| 研究生: |
李蓉蓉 Li, Jung-Jung |
|---|---|
| 論文名稱: |
針對SCUBE3篩選適體的影響及應用 The effect and application of aptamer against SCUBE3 |
| 指導教授: |
洪澤民
Hong, Tse-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 臨床醫學研究所 Institute of Clinical Medicine |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 62 |
| 中文關鍵詞: | SCUBE3 、適體 、肺癌 |
| 外文關鍵詞: | SCUBE3, Aptamer, lung cancer |
| 相關次數: | 點閱:145 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Signal peptide-CUB-EGF-like domain-containing protein 3 (SCUBE3)是一個經過糖修飾後的分泌型蛋白,而SCUBE3在肺癌檢體中有大量的
表現,並與上皮-間質轉換(EMT)和轉移有關。因此我們希望可以發現與SCUBE3結合的抑制劑,藉此作為有效的標靶治療。適體(Aptamers)為一單股DNA或RNA,且被發現可以與其目標分子具有專一性的結合,而近年來也被利用在診斷及治療方面。因此我們希望可以發展出可以與SCUBE3專一性結合的適體,並利用適體來抑制SCUBE3在肺癌中所誘導的腫瘤形成能力,近而發展出新的肺癌治療方法。
首先我們利用硝化纖維素膜,來進行指數富集的配體有系統演化(SELEX)的實驗,藉此篩選出可以與SCUBE3結合的適體。之後,我們將這些適體定序,並找出最主要且占多數的適體,並命名為S3-A2、AP-NS3-1、AP-NS3-2、AP-NS3-3及AP-NS3-4。然後將這些適體利用免疫螢光染色的實驗來偵測適體與SCUBE3的專一性結合力,我們發現這些適體比控制組較容易與大量表現SCUBE3的細胞結合。此外我們利用傷口癒合爬行實驗來觀察適體對人類臍帶靜脈內皮細胞和非小型細胞肺癌細胞爬行能力的影響;且也利用μ-Slide Angiogenesis來探討在人類臍帶靜脈內皮細胞中,適體處理後血管生成的能力。我們發現其中的AP-NS3-1及AP-NS3-3可以抑制人類臍帶靜脈內皮細胞的爬行能力和管狀生成能力,甚至可以減少非小型細胞肺癌細胞的爬行數目。緊接著我們也發現AP-NS3-1及AP-NS3-3可能是透過調節第一型類胰島素生長因子受體(IGF1R),進而影響下游的訊號,像是Akt及Erk,最終導致癌轉移能力被抑制。最後我們利用了低貼覆性的六孔盤,來觀察適體處理後,非小型細胞肺癌細胞的球體形成能力。由結果我們也發現了S3-A2、AP-NS3-2及AP-NS3-4不但可以抑制Hop62細胞球體生成的大小,也可以減少生成數目。根據上述的結果,發展出與SCUBE3專一性結合的適體可以抑制腫瘤的血管生成和癌症的轉移,並成為在肺癌治療中的有潛力的應用。
Signal peptide-CUB-EGF-like domain-containing protein 3 (SCUBE3) is a secreted cell-surface glycoprotein. SCUBE3 is overexpressed and is correlated with epithelial-mesenchymal transition (EMT) and cancer metastasis of lung cancer cells. These findings suggest that SCUBE3 might be a potential oncotarget for pharmacological intervention. Therefore, we wanted to find some SCUBE3-specific inhibitors. Aptamers are single strand DNA or RNA, which are selected to tightly and specifically bind to target molecules. In recent years, aptamers can be coupled to diagnostic or therapeutic agents. Accordingly, we developed the SCUBE3 specific aptamers, which can effectively suppress the SCUBE3-mediated function in lung cancer progression, for future applications, especially for lung cancer therapy. First, we performed nitrocellulose membrane filtration-based systematic evolution of ligands by exponential enrichment (SELEX) to select aptamers against SCUBE3. After several rounds of SELEX, the selected aptamers were amplified by PCR and named as S3-A2, AP-NS3-1, AP-NS3-2, AP-NS3-3, and AP-NS3-4. Then we verified the specific binding between aptamers and SCUBE3-expressed cells by immunofluorescence. We found that those aptamers preferentially bound to SCUBE3-expressed cells, compared to non-SCUBE3-expressed cells. Moreover, we analyzed the effect of the SCUBE3 aptamers in immortalized HUVECs or NSCLC cells by cell viability assay, wound healing migration assay and μ-Slide Angiogenesis assay. We found that while the SCUBE3 aptamers did not affect the cell viability, AP-NS3-1 and AP-NS3-3 inhibited the ability of migration and the tube formation in immortalized HUVECs and repressed the cell migration of CL1-5. To investigate the possible mechanism of AP-NS3-1 and AP-NS3-3 in suppressing cell motility, we found that AP-NS3-1 and AP-NS3-3 suppressed the IGF1R activation and then decreased the downstream signaling, Erk and Akt. Finally, we observed the ability of sphere formation in SCUBE3 aptamer-treated NSCLC cells in low-attachment 6-well plates. The result showed that S3-A2, AP-NS3-2 and AP-NS3-4 decreased the number of sphere in Hop62 cells. According to above results, we suggested that AP-NS3-1 and AP-NS3-3 targeting SCUBE3 repress tumor angiogenesis and the motility of NSCLC cells in vitro, potentially as cancer therapeutic drugs. Moreover, S3-A2, AP-NS3-2 and AP-NS3-4 may be useful aptamers in suppressing cancer stemness. Taken together, SCUBE3-specific aptamers may suppress tumor angiogenesis, cancer migration/metastasis and cancer stemness and be potential tools for lung cancer therapy.
References
1. Siegel, R.L., K.D. Miller, and A. Jemal, Cancer statistics, 2016. CA Cancer J Clin, 2016. 66(1): p. 7-30.
2. Pao, W. and N. Girard, New driver mutations in non-small-cell lung cancer. Lancet Oncol, 2011. 12(2): p. 175-80.
3. Brambilla, E., et al., The new World Health Organization classification of lung tumours. European Respiratory Journal, 2001. 18(6): p. 1059-1068.
4. Ali, A., et al., Survival of patients with non-small-cell lung cancer after a diagnosis of brain metastases. Curr Oncol, 2013. 20(4): p. e300-6.
5. Gerber, D.E., Targeted therapies: a new generation of cancer treatments. Am Fam Physician, 2008. 77(3): p. 311-9.
6. Counago, F., et al., Targeted therapy combined with radiotherapy in non-small-cell lung cancer: a review of the Oncologic Group for the Study of Lung Cancer (Spanish Radiation Oncology Society). Clin Transl Oncol, 2016.
7. Stoltenburg, R., C. Reinemann, and B. Strehlitz, SELEX--a (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol Eng, 2007. 24(4): p. 381-403.
8. Sharma TK and Shukla R (2014). Nucleic acid aptamers as an emerging diagnostic tool for animal pathogens. Adv. Anim. Vet. Sci. 2 (1): 50 – 55.
9. Ni, X., et al., Nucleic acid aptamers: clinical applications and promising new horizons. Curr Med Chem, 2011. 18(27): p. 4206-14.
10. Ku, T.H., et al., Nucleic Acid Aptamers: An Emerging Tool for Biotechnology and Biomedical Sensing. Sensors (Basel), 2015. 15(7): p. 16281-313.
11. Berezovski, M.V., et al., Aptamer-facilitated biomarker discovery (AptaBiD). J Am Chem Soc, 2008. 130(28): p. 9137-43.
12. Sun, H., et al., Oligonucleotide aptamers: new tools for targeted cancer therapy. Mol Ther Nucleic Acids, 2014. 3: p. e182.
13. Kaur, H., et al., Investigating the antiproliferative activity of high affinity DNA aptamer on cancer cells. PLoS One, 2013. 8(1): p. e50964.
14. Rosenberg, J.E., et al., A phase II trial of AS1411 (a novel nucleolin-targeted DNA aptamer) in metastatic renal cell carcinoma. Invest New Drugs, 2014. 32(1): p. 178-87.
15. Hu, Y., et al., Novel MUC1 Aptamer Selectively Delivers Cytotoxic Agent to Cancer Cells In Vitro. PLoS One, 2012. 7(2).
16. Wu, B.T., et al., A novel secreted, cell-surface glycoprotein containing multiple epidermal growth factor-like repeats and one CUB domain is highly expressed in primary osteoblasts and bones. J Biol Chem, 2004. 279(36): p. 37485-90.
17. Xavier, G.M., L. Panousopoulos, and M.T. Cobourne, Scube3 is expressed in multiple tissues during development but is dispensable for embryonic survival in the mouse. PLoS One, 2013. 8(1): p. e55274.
18. Liang, W., et al., The Expression of HSPD1, SCUBE3, CXCL14 and Its Relations with the Prognosis in Osteosarcoma. Cell Biochem Biophys, 2015. 73(3): p. 763-8.
19. Chou, C.H., et al., SCUBE3 regulation of early lung cancer angiogenesis and metastatic progression. Clin Exp Metastasis, 2013. 30(6): p. 741-52.
20. Wu, Y.Y., et al., SCUBE3 is an endogenous TGF-beta receptor ligand and regulates the epithelial-mesenchymal transition in lung cancer. Oncogene, 2011. 30(34): p. 3682-93.
21. Sporn, M.B., The war on cancer. Lancet, 1996. 347(9012): p. 1377-81.
22. Gupta, G.P. and J. Massague, Cancer metastasis: building a framework. Cell, 2006. 127(4): p. 679-95.
23. Karreth, F. and D.A. Tuveson, Twist induces an epithelial-mesenchymal transition to facilitate tumor metastasis. Cancer Biol Ther, 2004. 3(11): p. 1058-9.
24. Tsai, J.H. and J. Yang, Epithelial-mesenchymal plasticity in carcinoma metastasis. Genes Dev, 2013. 27(20): p. 2192-206.
25. Heerboth, S., et al., EMT and tumor metastasis. Clin Transl Med, 2015. 4.
26. Zhao, B.M. and F.M. Hoffmann, Inhibition of Transforming Growth Factor-β1–induced Signaling and Epithelial-to-Mesenchymal Transition by the Smad-binding Peptide Aptamer Trx-SARA. Mol Biol Cell, 2006. 17(9): p. 3819-31.
27. Li, N., et al., Inhibition of cell proliferation by an anti-EGFR aptamer. PLoS One, 2011. 6(6): p. e20299.
28. Reis-Filho, J.S., Next-generation sequencing. Breast Cancer Res, 2009. 11(Suppl 3): p. S12.
29. Graham, J.C. and H. Zarbl, Use of cell-SELEX to generate DNA aptamers as molecular probes of HPV-associated cervical cancer cells. PLoS One, 2012. 7(4): p. e36103.
30. Tan, Y., et al., DNA aptamers that target human glioblastoma multiforme cells overexpressing epidermal growth factor receptor variant III in vitro. Acta Pharmacol Sin, 2013. 34(12): p. 1491-8.
31. Carmeliet, P. and R.K. Jain, Angiogenesis in cancer and other diseases. Nature, 2000. 407(6801): p. 249-257.
32. Nishida, N., et al., Angiogenesis in Cancer. Vasc Health Risk Manag, 2006. 2(3): p. 213-9.
33. Chu, Y.W., et al., Selection of invasive and metastatic subpopulations from a human lung adenocarcinoma cell line. Am J Respir Cell Mol Biol, 1997. 17(3): p. 353-60.
34. Pine, S.R., B. Marshall, and L. Varticovski, Lung Cancer Stem Cells. Disease Markers, 2008. 24(4-5).
35. Pardal, R., M.F. Clarke, and S.J. Morrison, Applying the principles of stem-cell biology to cancer. Nat Rev Cancer, 2003. 3(12): p. 895-902.
36. Bahr, C. and B. Groner, The IGF-1 receptor and its contributions to metastatic tumor growth-novel approaches to the inhibition of IGF-1R function. Growth Factors, 2005. 23(1): p. 1-14.
37. Koren, A., et al. Stem Cells Int. 2016;2016:9714315. Epub 2015 Dec 7 doi:10.1155/2016/9714315.
38. Zhang, Q., et al., Comprehensive Proteomic Profiling of Aldehyde Dehydrogenases in Lung Adenocarcinoma Cell Lines. Int J Proteomics, 2011. 2011.
39. Zhao, Chao, et al. "SCUBE3 overexpression predicts poor prognosis in non-small cell lung cancer." Bioscience trends 7.6 (2013): 264-269.
40. Mayer, G., The chemical biology of aptamers. Angew Chem Int Ed Engl, 2009. 48(15): p. 2672-89.
41. Li, J., et al., Aptamer imaging with Cu-64 labeled AS1411: preliminary assessment in lung cancer. Nucl Med Biol, 2014. 41(2): p. 179-85.
42. Liu, Z., et al., Novel HER2 aptamer selectively delivers cytotoxic drug to HER2-positive breast cancer cells in vitro. J Transl Med, 2012. 10: p. 148.
43. Thiel, W.H., et al., Nucleotide bias observed with a short SELEX RNA aptamer library. Nucleic Acid Ther, 2011. 21(4): p. 253-63.
44. Wang, J., et al., Combination of aptamer with gold nanoparticles for electrochemical signal amplification: application to sensitive detection of platelet-derived growth factor. Biosens Bioelectron, 2009. 24(6): p. 1598-602.
校內:2021-08-23公開