| 研究生: |
彭昱銘 Peng, Yu-Ming |
|---|---|
| 論文名稱: |
應用於白光發光二極體之磷酸系ABPO4 (A=Li, Na, K; B=Ca, Sr, Ba)下轉換螢光材料之研究 Research on ABPO4 (A=Li, Na, K; B=Ca, Sr, Ba) of phosphate based phosphors with down-conversion applied in white light emitting diode |
| 指導教授: |
蘇炎坤
Su, Yan-Kuin |
| 共同指導教授: |
楊茹媛
Yang, Ru-Ruan |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 180 |
| 中文關鍵詞: | 螢光粉 、磷酸 、熱穩定 、微波 、燒結 、助熔劑 |
| 外文關鍵詞: | phosphor, phosphate, thermal stability, microwave, sintering, flux |
| 相關次數: | 點閱:115 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
1996 年,日亞化學的中村修二(Nakamura)研究員 等人成功製備出白光發光二極
體 (White light emitting diode, WLED),其係利用混光的方式以藍光發光二極體元件搭配黃色摻鈰之釔鋁石榴石(cerium doped yttrium aluminum garnet, YAG:Ce3+)。雖然此種方式所製備之WLED 之發光效率佳,但仍有藍光轉換效率不佳、白光演色性不高與所使用之YAG:Ce3+螢光粉之熱穩定性較差之問題。近年來,在高功率LED 的發展之下,驅動電流亦愈來愈大,所產生之問題即為熱管理。若無法有效處理熱問題,發光效率將有莫大影響。為改善上述之缺點,極需提出一種同時可提升轉換效率以及改善熱穩定之方法。有關於熱的問題,由於氧化物中的磷酸鹽( ABPO4,A=Li+, Na+, K+, Rb+, Cs+,B=Mg2+, Ca2+, Sr2+, Ba2+ )為主體晶格之螢光粉係為一具有共價性質之三維剛性結構,極適合載子之傳輸,亦即,磷酸鹽系列之螢光粉之熱穩定相當優異。這也就是說,以磷酸鹽為主體晶格之螢光粉材料為一解決高功率WLED 熱問題之一可行且有效之方式。且,磷酸鹽系列之螢光粉亦具有演色性佳、色偏小、成本低且專利侷限較輕之優點,因此極具未來發展潛力。有鑑於此,因此在本論文中,我們係選用四種不同之磷酸鹽結構作為主體晶格,分別為KSrPO4、NaCaPO4、LiSrPO4 及LiBaPO4;
以及三種不同的稀土元素作為活化劑,分別為Tb、Sm 及Eu。此外,本論文係採用
微波輔助燒結法製備KSrPO4:Tb3+、LiSrPO4:Eu3+、KSrPO4:Eu3+、KSrPO4:Sm3+與KSrPO4:Tb3+:Ce3+螢光粉。結果顯示:相較於傳統固態反應法所製備之螢光粉,利用微波輔助燒結法製備之螢光粉可得到較佳品質的螢光粉,並可降低製程時間、成本及所需的能量。另外,助熔劑 (flux)也常被用來促進燒結過程並提升螢光粉的發光特性。在本論文中,我們亦採用了NaCl 與NH4Cl 做為助熔劑分別合成KSrPO4:Eu2+與NaCaPO4:Eu3+螢光粉並探討微結構與發光特性。在本論文的最後部分,我們選擇最佳條件所製備之紅色螢光粉:NaCaPO4:Eu3+、LiSrPO4:Eu3+與KSrPO4:Eu3+,並比較發光特性。接著,我們選擇具有最佳的發光特性的紅色螢光粉KSrPO4:Eu3+與YAG:Ce3+黃粉混合,並封裝成WLED。由實驗結果可知,利用微波輔助燒結法製備之紅色螢光粉KSrPO4:Eu3+應可提升一般YAG:Ce3+封裝之WLED 的演色性,且由於該磷酸系基螢光粉之導入,使得所製備之WLED 元件在變電流1350 mA 的測試下,亦能持續發光。
In 1996, White light emitting diode (WLED) was fabricated by using the blue LED chip and yellow emitting phosphor such as cerium doped yttrium aluminum garnet (YAG:Ce3+) by Nichia, and further developed the major market age. Although the WLED has high brightness and efficiency, it still has some problems such as color variation, low reproducibility, and the prepared phosphor has low thermal stability. Recently, there is a problem with heat generated as the driving current increased due to the high power LED that has developed. That is to say, if heat problem cannot be improved effectively, luminous efficiency will be affected. In order to overcome the above shortcomings, it is necessary to take a way to improve the conversion efficiency and thermal stability. Regarding the heat problem, the phosphate oxide compound ( ABPO4,A=Li+, Na+, K+, Rb+, Cs+,B=Mg2+, Ca2+, Sr2+, Ba2+ ) as the host lattice of covalent nature of the phosphor have three dimensional rigid structure. The phosphate oxide is very suitable for carrier transport, and the thermal stability of the phosphate series is quite outstanding. Using phosphate as host lattice in the phosphor material can solve the thermal problem of the high power of white LED in effective way. Besides that, phosphate based phosphors have excellent color rendering, small color cast, low cost and low patents limit to be a great potential of development in the future. Thus, in this thesis, we choose four different structures as host, which are KSrPO4, NaCaPO4, LiSrPO4 and LiBaPO4, respectively andchoose three different rare earth elements as activator, which are Tb, Sm, and Eu. Moreover, KSrPO4:Tb3+, LiSrPO4:Eu3+, KSrPO4:Eu3+, KSrPO4:Sm3+, and KSrPO4:Tb3+:Ce3+ phosphors were synthesized by using microwave assisted sintering
technique and discussed their microstructure and photoluminescent properties. The experimental results showed the phosphors prepared by using microwave assisted sintering
can reduce the sintering time, cost, and required energy for the high quality production of phosphors. Moreover, several fluxes were used to improve the sintering process and to
enhance the photoluminescent properties in phosphor. In this thesis, we also adopted NaCl and NH4Cl fluxes to synthesis KSrPO4:Eu2+and NaCaPO4:Eu3+ phosphor, respectively and
investigated their microstructure and photoluminescent properties. In the last part of this thesis, we choose the optimal sintering parameter for phosphors of NaCaPO4:Eu3+, LiSrPO4:Eu3+, and KSrPO4:Eu3+, and compared their photoluminescent properties. Among these, we choose a red phosphor of KSrPO4:Eu3+ with the optimal photoluminescent properties and tried to package it into the YAG:Ce3+ WLED. From the experimental results, it can be known that the addition of the red phosphor of KSrPO4:Eu3+ prepared by using microwave assisted sintering was supposed to improve the color rendering of the YAG:Ce3+ WLED and the WLED could continually emit light under 1350 mA due to the phosphate based phosphor.
Chapter 1
[1] D. K. Yim, H. J. Song, I. S. Cho, J. S. Kim, K. S. Hong, A novel blue-emitting NaSrPO4:Eu2+ phosphor for near UV based white light-emitting-diodes, Mater. Lett. 65, 1666 (2011).
[2] J. K. Sheu, S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, Y. C. Lin, W. C. Lai, J. M. Tsai, G. C. Chi, R. K. Wu, White light emission from near UV InGaN/GaN LED chip precoated with blue/green/red phosphors, IEEE Photonics Technol. Lett. 15, 18 (2003).
[3] 陳皇宇,微波輔助燒結製備應用於白光LED之紅光及綠光螢光粉,博士論文,國立成功大學,2013。
[4] Fred Schubert, Light-Emitting Diodes, The press syndicate of the university of Cambridge, UK, 2003.
[5] Skoog, Holler, Nieman, Principles of Instrumental analysis, fifth edition, Saunders college Publishing, 1992.
[6] 楊茹媛、彭昱銘、蘇炎坤,白光LED用之螢光粉材料之基本原理與技術發展,電子月刊,197期,第140-157頁,2011。
[7] 陳建良,不同活化劑摻雜對KSrPO4主體晶格之微結構與光學性質之研究,博士論文,國立屏東科技大學,2013。
[8] Y. Chen, J. Wang, X. Zhang, G. Zhang, M. Gong, Q. Su, An intense green emitting LiSrPO4:Eu2+, Tb3+ for phosphor-converted LED, Sens. Actuators, B 148, 259 (2010).
[9] E. Radkov, R. Bompiedi, A. M. Srivastava, A. A. Setlur, C. Becker, White light with UV LEDs, Proc. SPIE 2004 5187, 171 (2004).
[10] J. S. Kim, P. E. Jeon, J. C. Choi, H. L. Park, Emission color variation of M2SiO4:Eu2+ (M=Ba, Sr, Ca) phosphors for light-emitting diode, Solid State Commun. 133, 187 (2005).
[11] S. Kubota, H. Hara, H. Yamane, M. Shimada, Luminescent property of Eu3+ in a new compound, (Sr0.99La1.01)Zn0.99O3.495, J. Electrochem. Soc. 149, H68 (2002).
[12] S. Kubota, R. L. Stanger, Y. Suzuyama, H. Yamane, M. Shimada, Luminescent properties of Eu3+ in defect apatite, Sr3La6(SiO4)6, J. Electrochem. Soc. 149, H134 (2002).
[13] K. Tadatomo, H. Okagawa, Y. Ohuchi, Tsunekawa, T. Jyouichi, Y. Imada, M. Kato, H. Kudo, T. Taguchi, High output power InGaN ultraviolet light-emitting diodes fabricated on patterned substrates using metalorganic Vapor Phase Epitaxy, Phys. Status Solidi A 188, 121 (2001).
[14] K. Srinivasu, R. S. Ningthoujam, V. Sudarsan, R. K. Vatsa, A. K. Tyagi, P. Srinivasu, A. Vinu, Eu3+ and Dy3+ doped YPO4 nanoparticles: Low temperature synthesis and luminescence studies, J. Nanoscience Nanotechnology 9, 3034 (2009).
[15] Z. Yang, G. Yang, S. Wang, J. Tian, X. Li, Q. Guo, G. Fu, A novel green-emitting phosphor NaCaPO4:Eu2+ for white LEDs, Mater. Lett. 62, 1884 (2008).
[16] C. C. Lin, R. S. Liu, Y. S. Tang, S. F. Hu, Full-Color and thermally stable KSrPO4:Ln, Ln=Eu, Tb, Sm phosphors for white-light-emitting diodes, J. Electrochem. Soc. 155, J248 (2008).
[17] Y. J. Park, Y. J. Kim, Blue emission properties of Eu-doped CaAl2O4 phosphors synthesized by a flux method, Mater. Sci. Eng. B 146, 84 (2008).
[18] W. Yuhu, W. Zhilong, Characterization of Y2O2S:Eu3+, Mg2+, Ti4+ Long-lasting phosphor synthesized by flux method, J. Rare Earths 24, 25 (2006).
[19] S. Zhang, W. Zhuang, C. Zhao, Influence of flux on properties of Y3Al5O12:Ce phosphor, J. Chin. Rare Earth Soc. 20, 605 (2002).
[20] L. Ma, J. Hu, G. Wan, Effect of flux on YAG: Ce phosphors prepared by solid-state reactions, Chin. J. Lumin. 27, 348 (2006).
[21] A. Nag, T. R. N. Kutty, Role of B2O3 on the phase stability and long phosphorescence of SrAl2O4:Eu, Dy, J. Alloys Compd. 354, 221 (2003).
[22] F. Bondioli, A.B. Corradi, T. Manfredini, Modification of the solid-state structure of bis(1-hydroxy-2(1H)-pyridinethiolato-S2,O)zinc(II): synthesis and characterization of a molecular solid solution incorporating 3-hydroxy-4-methyl-2(3H)-thiazolethione, Chem. Mater. 12, 324 (2002).
[23] M. Kottaisamy, R. Jagannathan, R. P. Rao, M. Avudaithai, L. K. Srinivasan, V. Sundaram, On the formation of flux Grown Y2O2S : Eu3+ Red Phosphor, J. Electrochem. Soc. 142, 3205 (1995).
[24] H. J. Lee, K. P. Kim, G. Y. Hong, J. S. Yoo, The effect of flux materials on the physical and optical properties of Eu3+-activated yttrium oxide phosphors, J. Lumin. 130, 941 (2010).
[25] B. K. Park, S. S. Lee, J. K. Kang, S. H. Byeon, Single-step solid-state synthesis of CeMgAl11O19:Tb phosphor, Bull. Korean Chem. Soc. 28, 1467 (2007).
[26] S. H. Lee, H. Y. Koo, D. S. Jung, J. M. Han, Y. C. Kang, Effects of BaF2 flux on the properties of yellow-light-emitting terbium aluminum garnet phosphor powders prepared by spray pyrolysis, Optic. Mater. 31, 870 (2009).
[27] Z. Y. Feng, W. D. Zhuang, X. W. Huang, X. F. Wen, Y. S. Hu, Effect of MgF2-H3BO3 flux on the properties of (Ce,Tb)MgAl11O19 phosphor, J. Rare Earths 28, 351 (2010).
[28] Y. K. Su, Y. M. Peng, R. Y. Yang, J. L. Chen, Effects of NaCl flux on microstructure and luminescent characteristics of KSrPO4:Eu2+ phosphors, opt. mater. 34, 1598 (2012).
[29] Y. M. Peng, Y. K. Su, R. Y. Yang, The charge transfer transition phenomenon and microstructure of Eu3+-doped NaCaPO4 phosphors sintered with flux via solid-state reaction, Mater. Res. Bull. 48, 1946 (2013).
[30] R. Y. Yang, Y. M. Peng, Y. K. Su, Novel red emitting microwave-assisted sintered LiSrPO4:Eu3+ phosphors for application in near-UV WLEDs, IEEE J. Electronic Mater. 42, 2910 (2013).
[31] R. Y. Yang, Y. M. Peng, H. L. Lai C. J. Chu, B. Chiou, Y. K. Su, Effect of the different concentrations of Eu3+ ions on the microstructure and photoluminescent properties of Zn2SiO4:xEu3+ phosphors and synthesized with TEOS solution as silicate source, Opt. Mater. 35, 1719 (2013).
[32] Y. M. Peng, Y. K. Su, R. Y. Yang, Improving Thermal Stability of KSrPO4:Tb3+ phosphors Prepared by microwave assisted sintering, Opt. Mater. (In Press)
[33] A. K. Gulnar, V. Sudarsan, R. K. Vatsa, C. Hubli, U. K. Gautam, A. Vinu, A. K. Tyagi, CePO4:Ln (Ln) Tb3+ and Dy3+) nanoleaves incorporated in silica sols, Crystal Growth & Design 9, 2451 (2009).
[34] K. Gulnar, V. Sudarsan, R. K. Vatsa, T. Sakuntala, A. K. Tyagi, U. K. Gautam, A. Vinu, Nucleation sequence on the cation exchange process between Y0.95Eu0.05PO4 and CePO4 nanorods, Nanoscale 2, 2847 (2010).
[35] C. C. Lin, Z. R. Xiao, G. Y. Guo, T. S. Chan, Versatile phosphate phosphors ABPO4 in white light-emitting diodes: Collocated characteristic analysis and theoretical calculations, J. Am. Chem. Soc. 132, 3020 (2010).
[36] Y. Huang, W. Kai, Y. Cao, K. Jang, H. S. Lee, I. Kim, E. Cho, Spectroscopic and structural studies of Sm2+ doped orthophosphate KSrPO4 crystal, J. Appl. Phys. 103, 053501 (2008).
[37] K. N. Shinde, S. J. Dhoble, A novel reddish-orange phosphor, NaLi2PO4:Eu3+, Lumin. 28, 93 (2013).
[38] 陳彥銘,NaCaPO4: RE3+ ( RE = Eu, Sm )螢光粉之製備及其特性之研究,碩士論文,國立屏東科技大學,2012。
[39] D. Jia, W. M. Yen, Enhanced VK3+ center afterglow in MgAl2O4 by doping with Ce3+, J. Lumin. 101, 115 (2003).
[40] 洪佳瑋,近UV光激發的LiSrPO4螢光粉的製備與其封裝特性,碩士論文,崑山科技大學,2013。
[41] 賴炫霖,以固態反應法製備LiBaPO4:Re3+ (Re3+:Pr3+,Ce3+)螢光粉之微結構與發光特性之研究,碩士論文,國立屏東科技大學,2013。
Chapter 2
[1] Skoog, Holler, Nieman, Principles of Instrumental analysis, fifth edition, Saunders college Publishing, 1992.
[2] 陳皇宇,微波輔助燒結製備應用於白光LED之紅光及綠光螢光粉,博士論文,國立成功大學,2013。
[3] M. N. Rahaman, Sintering technology, New York: Marcel Dekker, 1990.
[4] 楊茹媛、彭昱銘、蘇炎坤,白光LED用之螢光粉材料之基本原理與技術發展,電子月刊,197期,第140-157頁,2011。
[5] 洪佳瑋,近UV光激發的LiSrPO4螢光粉的製備與其封裝特性,碩士論文,崑山科技大學,2013。
[6] J. A. DeLuca, An introduction to luminescence in inorganic solids, J. Chem. Educ. 57, 541 (1980).
[7] Y. M. Peng, Y. K. Su, R. Y. Yang, Improving Thermal Stability of KSrPO4:Tb3+ phosphors Prepared by microwave assisted sintering, Opt. Mater. (In Press)
Chapter 3
[1] P. D. Ramash, D. Brandom, L. Schachter, Use of Partially Oxidized SiC Particle Bed for Microwave Sintering of Low Loss Ceramics, Mater. Sci. Eng. A 266, 211 (1999).
[2] M. H. Weng, R. Y. Yang, Y. M. Peng, J. L. Chen, Yellowish green-emitting KSrPO4:Tb3+ phosphors with various doping concentrations prepared by using microwave assisted sintering, Ceram. Int. 38, 1319 (2012).
[3] Y. J. Park, Y. J. Kim, Blue emission properties of Eu-doped CaAl2O4 phosphors synthesized by a flux method, Mater. Sci. Eng. B 146, 84 (2008).
[4] W. Yuhu, W. Zhilong, Characterization of Y2O2S:Eu3+, Mg2+, Ti4+ Long-lasting phosphor synthesized by flux method, J. Rare Earths 24, 25 (2006).
[5] Y. S. Tang, S. F. Hu, C. C. Lin, N. C. Bagkar, R. S. Liu, Thermally stable luminescence of KSrPO4: Eu phosphor for white light UV light-emitting diodes, Appl. Phys. Lett. 90, 151108 (2007).
[6] C. C. Lin, Y. S. Tang, S. F.Hu, R. S. Liu, KBaPO4:Ln (Ln=Eu, Tb, Sm) phosphors for UV excitable white light-emitting diodes, J. Lumin. 129, 1682 (2009).
Chapter 4
[1] S. Tang, S. F. Hu, C. C Lin, N. C. Bagkar and R. S. Liu, Thermally stable luminescence of KSrPO4:Eu2+ phosphor for white light UV light-emitting diodes, Appl. Phys. Lett. 90, 151108 (2007).
[2] C. C. Lin, R. S. Liu, Y. S. Tang, S. F. Hu, Full-Color and thermally stable KSrPO4:Ln (Ln = Eu, Tb, Sm) phosphors for white-Light-Emitting diodes, J. Electrochem. Soc. 155, J248 (2008).
[3] C. C. Lin, Y. S. Tang, S. F.Hu, R. S. Liu, KBaPO4:Ln (Ln= Eu, Tb, Sm) phosphors for UV excitable white light-emitting diodes, J. Lumin. 129, 1682 (2009).
[4] F. Zhang, Y. Wang, J. Liu, Vacuum ultraviolet spectroscopic properties of KSrPO4:Tb3+, J. Alloys Compd. 509, 3852 (2011).
[5] J. Dhanaraj, R. Jagannathan, T. G. N. Kutty, C. H. Lu, Photoluminescence characteristics of Y2O3:Eu3+ nanophosphors prepared using sol-gel thermolysis, J. Phys. Chem. B 105, 11098 (2001).
[6] Y. F. Liu, X. O. Liu, G. Y. Meng, A novel route of synthesizing La1-xSrxCoO3 by microwave irradiation, Mater. Lett. 48, 176 (2001).
[7] L. Zhang, X. Zhou, H. Zeng, H. Zeng, X. Dong, White-light long-lasting phosphor Sr2SiO4:Pr3+, Mater. Lett. 62, 2539 (2008).
[8] E. Sirres, D. D. Rego, Microwave applications in materials joining, J. Mater. Pro. Tech. 48, 619 (1995).
[9] K. Uematsu, K. Toda, M. Sato, Preparation of YVO4:Eu3+ phosphor using microwave heating method, J. Alloys Compd. 389, 209 (2005).
[10] R. Y. Yang, H. Y. Chen, C. M. Hsiung, S. J. Chang, Crystalline morphology and photoluminescent properties of YInGe2O7:Eu3+ phosphors prepared from microwave and conventional sintering, Ceram. Int. 37, 749 (2011).
[11] I. Ishak, A. Daud, Rare Earth doped Y2O3:RE3+ (RE= Eu, Tm and Tb) powder phosphors prepared by microwave heating technique, Mater. Sci. Forum. 517, 227 (2006).
[12] C. L. Lo, J. G. Duha, B. S. Chiou, C. C. Peng, L. Ozawa, Synthesis of Eu3+-activated yttrium oxysulfide red phosphor by flux fusion method, Mater. Chem. Phys. 71, 179 (2001).
[13] C. C. Lin, Z. R. Xiao, G. Y. Guo, T. S. Chan, R. S. Liu, Versatile phosphate phosphors ABPO4 in white light-emitting diodes: Collocated characteristic analysis and theoretical calculations, J. Am. Chem. Soc. 132, 3020 (2010).
[14] .S. H. M. Poort, A. Meyerink, G. Blasse, Lifetime measurements in Eu2+-doped host lattices, J. Phys. Chem. Solids 58, 1451 (1997).
[15] F. Wang, H. Song, G. Pan, L. Fan, B. Dong, L. Liu, X. Bai, R. Qin, X. Ren, Z. Zheng, S. Lu, Luminescence properties of Ce3+and Tb3+ ions codoped strontium borate phosphate phosphors, J. Lumin. 128, 2013 (2008).
[16] C. H. Park, S. J. Park, B. Y. Yu, H. S. Bae, C. H. Kim, C. H. Pyum, VUV excitation of Y3Al5O12:Tb phosphor prepared by a sol-gel process, J. Mater. Sci. Lett. 19, 335 (2000) .
[17] M. H. Weng, R. Y. Yang, Y. M. Peng, J. L. Chen, Yellowish green-emitting KSrPO4:Tb3+ phosphors with various doping concentrations prepared by using microwave assisted sintering, Ceram. Int. 38, 1319 (2012).
[18] S. Zhang, X. Wu, Y. Huang, Photoluminescence and Thermal Stability of Eu2+-activated LiCaPO4 Phosphors for white light-emitting diodes, Int. J. Appl. Ceram. Technol. 8, 734 (2011).
[19] A. Birkel, L. E. Darago, A. Morrison, L. Lory, N.C. George, A.A. Mikhailovsky, C.S. Birkel and R. Seshadri, Microwave assisted preparation of Eu2+-doped Åkermanite Ca2MgSi2O7, Solid-State Sci. 14, 739 (2012).
[20] S. Zhang, Y. Nakai, T. Tsuboi, Y. Huang, H. J. Seo, Luminescence and microstructural features of Eu-activated LiBaPO4 phosphor, Chem. Mater. 23, 1216 (2011).
[21] Z. Y. Feng, W. D. Zhuang, X. W. Huang, X. F. Wen, Y. S. Hu, Effect of MgF2-H3BO3 flux on the properties of (Ce,Tb)MgAl11O19 phosphor, J. Rare Earths 28, 351 (2010) .
[22] S. Zhang, W. Zhuang, C. Zhao, Influence of flux on properties of Y3Al50Al12:Ce phosphor, J. Chin. Rare Earth Soc. 20, 605 (2002).
[23] L. Ma, J. Hu, G. Wan, Effect of flux on YAG: Ce phosphors prepared by solid-state reactions, Chin. J. Lumin. 27, 348 (2006).
[24] F. Duault, M. Junker, P. Grosseau, B. Guilhot, P. Iacconi, B. Moine, Effect of different fluxes on the morphology of the LaPO4:Ce, Tb phosphor, Powder Technol. 154, 132 (2005).
[25] F. Bondioli, A. B. Corradi, T. Manfredini, Nonconventional synthesis of praseodymium-doped ceria by flux method, Chem. Mater. 12, 324 (2002).
[26] H. Jiao, X. Gao, F. Wang, A. Wu, T. Han, J. Alloy. Compd. 493, 427 (2010).
[27] Y. C. Kang, H. D. Park, S. B. Park, Self-assembled Y2SiO5 superstructures: A high temperature method with mixed flux, Jpn. J. Appl. Phys. 39, L1305 (2000).
[28] L. Ozawa, Preparation of Y2O2S: Eu phosphor particles of different sizes by a flux method, J. Electrochem. Soc. 124, 413 (1977).
[29] B. K. Park, S. S. Lee, J. K. Kang, S. H. Byeon, Single-step solid-state synthesis of CeMgAl11O19:Tb phosphor, Bull. Korean Chem. Soc. 28, 1467 (2007).
[30] S. H. Lee, H. Y. Koo, D. S. Jung, J. M. Han, Y. C. Kang, Effects of BaF2 flux on the properties of yellow-light-emitting terbium aluminum garnet phosphor powders prepared by spray pyrolysis, Optic. Mater. 31, 870 (2009).
[31] Y. Y. Ma, F. Xiao, S. Ye, Q. Y. Zhang, Effects of Ce3+ and NH4Cl on Structural and Luminescent Properties of Y2Si3O3N4:Ce Phosphors, J. Electrochem. Soc. 159, J39 (2012).
[32] H. Y. Chen, R. Y. Yang , S. J. Chang, Y. K. Yang, Microstructure and photoluminescent properties of Sr2SiO4:Eu3+ phosphors with various NH4Cl flux concentrations, Mater. Res. Bull. 47, 1412 (2012).
[33] T. L. Barry, Fluorescence of Eu2+‐activated phases in binary alkaline earth orthosilicate systems, J. Electrochem. Soc. 115, 1181(1968).
[34] T. L. Barry, Equilibria and Eu2+ luminescence of subsolidus phases bounded by Ba3MgSi2O8, Sr3MgSi2O8, and Ca3MgSi2 O 8, J. Electrochem. Soc. 115, 733 (1968).
[35] H. S. Kang, Y. C. Kang, K. Y. Jung, S. B. Park, Eu-doped barium strontium silicate phosphor particles prepared from spray solution containing NH4Cl flux by spray pyrolysis, Mater. Sci. Eng., B 121, 81 (2005).
[36] Z. Yang, G. Yang, S. Wang, J. Tian, X. Li, Q. Guo, G. Fu, A novel green-emitting phosphor NaCaPO4:Eu2+ for white LEDs, Mater. Lett. 62, 1884 (2008).
[37] K. N. Shinde, S. J. Dhoble, A. Kumar, Combustion synthesis of Ce3+, Eu3+ and Dy3+ activated NaCaPO4 phosphor, J. rare earths 29, 527 (2009).
[38] E. V. Zubar, B. I. Zadneprovskii, N. P. Efryushina, V. P. Dotsenko, Synthesis and luminescence examination of β-NaCaPO4:Eu2+, phosphor promising for white light-emitting diode applications, Russ. J. Appl. Chem. 84, 1483 (2011).
[39] J. H. Lee, Y. J. Kim, A correlation between a phase transition and luminescent properties of Sr2SiO4: Eu2+ prepared by a flux method, J. Ceram. Process Res. 10, 81 (2009).
[40] J. Y. Park, H. C. Jung, G. S. R. Raju, B. K. Moon, J. H. Jeong, S. M. Son, J. H. Kim, Sintering temperature effect on structural and luminescence properties of 10 mol% Y substituted Gd3Al5O12:Ce phosphors, Opt. Mater. 32, 293 (2009).
[41] Y. J. Hsiao, Y. L. Chai, L. W. Ji, T. H. Fang, T. H. Meen, J. K. Tsai, K. L. Chen, S. D. Prior, Optical characteristics of LiZnVO4 green phosphor at low temperature preparation, Mater. Lett. 70, 163 (2012).
[42] X. Zhang, A. Marathe, S. Sohal, M. Holtz, M. Davis, L. J. Hope-Weeks, J. Chaudhuri, Synthesis and photoluminescence properties of hierarchical architectures of YBO3:Eu3+, J. Mater. Chem. 22, 6485 (2012).
[43] D. Tu, Y. Liang, R. Liu, Z. Cheng, F. Yang, W. Yang, Photoluminescent properties of LiSrxBa1-xPO4: RE3+ (RE= Sm3+, Eu3+) f-f transition phosphors, J. Alloys Compd. 509, 5596 (2011).
[44] S. Das, A. A. Reddy, S. Ahmad, R. Nagarajan, G. V. Prakash, Synthesis and optical characterization of strong red light emitting KLaF4:Eu3+ nanophosphors, Chem. Phys. Lett. 508, 117 (2011).
[45] Y. Zhu, N. Narendran, Optimizing the performance of remote phosphor LEDs, J. Light &Vis. Env. 32, 115 (2008).
[46] S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, Q. Y. Zhang, Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties, Mater. Sci. Eng. R 71, 1 (2010).
[47] P. Dai, X. Zhang, M. Zhou, X. Li, J. Yang, P. Sun, C. Xu, Y. Liu, Thermally Stable Pyrochlore Y2Ti2O7: Eu3+ Orange-Red Emitting Phosphors, J. Am. Ceram. Soc. 95, 658 (2012).
[48] G. S. R. Raju, H. C. Jung, J. Y. Park, B. K. Moon, R. Balakrishnaiah, J. H. Jeong, J. H. Kim, The influence of sintering temperature on the photoluminescence properties of oxyapatite Eu3+:Ca2Gd8Si6O26 nanophosphors, Sens. Actuators, B 146, 395 (2010).
[49] G. Pucker, K. Gatterer, H.P. Fritzer, M. Bettinelli, M. Ferrari, Optical investigation of Eu3+ in a sodium borosilicate glass: Evidence for two different site distributions, Phys. Rev. B 53, 6225 (1996).
[50] B. Yan, X.Q. Su, In situ chemical coprecipitation composition of hybrid precursors to synthesize YPxV1-xO4:Eu3+ micron crystalline phosphors, Mater. Sci. Eng. B 116, 196 (2005).
[51] Y. K. Su, Y. M. Peng, R. Y. Yang, J. L. Chen, Effects of NaCl flux on microstructure and luminescent characteristics of KSrPO4:Eu2+ phosphors, Opt. Mater. 34, 1598 (2012).
[52] 陳皇宇,微波輔助燒結製備應用於白光LED之紅光及綠光螢光粉,博士論文,國立成功大學,2013。
[53] H. Y. Chen, R. Y. Yang, S. J. Chang, Improving crystalline morphology and photoluminescent properties of BaY2ZnO5:Eu3+ phosphors prepared using microwave assisted sintering, Mater. Lett. 64, 2548 (2010).
[54] H. Y. Chen, M. H. Weng, S. J. Chang, R. Y. Yang, Preparation of Sr2SiO4:Eu3+ phosphors by microwave-assisted sintering and their luminescent properties, Ceramics Int. 38, 125 (2011).
[55] J. Sun, X. Zhang, Z. Xia, H. Du, Luminescent properties of LiBaPO4:RE (RE = Eu2+, Tb3+, Sm3+) phosphors for white light-emitting diodes, J. appl. physics 111, 013101 (2012).
[56] D. Jia, W. M. Yen, Enhanced Vk3+ center afterglow in MgAl2O4 by doping with Ce3+, J. Lumin. 101, 115 (2003).
[57] A. Nag, T. G. N. Kutty, The light induce valence change of europium in Sr2SiO4:Eu involving transient crystal structure, J. Mater. Chem. 14, 1598 (2004).
[58] E. D. Bacce, A. M. Pires, M. R. Davolos, Influence of Zn2+ co-doping ion on Eu3+–O2− associate luminescence in Sr2SiO4, J. Alloys Compd. 344, 312 (2002).
[59] R. Y. Yang , M. H. Weng, H. Y. Chen, C. M. Hsiung, S. H. Chen, The influence of Eu3+ doping on photoluminescent properties of red emitting phosphor YInGe2O7:Eu3+ by microwave assisted and conventional sintering method, J. Lumin. 132, 478 (2012).
[60] N. Hirosaki, R. J. Xie, K. Kimoto, T. Sekiguchi, Y. Yamamoto, T. Suehiro, M. Mitomo, Characterization and properties of green-emitting β-SiAlON:Eu2+ powder phosphors for white light-emitting diodes , Appl. Phys. Lett. 86, 211905 (2005).
[61] Z. C. Wu, J. X. Shi, J. Wang, M. L. Gong, Q. Su, A novel blue-emitting phosphor LiSrPO4:Eu2+ for white LEDs, J. Solid State Chem. 179, 2356 (2006).
[62] S. Zhang, Y. Huang, H. J. Seo, Luminescence properties and structure of Eu2+ doped KMgPO4 phosphor, Opt. Mater. 32, 1545 (2010).
[63] J. H. Cha, K. H. Kim, Y. S. Park, S. J. Park, H. W. Choi, Photoluminescence characteristics of nanocrystalline ZnGa2O4 phosphors obtained at different sintering temperatures, Mol. Cryst. Liq. Cryst. 499, 85 (2009).
[64] Y. Huang, W. Kai, Y. Cao, K. Jang, H. S. Lee, I. Kim, E. Cho, Spectroscopic and structural studies of Sm2+ doped orthophosphate KSrPO4 crystal, J. Appl. Phys. 103, 053501 (2008).
[65] I. Omkaram, B. Vengala Rao, S. Buddhudu, Photoluminescence properties of Eu3+:MgAl2O4 powder phosphor, J. Alloys. Compd. 474, 565 (2009).
[66] L. Zhou, J. Huang, L.Yi, M. Gong, Luminescent properties of Ba3Gd(BO3)3:Eu3+ phosphor for white LED applications, J. rare earths 27, 57 (2009).
[67] H. Jing, C. Guo, N. Zhang, Z. Ren, J. Bai, Effects of Eu3+ Sites on Photoluminescence in Ba2Ln(BO3)2Cl (Ln= Gd, Y) Hosts, ECS J. Solid State Sci. & Tech. 2, R1 (2013).
[68] K. N. Shinde, V. B. Pawade, S. J. Dhoble, P. W. Yawalkar, Orange emission in Eu3+-activated Mg2M (PO4)2(M=Sr and KNa) and KSrPO4 phosphors, Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry 41, 524 (2011).
[69] B. F. dos Santos Jr, M. V. dos Santos Rezende, P. J. R. Montes, R. M. Araujo, M. A.C. dos Santos, M. E. G. Valerio, Spectroscopy study of SrAl2O4:Eu3+, J. Lumin. 132, 1015 (2012).
[70] S. Zhang, Y. Nakai, T. Tsuboi, Y. Huang, H. J. Seo, The thermal stabilities of luminescence and microstructures of Eu2+-doped KBaPO4 and NaSrPO4 with β-K2SO4 type structure, Inorganic Chem. 50, 2897 (2011).
[71] W. R. Liu, Y. C. Chiu, C. Y. Tung, Y. T. Yeh, S. M. Jang, T. M. Chen, A Study on the luminescence properties of CaAlBO4:RE3+ (RE= Ce, Tb, and Eu) phosphors, J. Electrochem. Soc. 155, J252 (2008).
[72] N. Yaiphaba, R. S. Ningthoujam, N. Shanta Singh, R. K. Vatsa, N. Rajmuhon Singh, Sangita Dhara, N. L. Misra, R. Tewari, Luminescence, lifetime, and quantum yield studies of redispersible Eu3+-doped GdPO4 crystalline nanoneedles: Core-shell and concentration Effects, J. Appl. Phys. 107, 034301 (2010).
[73] S. H. M. Poort, W. Janssen, G. Blasse, Optical properties of Eu2+-activated orthosilicates and orthophosphates, J. Alloys Compd. 260, 93 (1997).
[74] H. S. Peng, H. W. Song, B. J. Chen, J. W. Wang, S. Z. Lu, X. G. Kong, Temperature dependence of luminescent spectra and dynamics in nanocrystalline Y2O3:Eu3+, J. Chem. Phys. 118, 3282 (2003).
[75] 賴炫霖,以固態反應法製備LiBaPO4:Re3+ (Re3+:Pr3+,Ce3+)螢光粉之微結構與發光特性之研究,碩士論文,國立屏東科技大學,2013。
[76] Z. Wu, J. Liu, Q. Guo, M. Gong, A Novel Blue-green-emitting Phosphor LiBaPO4: Eu2+ for White Light-emitting Diodes, Chem. Lett. 37, 190 (2008).
[77] W. J. Park, M. K. Jung, T. Masaki, S.J. Im, D.H. Yoon, Characterization of YVO4:Eu3+, Sm3+ red phosphor quick synthesized by microwave rapid heating method, Mater. Sci. Eng., B 146, 95 (2008).
[78] L. Yang, X. Yu, S. Yang, C. Zhou, P. Zhou, W. Gao, P. Ye, Preparation and luminescence properties of LED conversion novel phosphors SrZnO2:Sm, Mater. Lett. 62, 907 (2008).
[79] Z. Wu, J. Liu, Q. Guo, M. Gong, Thermally stable luminescence of SrMg2(PO4)2: Eu2+ phosphor for white light NUV light-emitting diodes, Chem. Phys. Lett. 466, 88 (2008).
[80] V. Pankratov, A. I. Popov, A. Kotlov, C. Feldmann, Luminescence of nano and macrosized LaPO4:Ce,Tb excited by synchrotron radiation, Opt. Mater. 33, 1102 (2011).
[81] S. D. Cheng, C. H. Kam, S. Buddhudu, Enhancement of green emission from Tb3+:GdOBr phosphors with Ce3+ ion co-doping, Mater. Res. Bull. 36, 1131 (2001).
[82] D. Jia, J. Zhu, B. Wu, S. E, Luminescence and energy transfer in CaAl4O7 : Tb3+, Ce3+, J. Lumin. 93, 107 (2001).
[83] K. Y. Jung, H. W. Lee, Enhanced luminescent properties of Y3Al5O12:Tb3+,Ce3+ phosphor prepared by spray pyrolysis, J. Lumin. 126, 469 (2007).
[84] G. Blasse, Energy transfer between inequivalent Eu2+ ions, J. Solid State Chem. 62, 207 (1986).
[85] D. L. Dexter, A theory of sensitized luminescence in solids, J. Chem. Phys. 21, 836 (1953).
[86] N. Guo, Y. Song, H. You, G. Jia, M. Yang, K. Liu, Y. Zheng, Y. Huang, H. Zhang, Optical properties and energy transfer of NaCaPO4:Ce3+, Tb3+ phosphors for potential application in light‐emitting diodes, Eur. J. Inorg. Chem. 2010, 4636 (2010).
[87] G. Zhu, Y. Wang, Z. Ci, B. Liu, Y. Shi, S. Xin, Ca8Mg(SiO4)4Cl2:Ce3+, Tb3+: A potential single-phased phosphor for white-light-emitting diodes, J. Lumin. 132, 531 (2012).