Shen
    Department of Resource Engineering & National Cheng Kung University
    SUMMARY
    Because of advances in industrial technology to bring human more convenient, but accompanied by the pollution and damage to the environment, such as nitrogen oxides NOx.
    Although the SCR catalyst can efficiently converted the NOx to environmentally sound N2 and H2O.But SCR catalyst has limited lifetime, the spent catalyst recycling will be an important issue of environmental protection for the future.
    In this study, the primary purpose is separation and recovery of valuable metals tungsten and vanadium in simulant leachate from spent SCR catalyst by anion exchange. Ion exchange method is a low power consumption and simple purification techniques, by using the difference of adsorption capacity between different ions in solution, to achieve separation of the target metal ion.

    Key words:tungsten; vanadium; separation; ion exchange

    INTRODUCTION
    Spent catalyst which is due to the use of a catalyst in the gas is processed, prolonged use at high temperatures, gas or processed exists in the catalyst substances and dust, because: (1) Fouling. (2) Sintering. (3) Collapse. (4)Disappeared of the active ingredient. (5) Poisoning. Resulting in catalytic activity reduced over time, and produce the elimination of waste.

    Taiwan due to densely populated and metal mineral resources are very limited, must rely on imports from abroad. If you can effectively recycle waste of valuable metals, for waste reduction, environmental protection and reducing the economic costs , there will be a significant help. Due to the increasingly widespread application of SCR technology, the current domestic SCR catalyst amount of waste per year, about 1,000 tons of SCR catalyst waste generated, which contains valuable metals tungsten, vanadium content is not low, if we set up an effective waste separation SCR catalyst of tungsten, vanadium and make recycling process, reducing the cost and environmental issues and sustainable development of resources. Currently, about one-third of the world's tungsten, tungsten metal from waste containing recycled materials.

    There are ways of recycling waste into valuable metals pyrometallurgical and hydrometallurgical. Hydrometallurgy is the use of water or a suitable solvent to dissolve the metal salts by metal replacement, electrolytic deposition, precipitation, ion exchange… etc., metal ions will to be the metal or compounds. Hydrometallurgy is often necessary to separate and enrich. Ion exchange technology due to its high selectivity, high recovery, low cost, have high-purity compounds to be a popular separation and purification techniques.

    MATERIALS AND METHODS
    Tungsten is a transition metalwhich is very hard and the color is gray to white. Its melting point is very high. The worldwide total storage of Tungsten estimated are 700 tons, of which about 30% is wolframite, scheelite is 70%. However, most of these deposits can not be mined by economical manner. According to the current consumption of these deposits is only enough to use about 140 years. Another way to obtain tungsten is recycled. Recovery of tungsten content than tungsten ore high, in fact it is very profitable. The most common oxidation state is +6 valence of tungsten, but it also has an oxidation state between of -1 to +6. The most common oxide of tungsten is trioxide, WO3, which can be dissolved in alkaline water formed to WO42-.

    Vanadium is a non-magnetic, silver-gray transition metal. Vanadium is difficult to form a independent deposit , it is often associated with other metals in nature, such as: vanadium-titanium magnetite. Therefore, not easy to separate vanadium metal mining and refining. Vanadium oxide stabilized with four valence +5 oxidation state is usually, and there are +2, +3 and +4 valence oxides, but they are easy to transit to +5 valence oxides. Due to the valence of vanadium is very easy to change, it is also often used as a catalyst. +1 valence of vanadium is rarely. Theoretically 0, -1 and -3 valence of vanadium is also possible. Vanadium species present in the aqueous solution of its type in addition to valence, but also by the pH of the solution and Vanadium concentration in solution.

    This study focused on anion exchange resin to selectively adsorb Tungsten and Vanadium ions, then use elution separate Tungsten and Vanadium, and thus achieve the purpose of the separation and purification. First,understand the important parameters of adsorption by batch adsorption experiments, and then do the resin column test, changing the experimental parameters of different pH, different resins and different types of anionic and different feed rate. In this study, use RELITE JA300LL, AMBERLITE IRA900_Cl, DIAION SA10AOH three resins to do the experiment. The feed of anion exchange column is simulant leachate from spent SCR deNOx catalyst.

    RESULTS AND DISCUSSION
    This study includes:
    1. Find the optimal resin to separate tungsten and vanadium is strongly basic anion exchange resin IRA900_Cl from three different anion exchange resins .
    2. Due to the pH value of solution at 12 or less ,precipitate easily , so the feed of this study is seting to 12.5 pH range of the above , to avoid occuring the precipitation,discourages ion exchanged.
    3. The experiment is based on strongly basic anion exchange resin IRA900_Cl,the adsorption capacity in mixed solution of tungsten and vanadium ions , the tungsten is greater than the vanadium.
    4. When the pH value of the feed at 12.7or above , the adsorption rate of tungsten is more than 90%, and the pH value at 13.5 or above, the adsorption rate of vanadium will be reduced to 10% or less. This result can be inferred when the pH value at 13.5 or above, it is an opportunity to separate tungsten and vanadium ion. In order to avoid excessive consumption of sodium hydroxide to adjust the pH value with cost considerations, this study is the upper limit of pH 13.7.The other components of the leachate are Si and Al, the adsorption rate of them are very low in this condition.
    5. When IRA900_Cl to the Cl -type is the optimum condition, the optimum value of flow rate is when the feed motor at minimum flow rate 0.8ml/min .

    CONCLUSION
    When the pH value of the feed is 13.7 , with a strong basic anion exchange resin IRA900_Cl into Cl-type, the feed flow rate is 0.8ml/min. Under the conditions, the vanadium ions adsorbed hardly, whereas most of the tungsten ions adsorbed on the resin. Then use 2M NaCl +1 M NaOH as eluent to desorb ions of tungsten, get the desorption rate of tungsten is 97.86%.

    To achieve separation of vanadium and tungsten.

    目錄 摘要 I 致謝 VI 目錄 VII 表目錄 X 圖目錄 XI 第一章 緒論 1 1-1 研究背景 1 1-2 研究目的 5 第二章 理論基礎與前人研究 8 2-1 離子交換樹脂之分類及特性 8 2-1-1 離子交換樹脂的種類 8 2-1-2 離子樹脂的轉型 12 2-1-3 離子交換樹脂基體的組成 13 2-1-4 離子交換樹脂的物理結構 13 2-1-5 離子交換樹脂的物理性質 14 2-1-6 離子交換樹脂的應用領域 15 2-2 離子交換法基本原理 16 2-3 離子交換劑的選擇 17 2-4 離子交換樹脂反應 18 2-5 連續性離子交換管柱程序 20 2-6 吸附作用 21 2-7 前人研究 22 2-7-1 鎢的物種 22 2-7-2 釩的物種 24 2-7-3 鎢釩吸附與脫附文獻 28 第三章 實驗方法與實驗步驟 33 3-1 實驗流程 33 3-2 實驗材料與設備 33 3-2-1 實驗材料 33 3-2-2 實驗設備 37 3-3 實驗步驟 39 3-3-1 樹脂前處理 39 3-3-2 pH值對樹脂吸附W、V影響管柱實驗 39 3-3-3 pH值對樹脂吸附W、V影響批次實驗 39 3-3-4 使用不同種類樹脂進行離子交換管柱實驗 40 3-3-5 置換陰離子種類影響樹脂吸附W、V實驗 40 3-3-6 調整流速影響樹脂吸附W、V實驗 41 3-3-7 離子交換管柱實驗 41 3-3-8 脫附實驗 42 第四章 結果與討論 43 4-1 pH值對樹脂吸附W、V影響管柱實驗 43 4-2 pH值對樹脂吸附W、V影響批次實驗 49 4-3 使用IRA900_Cl樹脂進行離子交換管柱實驗 49 4-4 使用JA300LL樹脂進行離子交換管柱實驗 52 4-5 使用SA10AOH樹脂進行離子交換管柱實驗 53 4-6 置換陰離子種類影響樹脂吸附W、V實驗 54 4-7 調整流速影響樹脂吸附W、V實驗 55 4-8 離子交換管柱實驗 56 4-9 脫附實驗 58 第五章 結論 59 參考文獻 60

    [1]. 陳志成 環保簡訊第19期 VOC 觸媒線上再生技術研究。
    [2]. 張國慶,廢觸媒資源化技術,台灣環保產業,2005,31,8-9。
    [3]. 林克衛 柴油車選擇性還原觸媒系統(SCR)之介紹與系統開發 車輛研測資訊097期 2013年12月。
    [4]. 林秋薰,工業觸媒失活現象之分類和鑑定,觸媒與製程期刊,1998,6,3。
    [5]. 吳榮宗,工業觸媒概論,國興出版社,新竹,1998。
    [6]. Kieffer B F,et al.Proc 4th Int Tungsten Symp[C].Van couver:MPR Publishing Services Ltd,1987.59。
    [7]. 馬榮駿 離子交換在濕法冶金中的應用[M].北京:冶金工業出版社,1992。
    [8]. M.Streat,D.Naden.Ion Exchange and Sorption Process in Hydrometallurgy[M].New York:Wiley,1987。
    [9]. 胡閔茜 以離子交換樹脂分離藍泥浸漬液中釩、鉬之研究 國立成功大學 資源工程研究所 碩士論文 2013年。
    [10]. 李建武等/合編 生物化學實驗原理和方法 藝軒圖書出版社 pp59-75 1999年。
    [11]. 謝佳穎 以離子交換樹脂分離藍泥浸漬液中鈷、鎳、鋁之研究. 國立成功大學 資源工程研究所 碩士論文. 2012年。
    [12]. 蕭因秀 ITO蝕刻廢液銦金屬吸附回收之研究. 國立成功大學 資源工程研究所 碩士論文. 2009年。
    [13]. Erik Lassner,Wolf-Dieter Schubert.Tungsten:properties,chemistry,Technology of the Element,Alloys,and Chemical Compounds.New York:Kluwer Academic/Plenum Publishers.1999:189~209。
    [14]. 莊海興,黃倫光.鎢的常溫溶劑萃取研究與實踐[J].中國鎢業,1992(3):29~31。
    [15]. 佐野誠,芝田隼次,原田宗紀等.D2EHPA溶媒抽出[J].日本礦業會志,1988(7):59~61。
    [16]. Guzman J, Saucedo I, Navarro R, Revilla J, Guibal E. Vanadium interactions with chitosan: Influence of polymer protonation and metal speciation. Langmuir. 2002;18(5):1567-73。
    [17]. Olazabal MA, Orive MM, Fernandez LA, Madariaga JM. Selective extraction of vanadium (V) from solutions containing molybdenum (VI) by ammonium salts dissolved in toluene. Solvent Extr Ion Exch. 1992;10(4):623-35。
    [18]. Clark R.J.H.,Brown D.The Chemistry of Vanadium,Niobiurn and Tantalum[M].London:Oxford Pergamon Press,1975.261~302。
    [19]. Bert M.Weckhuysen,Daphne E.Keller.Chemistry,spectroscopy and the role of supported vanadium oxides in heterogeneous catalysis[J].Catalysis Today,2003,78:25~46。
    [20]. Gupta C.K.,Krishnamurthy N.Extractive Metallurgy of Vanadium[M],Amsterdam:Elsevier Science Publishers B.V.1992。
    [21]. 蔡晉強,巴陵.石煤提釩新工藝及市場動向.釩鈦,1993,(5):5~31。
    [22]. Deleon A.Proceeding of the Second International Symposium of ICSOBA[M].Moscow:Russian,1971,3:359。
    [23]. Bhosal S N,et al. Current practices in tungsten extraction and recovery[J].High Temperature Materials and Processes,1990,9(2-4):147。
    [24]. Shishkov DA,Koleva EG Investigation of ion-exchange behaviour of tungsten(VI)and molybdenum(VI)from formic acid solutions[J]. Talanta. 1965(10):865-870。
    [25]. Vezina J A,Gow W A.A process for preparing tungstic trioxide of high purity from a Canadian scheelite concentrate[J].The Canadian Mining and Metallurgical Bulletin,1966,59(6):1418-1422。
    [26]. Jana Durisova,Ludek Jelinek, Helena Parschova, and Eva Mistova Mutual Separation of Vanadium and Tungsten from Aqueous Solution via Electrochemical Reduction and Sorption onto Chelating Resin. Department of Power Engineering , Institute of Chemical Technology , Prague, Czech Republic 2009.。
    [27]. 熊雪良,謝美求,陳堅,陳澤宗 離子交換法回收廢鎢催化劑鹼浸液中鎢的研究 金屬材料與冶金工程 2008年1月。
    [28]. 宋阜,朱賓權 離子交換法分離富集鎢酸鈉溶液中的釩 稀有金屬與硬質合金 2006年9月。
    [29]. Luo, L; Miyazaki, T; Shibayamai, A等人Separation of vanadium and tungsten from a sodium tungstate solution CANADIAN METALLURGICAL QUARTERLY 42卷4期頁碼: 411-419。
    [30]. Zhao-Rui Hu,Liu Yun.Application of ion exchange in tungsten hydrometallurgy,In:Michael Streat,eds,Ion Exchange for Industry,London:Society of Chemical Industry,1988:385-392。
    [31]. 胡芳 高濃度鎢酸鈉溶液離子交換研究 中國中南大學 碩士論文 2010。
    [32]. 趙坤 離子交換樹脂對釩(V)離子的吸附行為及其應用 中國中南大學 碩士論文 2009。
    [33]. 謝武明 鎢冶煉離子交換基礎理論及工藝研究 中國中南大學 碩士論文 2001。
    [34]. Soldi T,Pesavwnto M,Alberti G.Seoaration of vanadium(V)and(IV) by sorption on an iminodiacetic chelating resin[J].Analytica Chimica Acta,1996(323):27~37。
    [35]. 劉振楠 鎢濕法冶金離子交換新工藝研究 中國中南大學 碩士論文 2008。
    [36]. 黃成通 鎢的離子交換新工藝的發展 稀有金屬與硬質合金 2003。
    [37]. 李洪桂,趙中偉 鎢冶金強鹼性陰離子交換過程的某些問題的理論分析 中國鎢業 2010。
    [38]. 李洪桂,李波,趙中偉 鎢冶金離子交換新工藝研究 稀有金屬與硬質合金 2007。
    [39]. 曾添文,戴文燦,張志,朱柒金 離子交換樹脂對釩(V)交換性能的研究 離子交換與吸附 2002。
    [40]. 王四華 釩的富集及尾液淨化工藝研究 中國湖北工業大學 碩士論文 2010。
    [41]. 朱屯 萃取與離子交換 冶金工業出版社 2005。

    無法下載圖示 校內:2019-07-09公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE