簡易檢索 / 詳目顯示

研究生: 郭乃慈
Kuo, Nai-Tzu
論文名稱: 生物可分解聚乳酸與其他聚酯高分子作用下之相 行為、結晶型態及動力分析
Crystalline Morphology, Phase Behavior and Kinetic Analysis in Biodegradable Poly(L-lactic acid) Interacting with Other Polyesters
指導教授: 吳逸謨
Woo, Eamor M.
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 89
中文關鍵詞: 聚乳酸聚酯高分子混摻
外文關鍵詞: PLLA, polyester, blend
相關次數: 點閱:82下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用微分掃描熱卡計(differential scanning calorimeter, DSC)、偏光顯微鏡(polarized optical light microscope, POM)來探討生物可分解高分子: 低分子量聚乳酸poly(L-lactic acid) (PLLA)各別與其他聚酯高分子: 聚己二酸二乙酯poly(ethylene adipate) (PEA), 聚己二酸二丙酯poly(trimethylene adipate) (PTA)和聚丁二酸二乙酯poly(ethylene succinate) (PESu)之兩成份摻合系統,觀察不同摻合系統之相行為、球晶型態、作用力及結晶動力。
    LMw-PLLA/PEA和LMw-PLLA/PTA兩摻合系統皆為相容系統,由平衡熔點下降來估算其作用力參數分別為-0.65及-0.57。LMw-PLLA與PESu形成的摻合系統,在溫度220~245℃存有非對稱上臨界溶液溫度(upper critical solution temperature, UCST)。此外,PLLA分子量的高低亦會影響PLLA與其他聚酯高分子摻合系統之相行為,相較於LMw-PLLA/PTA和LMw-PLLA/PEA的相容系統,高分子量聚乳酸(HMw-PLLA)與PTA的摻合系統,在溫度195~240 ℃存有非對稱上臨界溶液溫度,然而HMw-PLLA與PEA混摻後,為不相容系統。LMw-PLLA在結晶溫度為122~128 ℃呈現環狀消光環之球晶型態,在與LMw-PLLA/PEA(或PTA)混摻後,隨PEA、PTA含量增加,環狀消光環 (ring-banded spherulite)出現的溫度範圍往低溫位移且變得更加寬廣。深入探討LMw-PLLA與PEA或PTA混摻後的regime轉變行為,neat LMw-PLLA隨溫度增加(Tc=110~138 ℃),從regime III轉變到regime II,與LMw-PLLA/PEA(或PTA)混摻後,隨著溫度增加(Tc=110~128 ℃)由regime II轉變到regime I,顯示不定形高分子加入讓regime行為改變往高溫機制位移。

    Miscibility, crystalline morphology and kinetic analysis in blends of low-molecular-weight poly(L-lactic acid) (LMw-PLLA)/poly(ethylene adipate) (PEA), LMw-PLLA/poly(trimethylene adipate) (PTA) and LMw-PLLA/poly(ethylene succinate) (PESu) were explored using differential scanning calorimeter (DSC) and polarized optical-light microscopy (POM).
    The blends of LMw-PLLA/PEA and LMw-PLLA/PTA are miscible in melt and amorphous glassy states with interaction parameters = -0.65 and -0.57, respectively. The LMw-PLLA/PESu blend is immiscible with an asymmetry-shaped upper critical solution temperature (UCST) at 220~245 ℃ depending on blend composition. In addition, molecular weight of PLLA shows influence on phase behavior of PLLA in blends with polyesters. In contrast to miscible LMw-PLLA/PTA and LMw-PLLA/PEA blends, high-molecular-weight poly(L-lactic acid) (HMw-PLLA)/PTA blend is immiscible with an asymmetry-shaped UCST at 195~240 ℃ depending on blend composition. LMw-PLLA exhibits ring-banded spherulites at Tc=122~128 ℃ and upon blending with PEA or PTA, the temperature range of the ring-banded spherulites in LMw-PLLA shifts to lower temperature and becomes wider. According to the secondary nucleation theory, LMw-PLLA shows regime transition behavior from regime III to regime II with increasing Tc from 110 ℃ to 138 ℃. However, in LMw-PLLA/PTA and LMw-PLLA/PEA blends, the regime transition changes from regime II to regime I with increasing Tc from 110 ℃ to 128 ℃.

    中文摘要 I 英文摘要 II 總目錄 III 表目錄 V 圖目錄 VI 第一章 簡介 1 第二章 原理 5 2.1高分子相容性 5 2.2玻璃相轉移行為 7 2.3摻合系統之相分離 10 2.4平衡熔點下降 13 2.5球晶成長理論 14 2.6結晶動力理論 16 第三章 實驗 20 3.1試藥 20 3.2試樣之製備 22 3.3儀器 22 第四章 結果與討論 23 4-1 LMw-PLLA/PEA兩成分混摻系統 23 4-1-1相型態之分析 23 4-1-2熱分析及冷結晶放熱和結晶熔融峰分析 23 4-1-3分子間作用力分析(平衡熔點分析) 23 4-1-4球晶型態觀察 24 4-1-5球晶成長速率分析及regime行為與球晶型態之關聯 25 4-1-6恆溫結晶動力分析 27 4-2 LMw-PLLA/PTA兩成分混摻系統 46 4-2-1相型態之分析 46 4-2-2熱分析及冷結晶放熱和結晶熔融峰分析 46 4-2-3分子間作用力分析(平衡熔點分析) 46 4-2-4球晶型態觀察 47 4-2-5球晶成長速率分析及regime行為與球晶型態之關聯 48 4-2-6恆溫結晶動力分析 48 4-3 LMw-PLLA/PESu兩成分混摻系統 64 4-3-1相型態之分析 64 4-3-2 UCST相轉移行為及再現性 64 4-3-3熱行為之分析及冷結晶放熱和結晶熔融峰分析 65 4-3-4球晶型態觀察 66 4-4 HMw-PLLA/PTA & HMw-PLLA/PEA兩成分混摻系統 75 4-4-1相型態之分析 75 4-4-2 UCST相轉移行為及再現性 75 4-4-3熱行為分析及分子間作用力分析 75 4-5 PLLA與polyester (PESu、PEA、PTA)兩成分摻合系統之相行為總結 76 第五章 結論 83 參考文獻 84

    1. Paul, D. R.; Newman, S.; Polymer Blends; Academic Press; New York, 1978; Vols. 1,2.
    2. Nishimoto, M.; Keskkula., H.; Paul, D. R. Polymer, 1991, 32, 272.
    3. Coleman, M. M.; Moskala, E. J. Polymer, 1983, 24, 251.
    4. Varnell, D. F. Moskala, E. J.; Painter, P. C.; Coleman, M. M. Polym. Eng. Sci. Phys. Ed., 1983, 23, 658.
    5. Aubin, M.; Bedard, Y.; Morrissette, M. F.; Prud`homme, R. E. J. Polym. Sci. Phys. Ed., 1983, 21, 233.
    6. Eisenberg, A.; Hara, M. Polym. Eng. Sci., 1984, 24, 1306.
    7. Rodriguez-Parada, J. M.; Percec, V. Marcomolecules, 1986, 19 55.
    8. Bank, M.; Leffingwell, J.; Thies, C. Macromolecules, 1971, 6, 43.
    9. Woo, E. M.; Hsieh, Y. T.; Chen, W. T.; Kuo, N. T.; Wang, L. Y. J. Polym. Sci. Part B: Polym. Phys., 2010, 48, 1135.
    10. Landry, C. J. T.; Yang, H.; Machell, J. S. Polymer, 1991, 32, 44.
    11. Okamoto, K.; Ichikawa, T.; Yokohara, T.; Yamaguchi, M. Eur. Polym. J., 2009, 45, 2304.
    12. Lu, J. M.; Qiu, Z. B.; Yang, W. T. Polymer, 2007, 48, 4196.
    13. Tokiwa, Y.; Suzuki, T. J. Appl. Polym. Sci., 1981, 26,441.
    14. Urayama, H.; Kanamori, T.; Kimura, Y. Macromol. Mater. Eng., 2001, 286, 705.
    15. Urayama, H.; Moon, S. I.; Kimura, Y. Macromol. Mater. Eng., 2003, 288, 137.
    16. Agrawal, C.M.; Ray, R.B. Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. J. Biomed. Mater. Res. 2001, 55, 141–150.
    17. Zhang, L.; Goh, S. H.; Lee, S. Y. Polymer, 1998, 39, 4841-4847.
    18. Rokkanen, P.U.; Bostman, O.; Hirvensalo, E. Bioabsorbable fixation in orthopaedic surgery and traumatology. Biomaterials, 2000, 21, 2607–2613.
    19. Niederauer, G.G.; Slivka, M.A.; Leatherbury, N.C. Evaluation of multiphase implants for repair of focal osteochondral defects in goats. Biomaterials, 2000, 21, 2561–2571.
    20. Merolli, A.; Gabbi, C.; Cacchioli, A. Bone response to polymers based on poly-lactic acid and having different degradation times. J. Mater. Sci. Mater. Med., 2001, 12,
    775–778.
    21. Weira, N.A.; Buchanana, F.J.; Orra, J.F. Processing, annealing and sterilisation of poly-l-lactide. Biomaterials, 2004, 25, 3939–3949.
    22. Salmeron, S.M.; Gomez, R.J.L.; Hernandez, S.F.; Mano, J.F. On the kinetics of melting and crystallization of poly(l-lactic acid) by TMDSC. Thermochimica Acta., 2005, 430,
    201–210.
    23. Nijenhuis A. J.; Colstee, E.; Grijpma, D. W.; Pennings, A. J. Polymer 1996, 37, 5849,
    24. Tsuji, H.; Ikada, Y. Polymer, 1999, 40, 6699.
    25. Yamane, H.; Sasai, K. Polymer, 2003, 44, 2569.
    26. Tsuji, H.; Fukui, I. Polymer, 2003, 44, 2891.
    27. Urayama, H.; Kanamori, T.; Fukushima, K.; Kimura, Y. Polymer, 2003, 44, 5635.
    28. Ogata, N.; Jimenez, G.; Kawai, H.;Oqihara, T. J. J. Polym. Sci. Part B: Polym. Phys., 1997, 35, 389.
    29. Jorda, R.; Wilkes, G. L. Polym. Bull., 1988, 20, 479.
    30. Tsuji, H.; Ikada, Y. Macromolecules, 1992, 25, 5719.
    31. Tsuji, H.; Ikada, Y. J. Appl. Polym. Sci., 1995, 58, 1793.
    32. Tsuji, H.; Ikada, Y. Polymer, 1996, 37, 595.
    33. Tsuji, H.; Ikada, Y. J. Appl. Polym. Sci., 1997, 63, 855.
    34. Blümm, E.; Owen, A. J. Polymer, 1995, 36, 4077.
    35. Focarete, M. L.; Scandola, M.; Dobrzynski, P.; Kowalczuk, M. Macromolecules, 2002, 35, 8472.
    36. Meaurip, E.; Zuza, E.; Sarasua, J. R. Macromolecules, 2005, 38, 1207-1215.
    37. Li, S. H.; Woo, E. M. J. Polym. Sci. Part B: Polym. Phys., 2008, 46, 2355-2369.
    38. Nakafuku , C.; Sakoda, M. Polym. J. 1993, 25, 909-917.
    39. Sarasua, J. R.; Prud’homme, R. E.; Wisniewski, M.; Le Borgne, A.; Spassky, N.86 Macromolecules 1998, 31, 3895-3905.
    40. Gazzano, M.; Forcarete, M. L.; Riekel, C.; Scandola, M. Biomacromolecules 2004, 5, 553-558.
    41. Ohkoshi, I.; Abe, H.; Doi, Y. Polymer, 2000, 41, 5985-5992.
    42. Focarete, M. L.; Ceccorulli, G.; Scandola, M.; Kowalczuk, M. Macromolecules, 1998, 31, 8485-8492.
    43. Xu, J.; Guo, B. H.; Zhou, J. J.; Li, L.;Wu, J.; Kowalczuk, M. Polymer, 2005, 46,9176-9185.
    44. Chao, C. C.; Chen, C. K.; Chiang, Y. W.; Ho, R. M. Macromolecules, 2008, 41, 3949-3956.
    45. Morra, B.; Stein, R. S. J. Polym. Sci. B,, 1982, 20, 2261-2275.
    46. Nojima, S.; Watanabe, K.; Zheng, Z.; Ashida, T. Polym. J., 1988, 20, 823.
    47. Keith, H. D.; Padden, F. J.; Russell, T. P. Macromolecules, 1989, 22, 666.
    48. Wang, Z.; Jiang, B. Z. Macromolecules, 1997, 30, 6223.
    49. Wang, Z.; Wang, X.; Yu, D.; Jiang, B. Z. Polymer, 1997, 38, 5897.
    50. Wang, Z.; Wang, X.; An, L.; Jiang, W.; Jiang, B. J. Polym. Sci. Part B: Polym. Phys., 1999, 37, 2682.
    51. Li, W.; Yan, R.; Jiang, X.; Jiang, B. Macromol. Sci. Phys., 1992, B31, 227.
    52. Wang, Z.; An, L.; Jiang, B.; Wang, X. Macromol. Rapid Commun., 1998, 19, 131-133.
    53. Keith, H. D.;Padden, Jr. F. J. Macromolecules, 1996, 29, 7776.
    54. Keith, H. D. Polymer, 2001, 42, 9987.
    55. Schultz, J. M. Polymer, 2003, 44, 433-441.
    56. Xu, J.; Guo, B. H.; Zhang, Z. M.; Zhou, J. J.; Jiang, Y.; Yan, S.; Li, L.; Wu, Q.; Chen, G. Q.; Schultz, J. M. Macromolecules, 2004, 37, 4118-4123.
    57. Singfield, K. L.; Hobbs, J. K.; Keller, A. J. Crystal Growth, 1998, 183, 683-689.
    58. Keith, H. D.; Padden, F. J., Jr. Polymer 1984, 25, 28-42.
    59. Keith, H. D.; Padden, F. J., Jr. Macromolecules 1996, 29, 7776-7786.
    60. Keith, H. D. Polymer 2001, 42, 9987-9993.
    61. Toda, A.; Arita, T.; Hikosaka, M. Polymer 2001, 42, 2223-2233.
    62. Basset, D. C.; Hodge, A. M. Polymer 1978, 19, 469-472.
    63. Kyu, T.; Chiu, H. W.; Guenther, A. J.; Okaba, Y.; Saiyo, H.; Inoue, T. Phys. Rev. Lett.1999, 83, 2749-2752.
    64. Okabe, Y.; Kyu, T.; Saito, H.; Inoue, T. Macromolecules 1998, 31, 5823-5829.
    65. Chen, J.; Yang, D. Macromol. Rapid Commun. 2004, 25, 1425-1428.
    66. Li, Y.; Liu, X.; Chao, D.; Cui, L.; Zhang, W. Polym. J. 2008, 40, 1195-1198.
    67. Chen, J.; Yang, D. J. Polym. Sci., Part B: Polym. Phys. 2007, 45, 3011-3024.
    68. Low, S. M.;Goh, S. H.; Lee, S. Y. Polymer, 1994, 35, 3290.
    69. Lin, J. L.; Roe, R. J.; J Macromolecules, 1987, 20, 218.
    70. Widmaier, J. M.; Mignard, G. Eur. Polym. J., 1987, 23, 989.
    71. Rameau, A.; Gallot, Y.; Farnoux, P. M. B. Polymer, 1989, 30, 386.
    72. Saeki, S.; Cowie, J. M. G.; McEwen, I. J. Polymer., 1983, 24, 60.
    73. Callaghan, T. A.; Paul, D. R. Macromolecules, 1993, 26, 2437.
    74. Walsh, D. J.; Higgins, J. S.; Maconndchie, A. “Polymer Blends and Mixtures”, Mijhoff Publishers, Boston, 1985.
    75.Rameau, A.; Gallot, Y.; Farnoux, P. M. B. Polymer, 1989, 30, 386.
    76. Stoelting, J.; Karasz, F. E.; MacKnight, W. J. Polym. Eng. Sci., 1970, 10, 133.
    77. Flory, P. J. J. Am. Chem. Soc., 1965, 86, 1833.
    78. Flory, P. J. Discuss Faraday Soc., 1970, 49, 7.
    79. Flory, P. J. “Principles of Polymer Chemistry”, Cornell University Press, Ithaca, New York, 1953.
    80. Sperling, L. H. “Introduction to Physical Polymer Science 2nd ed.”, John Wiley & Sons,Inc., New York, 1992.
    81. Hudson, S. D.; Davies, D. D.; Lovinger, A. J. Macromolecules, 1992, 25, 1759.
    82. Kovacs, A. J. Adv. Polym. Sci., 1963, 3, 394.
    83. Sperling, L. H. “Introduction to physical polymer science”, John Wiley& Sons, 1992.
    84. Krammer, H. W. Acta. Polym., 1986, 37, 1.
    85. Olabishi, O.; Robeson, L. M.; Shaw, M. T. “Polymer-Polymer Miscibility”, Academic Press Inc., New York, 1979.
    86. Hoffman, J. D.; Davis, G. T.; Lauritzen, J. I.; Hannay, N. B. editor. Treatise on solid state chemistry. New York: Plenum Press, 1976.
    87. Hoffman, J. D. Polymer, 1983, 24, 3.
    88. Sperling, L. H. “Introduction to physical polymer science”, 3rd ed., New York: Wiley. 2001.
    89. Di Lorenzo, M. L. Prog. Polym. Sci., 2003, 28, 663.
    90. Avrami, M. J. Chem. Phys., 1949, 28, 2845.
    91. Pan, P.; Kai, W.; Zhu, B.; Dong, T.; Inoue, Y. Macromolecules, 2007, 40, 6898-6905
    92. Minakov, A.A.; Mordvintsev D.A.; Schick, C. Polymer, 2004, 45, 3755.
    93. Di Lorenzo, M. L. Prog. Polym. Sci., 2003, 28, 663.
    94. Alfonso, G. C.; Russel, T. P. Macromolecules, 1986, 19, 1143-1152.
    95. Amelino, L.; Martuscelli, E. ; Sellitti, C.; Silvestre, C. Polymer, 1990, 31, 1051.
    96. Martuscelli, E.; Sellitti, C.; Silvestre, C. Makromol. Chem. Rapid. Commun., 1985, 6, 125.
    97. Liu, L. Z.; Chu, B.; Penning, J. P. J. Macromol. Sci. Phys. B, 1998, 37(4), 485-499.
    98. Rana, S. K. J. Adv. Polym. Sci., 1996, 61, 951.
    99. Aggarwal, S. L.; Marker, L.; Kollar, W. L.; Geroch, R. J. Adv. Polym. Sci.:A-2., 1966, 4, 715.
    100. Tobin, M. C.; J. Polym. Sci., Part B: Polym. Phys., 1974, 12, 399.
    101. Kavindranath, K.; Jog, J. P. J. Adv. Polym. Sci., 1993, 49, 1395.
    102. Chen, J. M.; Woo, E. M. J. Adv. Polym. Sci., 1995, 57, 877.
    103. Cheung, Y. W.; Stein, R. S. Macromolecules, 1994, 27, 2512.
    104. Woo, E. M.; Chiang, C. P. Polymer, 2004, 45, 8415.
    105. Braun, G.; Kovacs, A. J. “In Physics of Non-Crystalline Solids”, Prins, J. A. Ed.,North-Holland, Amsterdam, 1965.
    106. Fisch, E. W.; Sterzel, H. J.; Wegner, G. Kolloid Zeitschrift And Zeitschrift Fur Polymer, 251, 980 (1973)
    107. Data supplied by Polymer Handbook
    108. Data supplied by Aldrich
    109. Li, S. H.; Woo, E. M. Colloid. Polym. Sci., 2008, 286, 253-265
    110. Approximate relationship: i~0.113/Tg
    111. Data supplied by Scientific Polymer Products

    下載圖示 校內:2012-08-13公開
    校外:2012-08-13公開
    QR CODE