| 研究生: |
謝宗翰 Hsieh, Chung-Han |
|---|---|
| 論文名稱: |
創傷弧菌生物二型RTX毒素之ACD及ERM區域於該毒素功能上的角色 The roles of ACD and ERM domains in the functions of Vibrio vulnificus biotype 2 RTX toxin |
| 指導教授: |
何漣漪
Hor, Lien-I |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 微生物及免疫學研究所 Department of Microbiology & Immunology |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 46 |
| 中文關鍵詞: | 創傷弧菌 、RTX毒素 、ACD區域 、ERM區域 、細胞毒殺性 、抗吞噬能力 |
| 外文關鍵詞: | Vibrio vulnificus, RTX toxin, ACD domain, ERM domain, cytotoxicity, antiphagocytosis |
| 相關次數: | 點閱:130 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
創傷弧菌為一革蘭氏陰性菌,通常棲居於淡鹹水交界處,主要分為三種生物型,皆可感染人類,但只有生物二型因具有一毒力質體,而對鰻魚有致病性。此菌產生各種致病因子,其所分泌之RTX毒素為主要因子之一。此毒素可在許多革蘭氏陰性菌中發現,對宿主所造成的影響也各不相同;創傷弧菌之RTX毒素具細胞毒殺性(cytotoxicity)及抗吞噬(antiphagocytosis)功能,如將其剔除,會造成創傷弧菌對小鼠的毒力顯著下降,顯示此毒素在創傷弧菌感染過程中是不可或缺的。我們實驗室先前發現,生物一型及生物二型菌株之RTX毒素所含的domains不盡相同。此外,生物一型菌株只在染色體上帶有一套RTX毒素基因組,但生物二型菌株之毒力質體及染色體上各帶有一套相同的RTX毒素基因組。於本論文研究中,我探討了生物二型RTX毒素之ACD(actin cross-linking domain)及 ERM (ezrin-radixin-moesin) domain於此毒素之功能上的角色。ACD也存在於霍亂弧菌(V. cholerae)之RTX毒素中,且已知能造成宿主細胞的actin產生cross-linking,但並不存在於生物一型RTX毒素中;ERM domain則為此三種RTX毒素所共有,雖與宿主的actin-binding蛋白在胺基酸序列上有相似性,但其在此毒素中的功能未知。我發現將生物二型RTX毒素中的ACD domain剔除後所得到的突變株GG036雖失去了造成actin cross-linking的功能,但仍保有細胞毒殺性及抗吞噬能力,顯示ACD domain並不參與此毒素之細胞毒殺性及抗吞噬功能。另一方面,將ERM domain剔除之突變株GG038則完全喪失細胞毒殺性及抗吞噬能力。但我接著發現GG038同時也失去了ACD的功能,推測剔除ERM domain後RTX毒素失去功能的原因可能是因為RTX毒素失去了其正確蛋白質結構。我進一步分別剔除了ERM domain N端73 a.a.(得突變株GG057)及C端34 a.a.(得突變株GG059)後發現,GG059表現微弱的actin cross-linking的功能,且仍保有約31%之細胞毒殺性及87.7%抗吞噬能力,此結果和我們認為ERM domain與維持RTX毒素蛋白正確構型相關的推測一致。以免疫螢光顯微鏡觀察野生株及各突變株RTX毒素感染宿主細胞後在細胞中的分布及濃度,GG036及GG059與CECT4999螢光訊號強度相當。但GG038及GG057感染後,宿主細胞內RTX蛋白之訊號則明顯較弱,顯示剔除部份或全部之ERM domain的RTX蛋白可能因結構改變而失去與宿主細胞作用的能力。
Vibrio vulnificus, a gram-negative bacterial species inhabiting estuary, is divided into three biotypes (BTs). All BTs may infect humans, but only the BT2 strains are pathogenic for the eels due to the presence of a virulence plasmid. This species produces a variety of virulence factors, with the RTX (repeats in toxin) toxin as one of them. The RTX family members could be found in many gram-negative bacteria, and they exert different effects on the hosts. The V. vulnificus RTX toxin confers cytotoxicity and antiphagocytosis, and a mutant deficient in this toxin exhibits significantly reduced virulence in the mouse, indicating that it is indispensible in pathogenesis. Our laboratory has previously found that the RTX toxins of BT1 and BT2 strains contain dissimilar domains. In addition, unlike the BT1 strains, which contain only one copy of rtx gene cluster in the chromosome, the BT2 strains possess two identical copies, each in the chromosome and virulence plasmid. In this study, I investigated the roles of ACD (actin cross-linking domain) and ERM (ezrin-radizin-moeisin) domains in the functions of BT2 RTX toxin. The ACD domain is also present in the V. cholerae RTX toxin and is known to cause actin cross-linking in the host cell, but it does not exist in the BT1 RTX toxin. The ERM domain is found in all the three RTX toxins, and although it shares sequence homology with the eukaryotic actin-binding proteins, its function remains unclear. I found that a mutant, GG036, deleted of the ACD domain lost the actin cross-linking ability, but was still cytotoxic and resistant to phagocytosis, indicating that this domain is not involved in these two properties. On the other hand, a mutant deleted of the ERM domain (GG038) lost cytotoxicity and the abilities of antiphagocytosis and actin cross-linking. This suggests that the RTX without the ERM domain may not form a functional protein structure. I further isolated mutants that were deleted of 73 residues at the N-terminus (mutant GG057) and 34 residues at the C-terminus (mutant GG059) of ERM domain. It was shown that GG059 retained 31% cytotoxicity, 87.7% antiphagocytosis ability and weak actin cross-linking ability while GG057 was defective in all of these properties. This result is consistent with our speculation that the ERM domain is associated with formation of the functional RTX structure. An examination of the amounts and distribution of RTX in the infected cells by immunofluorescent microscopy revealed that GG036 and GG059 resulted in RTX signals comparable to that caused by the wild-type strain. However, mutants GG038 and GG057 resulted in significantly weaker RTX signals, suggesting that deletion of the entire or part of ERM domain may render the RTX mutants with the nonfunctional structures less able to interact with the host cell.
1. Amaro, C., and E. G. Biosca. 1996. Vibrio vulnificus biotype 2, pathogenic for eels, is also an opportunistic pathogen for humans. Applied and environmental microbiology 62:1454-1457.
2. Amaro, C., E. G. Biosca, B. Fouz, and E. Garay. 1992. Electrophoretic analysis of heterogeneous lipopolysaccharides from various strains of Vibrio vulnificus biotypes 1 and 2 by silver staining and immunoblotting. Current microbiology 25:99-104.
3. Amaro, C., L. I. Hor, E. Marco-Noales, T. Bosque, B. Fouz, and E. Alcaide. 1999. Isolation of Vibrio vulnificus serovar E from aquatic habitats in Taiwan. Applied and environmental microbiology 65:1352-1355.
4. Bisharat, N., V. Agmon, R. Finkelstein, R. Raz, G. Ben-Dror, L. Lerner, S. Soboh, R. Colodner, D. N. Cameron, D. L. Wykstra, D. L. Swerdlow, and J. J. Farmer, 3rd. 1999. Clinical, epidemiological, and microbiological features of Vibrio vulnificus biogroup 3 causing outbreaks of wound infection and bacteraemia in Israel. Israel Vibrio Study Group. Lancet 354:1421-1424.
5. Blake, P. A., M. H. Merson, R. E. Weaver, D. G. Hollis, and P. C. Heublein. 1979. Disease caused by a marine Vibrio. Clinical characteristics and epidemiology. The New England journal of medicine 300:1-5.
6. Carlsson, A. E. 2010. Actin dynamics: from nanoscale to microscale. Annual review of biophysics 39:91-110.
7. Cordero, C. L., D. S. Kudryashov, E. Reisler, and K. J. Satchell. 2006. The Actin cross-linking domain of the Vibrio cholerae RTX toxin directly catalyzes the covalent cross-linking of actin. The Journal of biological chemistry 281:32366-32374.
8. Elmore, S. P., J. A. Watts, L. M. Simpson, and J. D. Oliver. 1992. Reversal of hypotension induced by Vibrio vulnificus lipopolysaccharide in the rat by inhibition of nitric oxide synthase. Microbial pathogenesis 13:391-397.
9. Fan, J. J., C. P. Shao, Y. C. Ho, C. K. Yu, and L. I. Hor. 2001. Isolation and characterization of a Vibrio vulnificus mutant deficient in both extracellular metalloprotease and cytolysin. Infection and immunity 69:5943-5948.
10. Fullner, K. J., and J. J. Mekalanos. 2000. In vivo covalent cross-linking of cellular actin by the Vibrio cholerae RTX toxin. The EMBO journal 19:5315-5323.
11. Gander, R. M., and M. T. LaRocco. 1989. Detection of piluslike structures on clinical and environmental isolates of Vibrio vulnificus. Journal of clinical microbiology 27:1015-1021.
12. Geissler, B., S. Ahrens, and K. J. Satchell. 2012. Plasma membrane association of three classes of bacterial toxins is mediated by a basic-hydrophobic motif. Cellular microbiology 14:286-298.
13. Geissler, B., R. Tungekar, and K. J. Satchell. 2010. Identification of a conserved membrane localization domain within numerous large bacterial protein toxins. Proceedings of the National Academy of Sciences of the United States of America 107:5581-5586.
14. Halow, K. D., R. C. Harner, and L. J. Fontenelle. 1996. Primary skin infections secondary to Vibrio vulnificus: the role of operative intervention. Journal of the American College of Surgeons 183:329-334.
15. Hanahan, D. 1983. Studies on transformation of Escherichia coli with plasmids. Journal of molecular biology 166:557-580.
16. Hlady, W. G., and K. C. Klontz. 1996. The epidemiology of Vibrio infections in Florida, 1981-1993. The Journal of infectious diseases 173:1176-1183.
17. Hollis, D. G., R. E. Weaver, C. N. Baker, and C. Thornsberry. 1976. Halophilic Vibrio species isolated from blood cultures. Journal of clinical microbiology 3:425-431.
18. Hor, L. I., C. T. Gao, and L. Wan. 1995. Isolation and Characterization of Vibrio vulnificus Inhabiting the Marine Environment of the Southwestern Area of Taiwan. Journal of biomedical science 2:384-389.
19. Hsueh, P. R., C. Y. Lin, H. J. Tang, H. C. Lee, J. W. Liu, Y. C. Liu, and Y. C. Chuang. 2004. Vibrio vulnificus in Taiwan. Emerging infectious diseases 10:1363-1368.
20. Kim, Y. R., S. E. Lee, H. Kook, J. A. Yeom, H. S. Na, S. Y. Kim, S. S. Chung, H. E. Choy, and J. H. Rhee. 2008. Vibrio vulnificus RTX toxin kills host cells only after contact of the bacteria with host cells. Cellular microbiology 10:848-862.
21. Klontz, K. C., S. Lieb, M. Schreiber, H. T. Janowski, L. M. Baldy, and R. A. Gunn. 1988. Syndromes of Vibrio vulnificus infections. Clinical and epidemiologic features in Florida cases, 1981-1987. Annals of internal medicine 109:318-323.
22. Koenig, K. L., J. Mueller, and T. Rose. 1991. Vibrio vulnificus sepsis presenting as leg pain and lower extremity rash. The American journal of emergency medicine 9:523-524.
23. Kudryashov, D. S., Z. A. Durer, A. J. Ytterberg, M. R. Sawaya, I. Pashkov, K. Prochazkova, T. O. Yeates, R. R. Loo, J. A. Loo, K. J. Satchell, and E. Reisler. 2008. Connecting actin monomers by iso-peptide bond is a toxicity mechanism of the Vibrio cholerae MARTX toxin. Proceedings of the National Academy of Sciences of the United States of America 105:18537-18542.
24. Kumamoto, K. S., and D. J. Vukich. 1998. Clinical infections of Vibrio vulnificus: a case report and review of the literature. The Journal of emergency medicine 16:61-66.
25. Lally, E. T., R. B. Hill, I. R. Kieba, and J. Korostoff. 1999. The interaction between RTX toxins and target cells. Trends in microbiology 7:356-361.
26. Lee, C. T., C. Amaro, K. M. Wu, E. Valiente, Y. F. Chang, S. F. Tsai, C. H. Chang, and L. I. Hor. 2008. A common virulence plasmid in biotype 2 Vibrio vulnificus and its dissemination aided by a conjugal plasmid. Journal of bacteriology 190:1638-1648.
27. Lee, J. H., M. W. Kim, B. S. Kim, S. M. Kim, B. C. Lee, T. S. Kim, and S. H. Choi. 2007. Identification and characterization of the Vibrio vulnificus rtxA essential for cytotoxicity in vitro and virulence in mice. J Microbiol 45:146-152.
28. Lee, J. H., J. B. Rho, K. J. Park, C. B. Kim, Y. S. Han, S. H. Choi, K. H. Lee, and S. J. Park. 2004. Role of flagellum and motility in pathogenesis of Vibrio vulnificus. Infection and immunity 72:4905-4910.
29. Lin, W., K. J. Fullner, R. Clayton, J. A. Sexton, M. B. Rogers, K. E. Calia, S. B. Calderwood, C. Fraser, and J. J. Mekalanos. 1999. Identification of a Vibrio cholerae RTX toxin gene cluster that is tightly linked to the cholera toxin prophage. Proceedings of the National Academy of Sciences of the United States of America 96:1071-1076.
30. Linkous, D. A., and J. D. Oliver. 1999. Pathogenesis of Vibrio vulnificus. FEMS microbiology letters 174:207-214.
31. Lo, H. R., J. H. Lin, Y. H. Chen, C. L. Chen, C. P. Shao, Y. C. Lai, and L. I. Hor. 2011. RTX toxin enhances the survival of Vibrio vulnificus during infection by protecting the organism from phagocytosis. The Journal of infectious diseases 203:1866-1874.
32. Miller, V. L., and J. J. Mekalanos. 1988. A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. Journal of bacteriology 170:2575-2583.
33. Musher, D. M. 1989. Cutaneous manifestations of bacterial sepsis. Hosp Pract (Off Ed) 24:71-75, 80-72, 92 passim.
34. Neisch, A. L., and R. G. Fehon. 2011. Ezrin, Radixin and Moesin: key regulators of membrane-cortex interactions and signaling. Current opinion in cell biology 23:377-382.
35. O'Neill, K. R., S. H. Jones, and D. J. Grimes. 1992. Seasonal incidence of Vibrio vulnificus in the Great Bay estuary of New Hampshire and Maine. Applied and environmental microbiology 58:3257-3262.
36. Philippe, N., J. P. Alcaraz, E. Coursange, J. Geiselmann, and D. Schneider. 2004. Improvement of pCVD442, a suicide plasmid for gene allele exchange in bacteria. Plasmid 51:246-255.
37. Sanchez-Magraner, L., A. L. Cortajarena, M. Garcia-Pacios, J. L. Arrondo, J. Agirre, D. M. Guerin, F. M. Goni, and H. Ostolaza. 2010. Interdomain Ca(2+) effects in Escherichia coli alpha-haemolysin: Ca(2+) binding to the C-terminal domain stabilizes both C- and N-terminal domains. Biochimica et biophysica acta 1798:1225-1233.
38. Sanchez-Magraner, L., A. R. Viguera, M. Garcia-Pacios, M. P. Garcillan, J. L. Arrondo, F. de la Cruz, F. M. Goni, and H. Ostolaza. 2007. The calcium-binding C-terminal domain of Escherichia coli alpha-hemolysin is a major determinant in the surface-active properties of the protein. The Journal of biological chemistry 282:11827-11835.
39. Satchell, K. J. 2007. MARTX, multifunctional autoprocessing repeats-in-toxin toxins. Infection and immunity 75:5079-5084.
40. Satchell, K. J. 2011. Structure and function of MARTX toxins and other large repetitive RTX proteins. Annual review of microbiology 65:71-90.
41. Shao, C. P., and L. I. Hor. 2000. Metalloprotease is not essential for Vibrio vulnificus virulence in mice. Infection and immunity 68:3569-3573.
42. Sheahan, K. L., C. L. Cordero, and K. J. Satchell. 2007. Autoprocessing of the Vibrio cholerae RTX toxin by the cysteine protease domain. The EMBO journal 26:2552-2561.
43. Sheahan, K. L., C. L. Cordero, and K. J. Satchell. 2004. Identification of a domain within the multifunctional Vibrio cholerae RTX toxin that covalently cross-links actin. Proceedings of the National Academy of Sciences of the United States of America 101:9798-9803.
44. Stossel, T. P. 1977. Phagocytosis. Progress in clinical and biological research 13:87-102.
45. Strom, M. S., and R. N. Paranjpye. 2000. Epidemiology and pathogenesis of Vibrio vulnificus. Microbes and infection / Institut Pasteur 2:177-188.
46. Vollberg, C. M., and J. L. Herrera. 1997. Vibrio vulnificus infection: an important cause of septicemia in patients with cirrhosis. Southern medical journal 90:1040-1042.
47. Waterfield, N. R., P. J. Daborn, A. J. Dowling, G. Yang, M. Hares, and R. H. ffrench-Constant. 2003. The insecticidal toxin makes caterpillars floppy 2 (Mcf2) shows similarity to HrmA, an avirulence protein from a plant pathogen. FEMS microbiology letters 229:265-270.
48. Welch, R. A. 2001. RTX toxin structure and function: a story of numerous anomalies and few analogies in toxin biology. Current topics in microbiology and immunology 257:85-111.
49. Yanisch-Perron, C., J. Vieira, and J. Messing. 1985. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103-119.