| 研究生: |
蘇煒翔 Su, Wei-Xiang |
|---|---|
| 論文名稱: |
製備高選擇性分子模版從蛋及疫苗中進行固相萃取過敏原卵白蛋白 Fabricating high selectivity molecular imprinting polymer for solid-phase extraction of ovalbumin from egg and vaccine |
| 指導教授: |
周澤川
Chou, Tse-Chuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 154 |
| 中文關鍵詞: | 分子模版 、卵白蛋白 、微接觸技術 、過敏原 |
| 外文關鍵詞: | allergen, ovalbumin, micro-contact imprinted technique, molecular imprinting polymer |
| 相關次數: | 點閱:143 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
卵白蛋白(ovalbumin)是雞蛋中最主要的過敏原,在醫學研究上,卵白蛋白所引發的過敏症狀是研究過敏症狀的最主要模型。卵白蛋白存在於所有的雞蛋類製品中,且於雞胚胎中培養出的疫苗,如德國麻疹及流感疫苗中亦含有卵白蛋白。而卵白蛋白性質穩定不易去除,因此運用分子模版的特性,具有與天然抗體相似之專一性、穩定性佳、製備簡單且成本低廉,製備卵白蛋白模版,以期能有效的辨識、分離卵白蛋白,並探討未來發展成人工抗體的可能性。
本研究應用微熱卡計滴定結果並配合應用微接觸技術實際製備分子模版選擇最適當的功能性單體與交聯劑。經實驗證實選擇甲基丙烯酸(MAA)為功能性單體,其模印係數(imprinting factor)可達3.57,再吸附率可達73.30 ± 2.56 %。選擇聚乙二醇(400)二甲基丙烯酸酯(PEG400)為交聯劑,其imprinting factor可達4.09,再吸附率僅有15.82 ± 2.32 %。而MAA與PEG400在5 vol %與95 vol %的條件下,imprinting factor可達10.07。當先以1 mg / ml磷酸緩衝溶液(PB)的胰蛋白酶(trypsin)溶液於37 °C下3小時,再以2 wt % 十二烷基磺酸鈉(SDS) + 0.4 wt % 氫氧化鈉(NaOH) 溶液於60 °C下30分鐘為清洗條件。其移除率可達93.3 %,且再吸附率可達61.96 %,imprinting factor可達13.44。於探討模版動力吸附機制中,可求得模版上的辨識性吸附的部份,解離常數Kd 為 3.559×10-7 M,辨識性孔洞n*有4.759×10-11 mole / cm2(即模版表面的active sites); 而非辨識性吸附的部份,Kd為2.623×10-6 M,非辨識性孔洞n*有1.940×10-10 mole /cm2。
卵白蛋白模板在使用人血清白蛋白(HSA)、卵伴蛋白(conalbumin)、類卵黏蛋白(ovomucoid)及溶菌酶(lysozyme)在雙成份等莫爾濃度下作競爭性分析,對卵白蛋白的選擇性分別為71.79 %、93.55 %、83.4 %及89.55 %。
Ovalbumin is the major allergen in eggs. In medical research, ovalbumin induced allergy is a major model in studying allergy. Ovalbumin exists in all egg-produced products, and the vaccine produced from chicken also contained ovalbumin. Ovalbumin is a stable protein that is difficult to denature, so we apply the characteristic of molecular imprinting polymer, which has similar selectivity to antibody, i.e. stable, easy to fabricate and low cost. Therefore fabricating an ovalbumin imprinting polymer should be an effective way to selectivity extract ovalbumin. Additionally, we can look forward to MIPs application in immunoassays.
This research applied the Isothermal Titration Calorimeter results compared to the results of imprinted polymer using micro-contact imprinted technology to decide the optimal functional monomer and cross-linker. Using MAA as functional monomer showed that the imprinting factor can reach 3.57, the rebinding efficiency can reach 73.30 ± 2.56 %. Using PEG400 as cross-linker showed that the imprinting factor can reach 4.09, the rebinding efficiency only had 15.82 ± 2.32 %. With a ratio of MAA and PEG400 of 5 vol% and 95 vol%, the imprinting factor can reach 10.07. While using 1 mg / ml PB of trypsin solution at 37 °C for 3 hours, and then using 2 wt % SDS + 0.4 wt % NaOH solution at 60 °C for 30 minutes as extraction condition. The removing efficiency can reach 93.3 %, the rebinding efficiency can reach 61.96 % and the imprinting factor can reach 13.44. Scatchard binding plots showed the dissociation constant for the specific binding phase to be 3.559×10-7M and the theoretical recognition binding site capacity to be 4.759×10-11 mole / cm2; for the non-specific binding phase Kd =2.8086×10-6 M and the non-specific recognition binding site capacity was determined as 2.049×10-10 mole /cm2.
The selectivity binding experiments were carried out in binary protein systems with equal molecular concentrations of the proteins. In binary competition systems, ovalbumin selectivity to HSA, conalbumin, ovomucoid and lysozyme was 71.79 %, 93.55 %, 83.4 % and 89.55 % respectively.
[1] J. A. Huntington, P. E. Stein, “Structure and properties of ovalbumin”, Journal of Chromatatography B, 756, pp. 189-198, 2001
[2] J. G. Moir, L. A. Fothergill, J. E. Fothergill, “The complete amino-acid sequence of hen ovalbumin”, European Journal of Biochemistry, 115, pp. 335-345, 1981
[3] T. Matsumoto, H. Inoue, J. Chiba, “Microscopic surface structure of a globular molecule of ovalbumin in aqueous buffer solutions”, J. Appl. Phys. , 71(2), pp. 1020-1025, 1992
[4] P. E. Stein, A.G. Leslie, J.T. Finch, R.W. Carrell, “Crystal structure of uncleaved ovalbumin at 1.95 A resolution”, J.Mol.Biol. , 221, pp. 941-959, 1991
[5] A. Kato, K. Fujimoto, N. Matsudomi, K. Kobayashi, ”Protein flexibility and functional properties of heat-denatured ovalbumin and lysozyme”, Agric. Biol. Chem., 50(2), pp. 417-420, 1986
[6] I. V. Plancken, A. V. Loey, M. E. Hendrickx, “Combined effect of high pressure and temperature on selected properties of egg white proteins”, Innovative Food Science and Emerging Technologies, 6, pp. 11-20, 2005
[7] V. Raikos, R. Hansen, L. Campbell, S. R. Euston, “Separation and identification of hen egg protein isoforms using SDS-PAGE and 2D gel electrophoresis with MALDI-TOF mass spectrometry”, Food Chemistry, 99, pp. 702–710, 2006
[8] S. Purushothama, S. Kradtap, C. A. Wijayawardhana, H. B. Halsall, W. R. Heineman, “Small volume bead assay for ovalbumin with electrochemical detection”, Analyst, 126, pp. 337–341, 2001
[9] K. Shigeru et al., “Immunosensors using a quartz crystal microbalance”, Mat Sci Technol, 14, pp. 1882-1887, 2003
[10] R. L. Adams, D. S. Mottram, J. K. Parker, H. M. Brown, ” Flavor-Protein Binding: Disulfide Interchange Reaction between Ovalbumin and Volatle Disulfides”, J. Agric. Food Chem., 49, pp. 4333-4336, 2001
[11] A. C. Awade, T. Efstathiou, “Comparison of three liquid chromatographic methods for egg-white protein analysis”, Journal of Chromatography B, 723, pp. 69–74, 1999
[12] 李秉穎醫師, http://ntuh.mc.ntu.edu.tw/health/hrc_v3/index.aspx, 台大醫院健康教育中心
[13] N. Holland, Y. Qiu, M. Ruegsegger, R. Marchant, “Biomimetic engineering of non-adhesive glycocalyx-like surfaces using oligosaccharide surfactant polymers”, Nature, 392, pp. 799-801, 1998.
[14] L. Pauling, “A theory of the structure and process of formation of antibodies”, Journal of the American Chemical Society, 62, 1940.
[15] B. Sellergren, “Molecularly imprinted polymers, Man-made mimics of antibodies and their application in analytical chemistry”, Elesvier, New York, 23, 2001.
[16] P. A. G. Cormack, K. Mosbach, “Molecular Imprinting: Recent Developments and the Road Ahead”, Reactive and Functional Polymer, 41, pp. 115-124, 1999.
[17] L. Andersson, “Preparation of amino acid ester-selective cavities formed by non-covalent imprinting with a substrate in highly cross-linked polymers”, React. Polym., 9, pp. 29-41, 1988.
[18] L. Andersson, B. Ekberg, K. Mosbach, “Synthesis of a new amino acid based cross-linker for preparation of substrate”, Selective acrylic polymers, Tetrahed. Lett., 26, pp. 3623-3624, 1985.
[19] L. Andersson, B. Sellergren, K. Mosbach, “Imprinting of amino acid derivatives in macroporous polymers, Tetrahed. Lett., 25, pp. 5211-5214, 1984.
[20] R. Arshady, K. Mosbach, “Synthesis of substrate-selective polymers by host-guest polymerization., Makromol. Chem., 182, pp. 687-692, 1981.
[21] O. Norrlow, M. Glad, K. Mosbach, “Acrylic polymer preparations containing recognition sites obtained by imprinting with substrates”, J. Chromatogr., 299, pp. 29-41, 1984.
[22] Y. GE, A. P. F. Turner, “Too large to fit? Recent developments in macromolecular imprinting”, Trends in Biotechnology, 26, 4, pp. 218-224, 2008
[23] K. Mosbach and O. Ramström, “The emerging technique of molecular imprinting and its future impact on biotechnology”, Bio/Technology, 14, pp. 163-170, 1996.
[24] G. Wulff, “Molecular imprinting in cross-linked Materials with the aid of molecular templates - a way towards artificial antibodies”, Angew. Chem. Int. Ed.Engl., 34, pp. 1812-1832, 1995.
[25] 廖平喜,聚合物化學,高立圖書有限公司,2000
[26] D. Kriz, K. Mosbach, “Competitive amperometric morphine sensor based on an agarose immobilised molecularly imprinted polymer”, Analytica Chimica Acta, 300, pp. 71-75, 1995.
[27] H. Y. Wang, T. Kobayashi, N. Fujii, “Molecular Imprinting of Theophylline in Acrylonitrile-acrylic acid Copolymer membrane”, Chemistry Letters, pp. 927-928, 1995.
[28] T. Kobayashi, H. Y. Wang, N. Fujii, “Molecular Imprint Membranes Prepared by the Phase Inversion Precipitation Technique”, Langmuir, 12, pp. 4850-4856, 1996.
[29] S. A. Piletsky, E. V. Piletskaya, A. V. Elgersma, K. Yano, I. Karube, “Atrazine sensing by molecularly imprinted membranes”, Biosensors & Bioelectronics, 10, pp. 959-964, 1995.
[30] M. Siemann, L. I. Andersson, K. Mosbach, “Selective recognition of the herbicide atrazine by noncovalent molecularly imprinted polymers”, Journal of Agricultural and Food Chemistry, 44, pp. 141-145, 1996.
[31] K. Sreenivasan, “Imparting cholesterol recognition sites in radiation polymerised Poly(2-hydroxyethyl methacrylate) by molecular imprinting”, Polymer International, 42, pp. 169-172, 1997.
[32] K. Sreenivasan, “Effect of the type of monomers of molecularly imprinted polymers on the interaction with steroids”, Journal of Applied Polymer Science, 68, pp. 1863-1866, 1998.
[33] P. S. Reddy, T. Kobayashi, N. Fujii, “Molecular imprinting in hydrogen bonding networks of polyamide nylon for recognition of amino acids”, Chemistry Letters, pp. 293-294, 1999.
[34] C. Y. Lin, D. F. Tai, T. Z. Wu, “Discrimination of peptides by using a molecularly imprinted piezoelectric biosensor”, Chemistry-a European Journal, 9, pp. 5107-5110, 2003.
[35] S. H. Ou, M. C. Wu, T. C. Chou, C. C. Liu, “Polyacrylamide gels with electrostatic functional groups for the molecular imprinting of lysozyme”, Analytica Chimica Acta, 504, pp. 163-166, 2004.
[36] J. Rick, T.C. Chou, “Enthalpy changes associated with protein binding to thin films”, Biosensors & Bioelectronics, 20, pp. 1878-1883, 2005.
[37] J. T. Huang, J. Zhang, J. Q. Zhang, S. H. Zheng,”Template imprinting amphoteric polymer for the recognition of proteins”, Journal of Applied Polymer Science, 95, pp. 358-361, 2005.
[38] O. Hayden, R. Bindeus, C. Haderspock, K. J. Mann, B. Wirl, F. L. Dickert,”Mass-sensitive detection of cells, viruses and enzymes with artificial receptors”, Sensors and Actuators B-Chemical, 91, pp. 316-319, 2003.
[39] F. L. Dickert, O. Hayden,”Bioimprinting of polymers and sol-gel phases. Selective detection of yeasts with imprinted polymers”, Analytical Chemistry, 74, pp. 1302-1306, 2002.
[40] R. Arshady,”Functional monomers”, Journal of Macromolecular Science - Reviews in Macromolecular Chemistry and Physics, 32, pp. 101-132, 1992.
[41] P. A. G. Cormack, A. Z. Elorza,”Molecularly imprinted polymers: synthesis and characterisation”, Journal of Chromatography B, 804, pp. 173-182, 2004.
[42] J. Whitcombe, M. E. Rodriguez, P. Villar, E. N. Vulfson,”A new method for the introduction of recognition site functionality into polymers prepared by molecular imprinting: synthesis and characterization of polymeric receptors of cholesterol”, Journal of the American Chemical Society, 147, pp. 7105-7111, 1995.
[43] M. Kempe,”Antibody-Mimicking polymers as chiral stationary phases in HPLC”, Analytical Chemistry, 68, pp. 1948-1953, 1996.
[44] K. Karim, F. Breton, R. Rouillon, E. V. Ipletska, A. Guerreiro, I. Chianella, A. Sergey, Ipletsky,”How to find effective functional monomers for effective molecularly imprinted polymers”, Advanced Drug Delivery Reviews, 57, pp. 1795-1808, 2005.
[45] B. R. Hart, K. J. Shea, “Molecular Imprinting for the Recognition of N-Terminal Histidine Peptides in Aqueous Solution”, Macromolecules, 35, pp. 6192-6201, 2002
[46] E. Yilmaz, K. Mosbach, K. Haupt,”Influence of functional and cross-linking monomers and the amount of template on the performance of molecularly imprinted polymers in binding assays”, Analytical Communications, 36, pp. 167-170, 1999.
[47] 吳佳怡,”分子模印高分子之製備”,碩士論文,1993。
[48] K. Hosoya, K. Yoshizako,”Molecular recognition towards coplanar polychlorinated biphenyls based on the porogen imprinting effects of xylenes”, Journal of Chromatography A, 828, pp. 91–94, 1998
[49] G. Wulff,”Polymeric Reagents and Catalysts”, ACS Symp.Ser, 308, pp. 186, 1986.
[50] K. Sreenivasan, R. Sivakumar,“Interaction of Molecularly Imprinted Polymers with Creatinine“, Journal of Applied Polymer Science, 66, pp. 2539-2542, 1997
[51] 陳威志,”利用微卡計所得資訊設計肌酸酐分子模版”,國立成功大學,2004
[52] A. Kumar, G. M. Whitesides,”Features of Gold Having Micrometer to Centimeter Dimensions Can Be Formed Through a Combination of StamIpng with an Elastomeric Stamp and an Alkanethiol 'Ink' Followed by Chemical Etching”, Applied Physics Letters, 63, pp. 2002-2004, 1993.
[53] A. Bernard, B. Hens, E. Delamarche,”Microcontact Printing of Proteins”, Adv Mater, 12, pp. 1067-1070, 2000.
[54] 馮傑,高長有,沈家驄,”微接觸印刷技術在表面圖案化中的應用”,高分子材料科學與工程,20卷5期,pp. 1-5, 2004
[55] R. Singhvi, A. Kumar, G. P. Lopez, G. N. Stephanopoulos, D. I. C. Wang, G. M. Whitesides, D. E. Inqber, “Engineering Cell Shape and Function”, Science, 264, 5159, pp. 696-698, 1994.
[56] D. R. Jung, D. S. Cuttino, J. J. Pancrazio, P. Manos, T. Cluster, R. S. Sathanoori, L. E. Aloi, and M. G. Coulombe , “Cell-based sensor microelectrode array characterized by imaging x-ray photoelectron spectroscopy, scanning electron microscopy, impedance measurements, and extracellular recordings”, J. Vac. Sci. Technol. A, 16, pp. 1183-1188, 1998
[57] M. Mrksich, G. M. Whitesides, “Patterning self-assembled monolayers using microcontact printing: A new technology for biosensors?”, Trends Biotechnol., 13, pp. 228-235, 1995
[58] J. J. Pancrazio, J. Bey, P. Paul, A. Loloee, S. Manne, H. C. Chao, L. L. Howard,“Description and demonstration of a CMOS amplifier-based-system with measurement and stimulation capability for bioelectrical signal transduction”, Biosens. Bioelec, 13, 971-979, 1998
[59] S. P. A. Fodor, J. L. Read, M. C. Iprrung, L. Stryer, A. T. Lu, D. Solas,”Light-directed, spatially addressable parallel chemical synthesis”, Science, 251, pp. 767-773, 1991.
[60] N. Patel, R. Padera, G. H.W. Sanders, S. M. Cannizzaro, M. C. Davies, R. Langer, C. J. Roberts, S. J. Tendler, P. M. Williams, K. M. Shakesheff,”Spatially controlled cell engineering on biodegradable polymer surfaces”, FASEB Journal, 12, pp. 1447-1454, 1998.
[61] S. C. Chen, M. Mrksich, S. Huang, G. M. Whitesides, D. E. Ingber, “Geometric Control of Cell Life and Death”, Science, 276, pp. 1425-1428, 1997
[62] G. P. Lopez, M. W. Albers, S. L. Schreiber, R. Carroll, E. Peralta, G. M. Whitesides , “Convenient methods for patterning the adhesion of mammalian cells to surfaces using self-assembled monolayers of alkanethiolates on gold “, J. Am. Chem. Soc. , 115, pp. 5877-5878, 1993
[63] L. Fischer, B. Muller, K. Mosbach,”Direct enantioseparation of .beta.-adrenergic blockers using a chiral stationary phase prepared by molecular imprinting”, J. Am. Chem. Soc., 113, pp. 9358-9360, 1991.
[64] R. J. Ansell, K. Mosbach,”Molecularly imprinted polymers by suspension polymerisation in perfluorocarbon liquids, with emphasis on the influence of the porogenic solvent”, Journal of Chromatography A, 787, pp. 55-66, 1997.
[65] J. Haginaka, H. Takehira, K. Hosoya, N. Tanaka,”Molecularly imprinted uniform-sized polymer-based stationary phase for naproxen: Comparison of molecular recognition ability of the molecularly imprinted polymers prepared by thermal and redox polymerization techniques”, Journal of Chromatography A, 816, pp. 113-121, 1998.
[66] K. Hosoya, K. Yoshizako, Y. Shirasu, K. Kimata, T. Araki, N. Tanaka, J. Haginaka,”Molecularly imprinted uniform-size polymer-based stationary phase for high-performance liquid chromatography structural contribution of cross-linked polymer network on specific molecular recognition”, Journal of Chromatography A, 728, pp. 139-147, 1996.
[67] A. G. Mayes, K. Mosbach,”Molecularly Imprinted Polymer Beads: Suspension Polymerization Using a Liquid Perfluorocarbon as the Dispersing Phase”, Anal. Chem., 68, pp. 3769-3774, 1996.
[68] F. Svec, J. M. J. Frechet,”Macroporous polymeric stationary-phase rod as continuous separation medium for reversed-phase chromatography”, Anal. Chem., 65, pp. 2243-2248, 1992.
[69] B. Sellergren,”Direct Drug Determination by Selective Sample Enrichment on an Imprinted Polymer”, Anal. Chem., 66, pp. 1578-1582, 1994
[70] R. J. Ansell, D. Kriz, K. Mosbach,”Molecularly imprinted polymers for bioanalysis: chromatography, binding assays and biomimetic sensors”, Current Opinion in Biotechnology, 7, pp. 89-94, 1996.
[71] R. J. Ansell, “Molecularly imprinted polymers in pseudoimmunoassay”, Journal of chromatography B, 804, pp. 151-165, 2004.
[72] M. J. Whitcombe, C. Alexander, E. N. Vulfson,”Smart polymers for the food industry”, Trends Food Sci. Technol., 8, pp. 140, 1997.
[73] L. I. Andersson, C. F. Mandenius, K. Mosbach,“Studies on guest selective molecular recognition on an octadecyl silylated silicon surface using ellipsometry”, Tetrahedron Letters, 29, pp. 5437-5440, 1988.
[74] D. Kriz, O. Ramstrom, K. Mosbach,”Molecular imprintingbased biomimetic sensors could provide an alternative to often unstable biosensors for industry,medicine and environmental analysis”, Analytical Chemistry, 69, pp. 345A-349A, 1997.
[75] Sweden, T. A., Thermometric 2250-series
[76] A. J. Groszek,”A calorimeter for determination of heats of wetting”, Nature, 182, pp. 1152-1153, 2002
[77] W. Y. Chen, C. S. Chen, F. Y. Lin,”Molecular recognition in imprinted polymers: thermodynamic investigation of analyte binding using microcalorimetry”, Journal of Chromatography A, 923, pp. 1-6, 2001
[78] 王南歷,”免疫學原理與實用”,合記圖書出版社,第二版,1992
[79] 陳筱淇,”應用新穎微接觸技術製備溶菌酶分子模版之研究”,碩士論文,國立成功大學,2005
[80] R. Nakamura, M. Ishimaru, “Changes in the shape and surface hydrophobicity of ovalbumin during it’s transformation to s-ovalbumin”, Agric. Biol. Chem., 45, pp. 2775-2780, 1981
[81] 許朝翔,”利用恆溫滴定微卡計探討聚乙二醇抗蛋白質吸附之作用機制”,碩士論文,國立中央大學,2007
[82] E. Ipletska, S. Ipletsky, K. Karim, E. Terpetschnig, A. Turner, “Biotin-specific synthetic receptors prepared using molecular imprinting”, Analytica Chimica Acta, 504, pp. 179-183, 2004.
[83] D. A. Spivak, “Optimization, evaluation, and characterization of molecularly imprinted polymers”, Advanced Drug Delevery Reviews, 57, pp. 1779-1794, 2005