簡易檢索 / 詳目顯示

研究生: 彭昱銘
Peng, Yu-Ming
論文名稱: 應用於白光發光二極體之磷酸系ABPO4 (A=Li, Na, K; B=Ca, Sr, Ba)下轉換螢光材料之研究
Research on ABPO4 (A=Li, Na, K; B=Ca, Sr, Ba) of phosphate based phosphors with down-conversion applied in white light emitting diode
指導教授: 蘇炎坤
Su, Yan-Kuin
共同指導教授: 楊茹媛
Yang, Ru-Ruan
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 180
中文關鍵詞: 螢光粉磷酸熱穩定微波燒結助熔劑
外文關鍵詞: phosphor, phosphate, thermal stability, microwave, sintering, flux
相關次數: 點閱:115下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 1996 年,日亞化學的中村修二(Nakamura)研究員 等人成功製備出白光發光二極
    體 (White light emitting diode, WLED),其係利用混光的方式以藍光發光二極體元件搭配黃色摻鈰之釔鋁石榴石(cerium doped yttrium aluminum garnet, YAG:Ce3+)。雖然此種方式所製備之WLED 之發光效率佳,但仍有藍光轉換效率不佳、白光演色性不高與所使用之YAG:Ce3+螢光粉之熱穩定性較差之問題。近年來,在高功率LED 的發展之下,驅動電流亦愈來愈大,所產生之問題即為熱管理。若無法有效處理熱問題,發光效率將有莫大影響。為改善上述之缺點,極需提出一種同時可提升轉換效率以及改善熱穩定之方法。有關於熱的問題,由於氧化物中的磷酸鹽( ABPO4,A=Li+, Na+, K+, Rb+, Cs+,B=Mg2+, Ca2+, Sr2+, Ba2+ )為主體晶格之螢光粉係為一具有共價性質之三維剛性結構,極適合載子之傳輸,亦即,磷酸鹽系列之螢光粉之熱穩定相當優異。這也就是說,以磷酸鹽為主體晶格之螢光粉材料為一解決高功率WLED 熱問題之一可行且有效之方式。且,磷酸鹽系列之螢光粉亦具有演色性佳、色偏小、成本低且專利侷限較輕之優點,因此極具未來發展潛力。有鑑於此,因此在本論文中,我們係選用四種不同之磷酸鹽結構作為主體晶格,分別為KSrPO4、NaCaPO4、LiSrPO4 及LiBaPO4;
    以及三種不同的稀土元素作為活化劑,分別為Tb、Sm 及Eu。此外,本論文係採用
    微波輔助燒結法製備KSrPO4:Tb3+、LiSrPO4:Eu3+、KSrPO4:Eu3+、KSrPO4:Sm3+與KSrPO4:Tb3+:Ce3+螢光粉。結果顯示:相較於傳統固態反應法所製備之螢光粉,利用微波輔助燒結法製備之螢光粉可得到較佳品質的螢光粉,並可降低製程時間、成本及所需的能量。另外,助熔劑 (flux)也常被用來促進燒結過程並提升螢光粉的發光特性。在本論文中,我們亦採用了NaCl 與NH4Cl 做為助熔劑分別合成KSrPO4:Eu2+與NaCaPO4:Eu3+螢光粉並探討微結構與發光特性。在本論文的最後部分,我們選擇最佳條件所製備之紅色螢光粉:NaCaPO4:Eu3+、LiSrPO4:Eu3+與KSrPO4:Eu3+,並比較發光特性。接著,我們選擇具有最佳的發光特性的紅色螢光粉KSrPO4:Eu3+與YAG:Ce3+黃粉混合,並封裝成WLED。由實驗結果可知,利用微波輔助燒結法製備之紅色螢光粉KSrPO4:Eu3+應可提升一般YAG:Ce3+封裝之WLED 的演色性,且由於該磷酸系基螢光粉之導入,使得所製備之WLED 元件在變電流1350 mA 的測試下,亦能持續發光。

    In 1996, White light emitting diode (WLED) was fabricated by using the blue LED chip and yellow emitting phosphor such as cerium doped yttrium aluminum garnet (YAG:Ce3+) by Nichia, and further developed the major market age. Although the WLED has high brightness and efficiency, it still has some problems such as color variation, low reproducibility, and the prepared phosphor has low thermal stability. Recently, there is a problem with heat generated as the driving current increased due to the high power LED that has developed. That is to say, if heat problem cannot be improved effectively, luminous efficiency will be affected. In order to overcome the above shortcomings, it is necessary to take a way to improve the conversion efficiency and thermal stability. Regarding the heat problem, the phosphate oxide compound ( ABPO4,A=Li+, Na+, K+, Rb+, Cs+,B=Mg2+, Ca2+, Sr2+, Ba2+ ) as the host lattice of covalent nature of the phosphor have three dimensional rigid structure. The phosphate oxide is very suitable for carrier transport, and the thermal stability of the phosphate series is quite outstanding. Using phosphate as host lattice in the phosphor material can solve the thermal problem of the high power of white LED in effective way. Besides that, phosphate based phosphors have excellent color rendering, small color cast, low cost and low patents limit to be a great potential of development in the future. Thus, in this thesis, we choose four different structures as host, which are KSrPO4, NaCaPO4, LiSrPO4 and LiBaPO4, respectively andchoose three different rare earth elements as activator, which are Tb, Sm, and Eu. Moreover, KSrPO4:Tb3+, LiSrPO4:Eu3+, KSrPO4:Eu3+, KSrPO4:Sm3+, and KSrPO4:Tb3+:Ce3+ phosphors were synthesized by using microwave assisted sintering
    technique and discussed their microstructure and photoluminescent properties. The experimental results showed the phosphors prepared by using microwave assisted sintering
    can reduce the sintering time, cost, and required energy for the high quality production of phosphors. Moreover, several fluxes were used to improve the sintering process and to
    enhance the photoluminescent properties in phosphor. In this thesis, we also adopted NaCl and NH4Cl fluxes to synthesis KSrPO4:Eu2+and NaCaPO4:Eu3+ phosphor, respectively and
    investigated their microstructure and photoluminescent properties. In the last part of this thesis, we choose the optimal sintering parameter for phosphors of NaCaPO4:Eu3+, LiSrPO4:Eu3+, and KSrPO4:Eu3+, and compared their photoluminescent properties. Among these, we choose a red phosphor of KSrPO4:Eu3+ with the optimal photoluminescent properties and tried to package it into the YAG:Ce3+ WLED. From the experimental results, it can be known that the addition of the red phosphor of KSrPO4:Eu3+ prepared by using microwave assisted sintering was supposed to improve the color rendering of the YAG:Ce3+ WLED and the WLED could continually emit light under 1350 mA due to the phosphate based phosphor.

    Contents VI Table Captions VIII Chapter 1 Introduction 1 1-1 Brief introduction of phosphors 1 1-2 The structure of ABPO4 6 1-2-1 The structure of KSrPO4 8 1-2-2 The structure of NaCaPO4 9 1-2-3 The structure of LiSrPO4 10 1-2-4 The structure of LiBaPO4 11 1-3 Motivation of this study 12 Reference 15 Chapter 2 Basic theory 21 2-1 Fluorescence and phosphorescence 21 2-2 Emission theory and process of the phosphor 23 2-2-1 Absorption and excitation of the phosphor 23 2-2-2 Luminescence property of the rare earth elements 24 2-3 Properties of phosphors 26 2-3-1 Concentration quenching effect 26 2-3-2 Thermal quenching effect 27 2-3-3 Poisoning 28 2-4 Microwave-assisted sintering method 29 Reference 35 Chapter 3 Experimental procedures 36 3-1 Experiment materials 36 3-2 Experiment procedures 36 3-2-1 Fabrication of KSrPO4:Tb3+ phosphors 38 3-2-2 Fabrication of KSrPO4:Eu2+ phosphors with flux 39 3-2-3 Fabrication of NaCaPO4:Eu3+ phosphors with flux 40 3-2-4 Fabrication of LiSrPO4:Eu3+ phosphors 40 3-2-5 Fabrication of KSrPO4:Eu3+ phosphors 41 3-2-6 Fabrication of LiBaPO4:Sm3+ phosphors 42 3-2-7 Fabrication of KSrPO4:Tb3+:Ce3+phosphors 43 3-3 Measurement system 44 3-3-1 XRD 44 3-3-2 SEM 45 3-3-3 TEM 46 3-3-4 EDS 47 3-3-5 PL 48 3-3-6 EL 49 Reference 50 Chapter 4 Results and discussion 51 4-1 Preparation of KSrPO4:Tb3+ phosphors and their properties 51 4-1-1 Effects of Tb3+ concentration 51 4-1-2 Effects of thermal stability 60 4-2 Preparation of KSrPO4:Eu2+ phosphors with flux and their properties 71 4-3 Preparation of NaCaPO4:Eu3+ phosphors with flux and their properties 84 4-3-1 Effects of sintering temperature 84 4-3-2 Effects of thermal stability 100 4-4 Preparation of LiSrPO4: Eu3+ phosphors and their properties 105 4-4-1 Effects of Eu3+ concentration 105 4-4-2 Effects of thermal stability 115 4-5 Preparation of KSrPO4:Eu3+ phosphors and their properties 119 4-6 Preparation of LiBaPO4: Sm3+ phosphors and their properties 134 4-7 Preparation of KSrPO4:Tb3+:Ce3+ phosphors and their properties 143 4-8 The comparison of photoluminescent properties within red NaCaPO4:Eu3+, LiSrPO4:Eu3+, and KSrPO4:Eu3+ phosphors applied in WLEDs 150 References 157 Chapter 5 Conclusion 170 Publish List 175 Vita 180 Table Captions Table 1-1 The comparison of various types of lighting equipment [3]. 1 Table 1-2 The number of papers of phosphate series of phosphors with different ABPO4 structure [6]. 7 Table 4-1 Lattice parameters and unit cell volume of the KSr1-xPO4:xTb3+ (x=0, 0.06) phosphors prepared by using microwave assisted sintering at 1200℃ for 1 hour in atmosphere. 62 Table 4-2 Lattice parameters and Estimated Standard Deviation (ESD) values of the KSrPO4:xTb3+ (x=0.06) phosphor prepared by using microwave assisted sintering at 1200℃ for 1 hour in atmosphere. (d: d-spacing defined by the indices h, k, l) 63 Table 4-3 Lattice parameters and unit cell volume of KSr1-xPO4:xEu3+ (x=0.01) phosphors prepared by using microwave assisted sintering at various sintering temperature by using microwave assisted sintering. 121 Table 4-4 Peak positions of the magnetic dipole transition of 5D0→7F1 (P1) of 589~591 nm, electric dipole transition of 5D0→7F2 (P2) of 613~614 nm, their full widths at the half maximum (w1) and (w2) for P1 and P2, respectively, and the values of A21 (A21= I2 (5D0→7F2)/ I1 (5D0→7F1)) for KSr1-xPO4:xEu3+ (x=0.01) sintered at various sintering temperature using microwave assisted sintering at 395 nm excitations. 129 Table 4-5 Peak positions of the magnetic dipole transition of 5D0→7F1 (P1) of 592~597 nm, electric dipole transition of 5D0→7F2 (P2) of 617~627 nm, their full widths at the half maximum (w1) and (w2) for P1 and P2, respectively, and the values of A21 (A21= I2 (5D0→7F2)/ I1 (5D0→7F1)) for KSr1-xPO4:xEu3+ (x=0.01) sintered at various sintering temperature using microwave assisted sintering at 395 nm excitations. 129 Figure Captions Figure 1-1 Approaches of WLEDs [3] 3 Figure 1-2 Energy transfer diagram of the phosphor [6] 3 Figure 1-3 Overall cost of WLEDs [7] 4 Figure 1-4 Crystal structure of KSrPO4 [35]. 9 Figure 1-5 Crystal structure of NaCaPO4 [37]. 10 Figure 1-6 Crystal structure of LiSrPO4 [37]. 11 Figure 1-7 Crystal structure of LiBaPO4 [41]. 12 Figure 2-1 Molecule energy level diagram for a PL system: (1) light absorption; (2) vibrational relaxation; (3) internal conversion; (4) internal conversion or external conversion; (5) radiative transition; and (6) non-radiative transitions [1] 21 Figure 2-2 Energy transformed diagram of excitation energy [2] 24 Figure 2-3 Diagram of 4f level transition. (For example: Eu3+) [3] 25 Figure 2-4 Diagram of the concentration quenching effect [5]. 27 Figure 2-5 Thermal quenching in the configurational Mordlnate model [3] 28 Figure 2-6 Diagram of the poisoning phenomenon [6] 29 Figure 2-7 The diagrams of conventional furnace and microwave furnace [2] 31 Figure 2-8 The schematic diagram of the molecular movements in the electric field [4]………………………………………………………………………………………33 Figure 2-9 Frequency dependence of the polarization mechanisms in dielectrics [4]………………………………………………………………………………………34 Figure 3-1 Schematic of our experimental process. (For example: KZnPO4) 38 Figure 3-2 X-ray Powder Diffractometer. (from Department of Material Engineering, National Pingtung University of Science and Technology) 45 Figure 3-3 Scanning electron microscope. (from National Pingtung University of Science and Technology) 46 Figure 3-4 Transmission electron microscopy. (from National Sun Yat-sen University)……………………………………………………………………………47 Figure 3-5 Spectrofluorimeter (from National Nano Device Laboratories) 48 Figure 3-6 Electroluminescence measure system (from National Pingtung University of Science and Technology) 49 Figure 4-1 (a) XRD pattern and (b) an enlargement of the strongest XRD peak diffraction peak of KSr1-xPO4:xTb3+ phosphors with different Tb3+ ion concentration prepared by using microwave assisted sintering. 54 Figure 4-2 SEM image and EDS data of KSr1-xPO4:xTb3 phosphors with (a) x=0.05, (b) x=0.06, (c) x=0.07, and (d) x=0.08 prepared by using microwave assisted sintering………………………………………………………………………………56 Figure 4-3 Photoluminescence emission spectras of KSr1-xPO4:xTb3 phosphors with different Tb3+ molar concentrations prepared by microwave assisted sintering. (λex = 225 nm). 58 Figure 4-4 Fluorescence decay time of 542 nm emission for KSr1-xPO4:xTb3+ phosphor with x=0.06. 59 Figure 4-5 Emission spectra of KSr1-xPO4:xTb3+ (x=0.06) phosphor prepared by using microwave assisted sintering with λex = 225 nm. Insert is a schematic diagram of the energy levels of Tb3+ for the cross-relaxation processes. 65 Figure 4-6 Emission spectras as a function of measured temperature of KSr1-xPO4:xTb3+ (x=0.06) phosphor prepared by using microwave assisted sintering. Insert is temperature dependence of relative emission intensity. 67 Figure 4-7 The activation energies of the thermal quenching of KSr1-xPO4:xTb3+ (x=0.06) phosphor prepared by using microwave assisted sintering. Insert is a schematic configuration coordinate diagram for the excited state level and the ground state level. 69 Figure 4-8 The typical decay curves at 542 nm emission of Tb3+ under 225 nm of excitation measured at different temperature. Inset is decay time at different temperature. 70 Figure 4-9 The CIE1931 chromaticity diagram of KSr1-xPO4:xTb3+ (x=0.06) phosphor in the range of 30~200°C prepared by using microwave assisted sintering. 71 Figure 4-10 XRD pattern of KSr0.99PO4:0.01Eu2+ phosphors with different concentrations of NaCl flux sintered at 1300℃ for 3 hour. 73 Figure 4-11 EDS data of KSr0.99PO4:0.01Eu2+ phosphors sintered at 1300℃ for 3 hour with NaCl flux of (a) 0 wt %, (b) 2 wt. %, (c) 4 wt. % and (d) 6 wt. %. 74 Figure 4-12 SEM image of KSr0.99PO4:0.01Eu2+ phosphors sintered at 1300℃ for 3 hour with NaCl flux of (a) 0 wt %, (b) 2 wt. %, (c) 4 wt. % and (d) 6 wt. %. 76 Figure 4-13 Photoluminescence emission spectra of KSr0.99PO4:0.01Eu2+ phosphors with different concentrations of NaCl flux sintered at 1300℃ for 3 hour. (λex = 320 nm). …………………………………………………….……………………………..77 Figure 4-14 Schematic of the energy band gap of the luminescence of KSr0.99PO4:0.01Eu2+ phosphors; τNR and τR is nonradiative lifetime and radiative lifetime associated with transitions from a conduction band and a valence band [27]……………………………………………………………………………………..79 Figure 4-15 Fluorescence decay time of 427 nm emission for KSr0.99PO4:0.01Eu2+ phosphor with 6 wt. % NaCl flux. 80 Figure 4-16 Emission spectras as a function of measured temperature of KSr0.99PO4:0.01Eu2+ phosphor with 6 wt. % NaCl flux. 82 Figure 4-17 Temperature dependence of relative emission intensity of KSr0.99PO4:0.01Eu2+ phosphor with 6 wt. % NaCl flux. 83 Figure 4-18 The activation energies of the thermal quenching of KSr0.99PO4:0.01Eu2+ phosphor with 6 wt. % NaCl flux. 84 Figure 4-19 XRD pattern of NaCa0.95PO4:0.05Eu3+ phosphors with 2 wt. % NH4Cl flux sintered at various sintering temperature for 3 hours via solid state reaction method………………………………………………………………………………..87 Figure 4-20 SEM image of NaCa0.95PO4:0.05Eu3+ phosphors with 2 wt. % NH4Cl flux sintered at various sintering temperature for 3 hours via solid state reaction method: (a) 800℃, (b) 900℃, (c) 1000℃ and (d) 1100℃. 89 Figure 4-21 TEM micrographs of NaCa0.95PO4:0.05Eu3+ phosphors with 2 wt. % NH4Cl flux sintered at 1000℃. 90 Figure 4-22 Photoluminescence excitation spectra of the red emission at 620 nm of NaCa0.95PO4:0.05Eu3+ phosphors with 2 wt. % NH4Cl flux sintered at various sintering temperature for 3 hours via solid state reaction method. 92 Figure 4-23 Photoluminescence emission spectra of NaCa0.95PO4:0.05Eu3+ phosphors with 2 wt. % NH4Cl flux sintered at various sintering temperature for 3 hours via solid state reaction method. NaCa0.95PO4:0.05Eu3+ phosphor with 2 wt. % NH4Cl flux. (λex = 270 nm). …………………………………………………………………………………...94 Figure 4-24 A energy level schematic of Eu3+ ions for the cross-relaxation processes……………………………………………………………………………...96 Figure 4-25 The CIE1931 chromaticity diagram of NaCa0.95PO4:0.05Eu3+ phosphors with 2 wt. % NH4Cl flux sintered at various sintering temperature for 3 hours via solid state reaction method. 98 Figure 4-26 Fluorescence decay time of NaCa0.95PO4:0.05Eu3+ phosphors with 2 wt. % NH4Cl flux sintered at 1000℃ for 3 hours via solid state reaction method (and λex= 270, λem= 620 nm). 99 Figure 4-27 Emission spectras as a function of measured temperature of NaCaPO4:Eu3+ phosphor with 2 wt. % NH4Cl flux sintered at 1000℃ for 3 hours via solid state reaction method. 101 Figure 4-28 Temperature dependence of relative emission intensity of NaCaPO4:Eu3+ phosphor with 2 wt. % NH4Cl flux sintered at 1000℃ for 3 hours via solid state reaction method. 102 Figure 4-29 The activation energies of the thermal quenching of NaCaPO4:Eu3+ phosphor with 2 wt. % NH4Cl flux sintered at 1000℃ for 3 hours via solid state reaction method. 104 Figure 4-30 EL emission spectra of NaCaPO4:Eu3+ phosphor with 2 wt. % NH4Cl flux sintered at 1000℃ for 3 hours via solid state reaction method combined n-UV LED. Inset is the enlargement of the emission range (500-750 nm) of the phosphor. 105 Figure 4-31 XRD pattern of LiSr1-xPO4:xEu3+ phosphors with different concentrations of Eu3+ ions prepared by microwave assisted sintering. 107 Figure 4-32 TEM micrographs of LiSr1-xPO4:xEu3+ (x=0.05) phosphor prepared by microwave assisted sintering. 108 Figure 4-33 Excitation spectrum of LiSr1-xPO4:xEu3+ phosphors with different concentrations of Eu3+ ions prepared by microwave assisted sintering. 110 Figure 4-34 Emission spectrum of LiSr1-xPO4:xEu3+ phosphors with different concentrations of Eu3+ ions prepared by microwave assisted sintering. (λex= 395 nm). The insert shows the resolved emission spectrum in wavelengths from 579 to 588 nm……………………………………………………………………………………112 Figure 4-35 Decay profiles of the luminescence of 5D0 level of LiSr1-xPO4:xEu3+ phosphors with different concentrations of Eu3+ ions prepared by microwave assisted sintering recorded under excitation at 395 nm and emission at 617 nm. 114 Figure 4-36 EL emission spectra of LiSr1-xPO4:xEu3+ (x=0.05) phosphor combind n-UV LED under forward-bias DC currents of 350 mA. 115 Figure 4-37 Emission spectras as a function of measured temperature of LiSr1-xPO4:xEu3+ (x=0.05) phosphor prepared by microwave assisted sintering. 116 Figure 4-38 Temperature dependence of relative emission intensity of LiSr1-xPO4:xEu3+ (x=0.05) phosphor prepared by microwave assisted sintering. 117 Figure 4-39 The activation energies of the thermal quenching of LiSr1-xPO4:xEu3+ (x=0.05) phosphor prepared by microwave assisted sintering 118 Figure 4-40 XRD pattern of KSr1-xPO4:xEu3+ (x=0.01) phosphors sintered at various sintering temperature by using microwave assisted sintering. 121 Figure 4-41 SEM images of KSr1-xPO4:xEu3+ (x=0.01) sintered at various sintering temperature by using microwave assisted sintering. (a) 1000℃, (b) 1100℃, (c) 1200℃ and (d) 1300℃. 124 Figure 4-42 Emission spectras of KSr1-xPO4:xEu3+ (x=0.01) phosphors sintered at various sintering temperature by using microwave assisted sintering. (and λex= 395 nm). Inset is excitation spectra. 125 Figure 4-43 A energy level schematic of Eu3+ ions for the cross-relaxation processes…………………………………………………………………………….126 Figure 4-44 The CIE1931 chromaticity diagram of KSr1-xPO4:xEu3+ (x=0.01) phosphors sintered at various sintering temperature by using microwave assisted sintering. 131 Figure 4-45 Fluorescence decay time of KSr1-xPO4:xEu3+ (x=0.01) phosphors prepared by using microwave assisted sintering at various sintering temperatures. (and λex= 395, λem= 617 nm). 133 Figure 4-46 EL emission spectrum of the orange-red LED under forward-bias DC currents of 350 mA. The insert shows a CIE1931 chromaticity diagram of the phosphor-converted LED. 134 Figure 4-47 XRD pattern of LiBa0.95PO4:0.05Sm3+ phosphors prepared by microwave sintering at 900℃ for 3 hour and conventional sintering at 900℃ for 3 hours. 136 Figure 4-48 SEM image of LiBa0.95PO4:0.05Sm3+ phosphors prepared by (a) microwave sintering at 900℃ for 3 hour and (b) conventional sintering at 900℃ for 3 hours. 138 Figure 4-49 TEM image of LiBa0.95PO4:0.05Sm3+ phosphors prepared by (a) microwave sintering at 900℃ for 3 hour and (b) conventional sintering at 900℃ for 3 hours. 139 Figure 4-50 The emission spectra of LiBa0.95PO4:0.05Sm3+ phosphors prepared by (a) microwave sintering at 900℃ for 3 hours and (b) conventional sintering at 900℃ for 3 hours. Insert is the diagram for the schematic energy levels of Sm3+ ion. 140 Figure 4-51 CIE 1931 (Commission Internationale de l'Eclairage, CIE) chromaticity diagram of LiBa0.95PO4:0.05Sm3+ phosphors prepared by microwave sintering at 900℃ for 3 hours and conventional sintering at 900℃ for 3 hours. 141 Figure 4-52 Fluorescence decay time of LiBa0.95PO4:0.05Sm3+ phosphors prepared by (a) microwave sintering at 900℃ for 3 hour and (b) conventional sintering at 900℃ for 3 hours. (and λex= 405, λem= 607 nm). 143 Figure 4-53 XRD patterns of KSr1-x-yPO4:xTb3+:yCe3+ (x=0.06) phosphors with different concentrations of Ce3+ ions prepared by using microwave assisted sintering……………………………………………………………………………..145 Figure 4-54 Excitation spectra of KSrPO4:Tb3+:Ce3+ phosphors prepared by using microwave assisted sintering 146 Figure 4-55 Emission spectra of KSr1-x-yPO4:xTb3+:yCe3+ (x=0.06) phosphors with different concentrations of Ce3+ ions prepared by using microwave assisted sintering. Inset is the CIE1931 chromaticity diagram of KSr1-x-yPO4:xTb3+:yCe3+ (x=0.06) phosphors with different concentrations of Ce3+ ions prepared by using microwave assisted sintering. 148 Figure 4-56 The emission spectra of NaCa0.95PO4:0.05Eu3+ phosphors with 2 wt. % NH4Cl flux, LiSr1-xPO4:xEu3+ (x=0.05) phosphor, and KSr1-xPO4:xEu3+ (x=0.01) phosphor (λex = 4555 nm) 151 Figure 4-57 The emission spectra of mixed phosphors: (a)Without any red phosphor. (b)Red phosphor of NaCa0.95PO4:0.05Eu3+ phosphors with 2 wt. % NH4Cl flux. (c)Red phosphor of KSr1-xPO4:xEu3+ (x=0.01). (d) Red phosphor of LiSr1-xPO4:xEu3+(x=0.05). 153 Figure 4-58 Emission spectrum of our LEDs with Commercial YAG: Ce3+、YAG: Ce3+ prepared by us、Sample A、Sample and Sample C. (Sample A: LiSr1-xPO4:xEu3+(x=0.05); Sample B: NaCa0.95PO4:0.05Eu3+ phosphors with 2 wt. % NH4Cl flux; KSr1-xPO4:xEu3+ (x=0.01) ) 155 Figure 4-59 EL emission spectra of the KSr1-xPO4:xEu3+ (x=0.01) phosphor was mixed with the prepared YAG:Ce3+ phosphor by us applied in WLED under forward-bias DC currents of 350, 550, 750, 950, 1150 and 1350 mA. 156

    Chapter 1
    [1] D. K. Yim, H. J. Song, I. S. Cho, J. S. Kim, K. S. Hong, A novel blue-emitting NaSrPO4:Eu2+ phosphor for near UV based white light-emitting-diodes, Mater. Lett. 65, 1666 (2011).
    [2] J. K. Sheu, S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, Y. C. Lin, W. C. Lai, J. M. Tsai, G. C. Chi, R. K. Wu, White light emission from near UV InGaN/GaN LED chip precoated with blue/green/red phosphors, IEEE Photonics Technol. Lett. 15, 18 (2003).
    [3] 陳皇宇,微波輔助燒結製備應用於白光LED之紅光及綠光螢光粉,博士論文,國立成功大學,2013。
    [4] Fred Schubert, Light-Emitting Diodes, The press syndicate of the university of Cambridge, UK, 2003.
    [5] Skoog, Holler, Nieman, Principles of Instrumental analysis, fifth edition, Saunders college Publishing, 1992.
    [6] 楊茹媛、彭昱銘、蘇炎坤,白光LED用之螢光粉材料之基本原理與技術發展,電子月刊,197期,第140-157頁,2011。
    [7] 陳建良,不同活化劑摻雜對KSrPO4主體晶格之微結構與光學性質之研究,博士論文,國立屏東科技大學,2013。
    [8] Y. Chen, J. Wang, X. Zhang, G. Zhang, M. Gong, Q. Su, An intense green emitting LiSrPO4:Eu2+, Tb3+ for phosphor-converted LED, Sens. Actuators, B 148, 259 (2010).
    [9] E. Radkov, R. Bompiedi, A. M. Srivastava, A. A. Setlur, C. Becker, White light with UV LEDs, Proc. SPIE 2004 5187, 171 (2004).
    [10] J. S. Kim, P. E. Jeon, J. C. Choi, H. L. Park, Emission color variation of M2SiO4:Eu2+ (M=Ba, Sr, Ca) phosphors for light-emitting diode, Solid State Commun. 133, 187 (2005).
    [11] S. Kubota, H. Hara, H. Yamane, M. Shimada, Luminescent property of Eu3+ in a new compound, (Sr0.99La1.01)Zn0.99O3.495, J. Electrochem. Soc. 149, H68 (2002).
    [12] S. Kubota, R. L. Stanger, Y. Suzuyama, H. Yamane, M. Shimada, Luminescent properties of Eu3+ in defect apatite, Sr3La6(SiO4)6, J. Electrochem. Soc. 149, H134 (2002).
    [13] K. Tadatomo, H. Okagawa, Y. Ohuchi, Tsunekawa, T. Jyouichi, Y. Imada, M. Kato, H. Kudo, T. Taguchi, High output power InGaN ultraviolet light-emitting diodes fabricated on patterned substrates using metalorganic Vapor Phase Epitaxy, Phys. Status Solidi A 188, 121 (2001).
    [14] K. Srinivasu, R. S. Ningthoujam, V. Sudarsan, R. K. Vatsa, A. K. Tyagi, P. Srinivasu, A. Vinu, Eu3+ and Dy3+ doped YPO4 nanoparticles: Low temperature synthesis and luminescence studies, J. Nanoscience Nanotechnology 9, 3034 (2009).
    [15] Z. Yang, G. Yang, S. Wang, J. Tian, X. Li, Q. Guo, G. Fu, A novel green-emitting phosphor NaCaPO4:Eu2+ for white LEDs, Mater. Lett. 62, 1884 (2008).
    [16] C. C. Lin, R. S. Liu, Y. S. Tang, S. F. Hu, Full-Color and thermally stable KSrPO4:Ln, Ln=Eu, Tb, Sm phosphors for white-light-emitting diodes, J. Electrochem. Soc. 155, J248 (2008).
    [17] Y. J. Park, Y. J. Kim, Blue emission properties of Eu-doped CaAl2O4 phosphors synthesized by a flux method, Mater. Sci. Eng. B 146, 84 (2008).
    [18] W. Yuhu, W. Zhilong, Characterization of Y2O2S:Eu3+, Mg2+, Ti4+ Long-lasting phosphor synthesized by flux method, J. Rare Earths 24, 25 (2006).
    [19] S. Zhang, W. Zhuang, C. Zhao, Influence of flux on properties of Y3Al5O12:Ce phosphor, J. Chin. Rare Earth Soc. 20, 605 (2002).
    [20] L. Ma, J. Hu, G. Wan, Effect of flux on YAG: Ce phosphors prepared by solid-state reactions, Chin. J. Lumin. 27, 348 (2006).
    [21] A. Nag, T. R. N. Kutty, Role of B2O3 on the phase stability and long phosphorescence of SrAl2O4:Eu, Dy, J. Alloys Compd. 354, 221 (2003).
    [22] F. Bondioli, A.B. Corradi, T. Manfredini, Modification of the solid-state structure of bis(1-hydroxy-2(1H)-pyridinethiolato-S2,O)zinc(II): synthesis and characterization of a molecular solid solution incorporating 3-hydroxy-4-methyl-2(3H)-thiazolethione, Chem. Mater. 12, 324 (2002).
    [23] M. Kottaisamy, R. Jagannathan, R. P. Rao, M. Avudaithai, L. K. Srinivasan, V. Sundaram, On the formation of flux Grown  Y2O2S  : Eu3+  Red Phosphor, J. Electrochem. Soc. 142, 3205 (1995).
    [24] H. J. Lee, K. P. Kim, G. Y. Hong, J. S. Yoo, The effect of flux materials on the physical and optical properties of Eu3+-activated yttrium oxide phosphors, J. Lumin. 130, 941 (2010).
    [25] B. K. Park, S. S. Lee, J. K. Kang, S. H. Byeon, Single-step solid-state synthesis of CeMgAl11O19:Tb phosphor, Bull. Korean Chem. Soc. 28, 1467 (2007).
    [26] S. H. Lee, H. Y. Koo, D. S. Jung, J. M. Han, Y. C. Kang, Effects of BaF2 flux on the properties of yellow-light-emitting terbium aluminum garnet phosphor powders prepared by spray pyrolysis, Optic. Mater. 31, 870 (2009).
    [27] Z. Y. Feng, W. D. Zhuang, X. W. Huang, X. F. Wen, Y. S. Hu, Effect of MgF2-H3BO3 flux on the properties of (Ce,Tb)MgAl11O19 phosphor, J. Rare Earths 28, 351 (2010).
    [28] Y. K. Su, Y. M. Peng, R. Y. Yang, J. L. Chen, Effects of NaCl flux on microstructure and luminescent characteristics of KSrPO4:Eu2+ phosphors, opt. mater. 34, 1598 (2012).
    [29] Y. M. Peng, Y. K. Su, R. Y. Yang, The charge transfer transition phenomenon and microstructure of Eu3+-doped NaCaPO4 phosphors sintered with flux via solid-state reaction, Mater. Res. Bull. 48, 1946 (2013).
    [30] R. Y. Yang, Y. M. Peng, Y. K. Su, Novel red emitting microwave-assisted sintered LiSrPO4:Eu3+ phosphors for application in near-UV WLEDs, IEEE J. Electronic Mater. 42, 2910 (2013).
    [31] R. Y. Yang, Y. M. Peng, H. L. Lai C. J. Chu, B. Chiou, Y. K. Su, Effect of the different concentrations of Eu3+ ions on the microstructure and photoluminescent properties of Zn2SiO4:xEu3+ phosphors and synthesized with TEOS solution as silicate source, Opt. Mater. 35, 1719 (2013).
    [32] Y. M. Peng, Y. K. Su, R. Y. Yang, Improving Thermal Stability of KSrPO4:Tb3+ phosphors Prepared by microwave assisted sintering, Opt. Mater. (In Press)
    [33] A. K. Gulnar, V. Sudarsan, R. K. Vatsa, C. Hubli, U. K. Gautam, A. Vinu, A. K. Tyagi, CePO4:Ln (Ln) Tb3+ and Dy3+) nanoleaves incorporated in silica sols, Crystal Growth & Design 9, 2451 (2009).
    [34] K. Gulnar, V. Sudarsan, R. K. Vatsa, T. Sakuntala, A. K. Tyagi, U. K. Gautam, A. Vinu, Nucleation sequence on the cation exchange process between Y0.95Eu0.05PO4 and CePO4 nanorods, Nanoscale 2, 2847 (2010).
    [35] C. C. Lin, Z. R. Xiao, G. Y. Guo, T. S. Chan, Versatile phosphate phosphors ABPO4 in white light-emitting diodes: Collocated characteristic analysis and theoretical calculations, J. Am. Chem. Soc. 132, 3020 (2010).
    [36] Y. Huang, W. Kai, Y. Cao, K. Jang, H. S. Lee, I. Kim, E. Cho, Spectroscopic and structural studies of Sm2+ doped orthophosphate KSrPO4 crystal, J. Appl. Phys. 103, 053501 (2008).
    [37] K. N. Shinde, S. J. Dhoble, A novel reddish-orange phosphor, NaLi2PO4:Eu3+, Lumin. 28, 93 (2013).
    [38] 陳彥銘,NaCaPO4: RE3+ ( RE = Eu, Sm )螢光粉之製備及其特性之研究,碩士論文,國立屏東科技大學,2012。
    [39] D. Jia, W. M. Yen, Enhanced VK3+ center afterglow in MgAl2O4 by doping with Ce3+, J. Lumin. 101, 115 (2003).
    [40] 洪佳瑋,近UV光激發的LiSrPO4螢光粉的製備與其封裝特性,碩士論文,崑山科技大學,2013。
    [41] 賴炫霖,以固態反應法製備LiBaPO4:Re3+ (Re3+:Pr3+,Ce3+)螢光粉之微結構與發光特性之研究,碩士論文,國立屏東科技大學,2013。
    Chapter 2
    [1] Skoog, Holler, Nieman, Principles of Instrumental analysis, fifth edition, Saunders college Publishing, 1992.
    [2] 陳皇宇,微波輔助燒結製備應用於白光LED之紅光及綠光螢光粉,博士論文,國立成功大學,2013。
    [3] M. N. Rahaman, Sintering technology, New York: Marcel Dekker, 1990.
    [4] 楊茹媛、彭昱銘、蘇炎坤,白光LED用之螢光粉材料之基本原理與技術發展,電子月刊,197期,第140-157頁,2011。
    [5] 洪佳瑋,近UV光激發的LiSrPO4螢光粉的製備與其封裝特性,碩士論文,崑山科技大學,2013。
    [6] J. A. DeLuca, An introduction to luminescence in inorganic solids, J. Chem. Educ. 57, 541 (1980).
    [7] Y. M. Peng, Y. K. Su, R. Y. Yang, Improving Thermal Stability of KSrPO4:Tb3+ phosphors Prepared by microwave assisted sintering, Opt. Mater. (In Press)
    Chapter 3
    [1] P. D. Ramash, D. Brandom, L. Schachter, Use of Partially Oxidized SiC Particle Bed for Microwave Sintering of Low Loss Ceramics, Mater. Sci. Eng. A 266, 211 (1999).
    [2] M. H. Weng, R. Y. Yang, Y. M. Peng, J. L. Chen, Yellowish green-emitting KSrPO4:Tb3+ phosphors with various doping concentrations prepared by using microwave assisted sintering, Ceram. Int. 38, 1319 (2012).
    [3] Y. J. Park, Y. J. Kim, Blue emission properties of Eu-doped CaAl2O4 phosphors synthesized by a flux method, Mater. Sci. Eng. B 146, 84 (2008).
    [4] W. Yuhu, W. Zhilong, Characterization of Y2O2S:Eu3+, Mg2+, Ti4+ Long-lasting phosphor synthesized by flux method, J. Rare Earths 24, 25 (2006).
    [5] Y. S. Tang, S. F. Hu, C. C. Lin, N. C. Bagkar, R. S. Liu, Thermally stable luminescence of KSrPO4: Eu phosphor for white light UV light-emitting diodes, Appl. Phys. Lett. 90, 151108 (2007).
    [6] C. C. Lin, Y. S. Tang, S. F.Hu, R. S. Liu, KBaPO4:Ln (Ln=Eu, Tb, Sm) phosphors for UV excitable white light-emitting diodes, J. Lumin. 129, 1682 (2009).
    Chapter 4
    [1] S. Tang, S. F. Hu, C. C Lin, N. C. Bagkar and R. S. Liu, Thermally stable luminescence of KSrPO4:Eu2+ phosphor for white light UV light-emitting diodes, Appl. Phys. Lett. 90, 151108 (2007).
    [2] C. C. Lin, R. S. Liu, Y. S. Tang, S. F. Hu, Full-Color and thermally stable KSrPO4:Ln (Ln = Eu, Tb, Sm) phosphors for white-Light-Emitting diodes, J. Electrochem. Soc. 155, J248 (2008).
    [3] C. C. Lin, Y. S. Tang, S. F.Hu, R. S. Liu, KBaPO4:Ln (Ln= Eu, Tb, Sm) phosphors for UV excitable white light-emitting diodes, J. Lumin. 129, 1682 (2009).
    [4] F. Zhang, Y. Wang, J. Liu, Vacuum ultraviolet spectroscopic properties of KSrPO4:Tb3+, J. Alloys Compd. 509, 3852 (2011).
    [5] J. Dhanaraj, R. Jagannathan, T. G. N. Kutty, C. H. Lu, Photoluminescence characteristics of Y2O3:Eu3+ nanophosphors prepared using sol-gel thermolysis, J. Phys. Chem. B 105, 11098 (2001).
    [6] Y. F. Liu, X. O. Liu, G. Y. Meng, A novel route of synthesizing La1-xSrxCoO3 by microwave irradiation, Mater. Lett. 48, 176 (2001).
    [7] L. Zhang, X. Zhou, H. Zeng, H. Zeng, X. Dong, White-light long-lasting phosphor Sr2SiO4:Pr3+, Mater. Lett. 62, 2539 (2008).
    [8] E. Sirres, D. D. Rego, Microwave applications in materials joining, J. Mater. Pro. Tech. 48, 619 (1995).
    [9] K. Uematsu, K. Toda, M. Sato, Preparation of YVO4:Eu3+ phosphor using microwave heating method, J. Alloys Compd. 389, 209 (2005).
    [10] R. Y. Yang, H. Y. Chen, C. M. Hsiung, S. J. Chang, Crystalline morphology and photoluminescent properties of YInGe2O7:Eu3+ phosphors prepared from microwave and conventional sintering, Ceram. Int. 37, 749 (2011).
    [11] I. Ishak, A. Daud, Rare Earth doped Y2O3:RE3+ (RE= Eu, Tm and Tb) powder phosphors prepared by microwave heating technique, Mater. Sci. Forum. 517, 227 (2006).
    [12] C. L. Lo, J. G. Duha, B. S. Chiou, C. C. Peng, L. Ozawa, Synthesis of Eu3+-activated yttrium oxysulfide red phosphor by flux fusion method, Mater. Chem. Phys. 71, 179 (2001).
    [13] C. C. Lin, Z. R. Xiao, G. Y. Guo, T. S. Chan, R. S. Liu, Versatile phosphate phosphors ABPO4 in white light-emitting diodes: Collocated characteristic analysis and theoretical calculations, J. Am. Chem. Soc. 132, 3020 (2010).
    [14] .S. H. M. Poort, A. Meyerink, G. Blasse, Lifetime measurements in Eu2+-doped host lattices, J. Phys. Chem. Solids 58, 1451 (1997).
    [15] F. Wang, H. Song, G. Pan, L. Fan, B. Dong, L. Liu, X. Bai, R. Qin, X. Ren, Z. Zheng, S. Lu, Luminescence properties of Ce3+and Tb3+ ions codoped strontium borate phosphate phosphors, J. Lumin. 128, 2013 (2008).
    [16] C. H. Park, S. J. Park, B. Y. Yu, H. S. Bae, C. H. Kim, C. H. Pyum, VUV excitation of Y3Al5O12:Tb phosphor prepared by a sol-gel process, J. Mater. Sci. Lett. 19, 335 (2000) .
    [17] M. H. Weng, R. Y. Yang, Y. M. Peng, J. L. Chen, Yellowish green-emitting KSrPO4:Tb3+ phosphors with various doping concentrations prepared by using microwave assisted sintering, Ceram. Int. 38, 1319 (2012).
    [18] S. Zhang, X. Wu, Y. Huang, Photoluminescence and Thermal Stability of Eu2+-activated LiCaPO4 Phosphors for white light-emitting diodes, Int. J. Appl. Ceram. Technol. 8, 734 (2011).
    [19] A. Birkel, L. E. Darago, A. Morrison, L. Lory, N.C. George, A.A. Mikhailovsky, C.S. Birkel and R. Seshadri, Microwave assisted preparation of Eu2+-doped Åkermanite Ca2MgSi2O7, Solid-State Sci. 14, 739 (2012).
    [20] S. Zhang, Y. Nakai, T. Tsuboi, Y. Huang, H. J. Seo, Luminescence and microstructural features of Eu-activated LiBaPO4 phosphor, Chem. Mater. 23, 1216 (2011).
    [21] Z. Y. Feng, W. D. Zhuang, X. W. Huang, X. F. Wen, Y. S. Hu, Effect of MgF2-H3BO3 flux on the properties of (Ce,Tb)MgAl11O19 phosphor, J. Rare Earths 28, 351 (2010) .
    [22] S. Zhang, W. Zhuang, C. Zhao, Influence of flux on properties of Y3Al50Al12:Ce phosphor, J. Chin. Rare Earth Soc. 20, 605 (2002).
    [23] L. Ma, J. Hu, G. Wan, Effect of flux on YAG: Ce phosphors prepared by solid-state reactions, Chin. J. Lumin. 27, 348 (2006).
    [24] F. Duault, M. Junker, P. Grosseau, B. Guilhot, P. Iacconi, B. Moine, Effect of different fluxes on the morphology of the LaPO4:Ce, Tb phosphor, Powder Technol. 154, 132 (2005).
    [25] F. Bondioli, A. B. Corradi, T. Manfredini, Nonconventional synthesis of praseodymium-doped ceria by flux method, Chem. Mater. 12, 324 (2002).
    [26] H. Jiao, X. Gao, F. Wang, A. Wu, T. Han, J. Alloy. Compd. 493, 427 (2010).
    [27] Y. C. Kang, H. D. Park, S. B. Park, Self-assembled Y2SiO5 superstructures: A high temperature method with mixed flux, Jpn. J. Appl. Phys. 39, L1305 (2000).
    [28] L. Ozawa, Preparation of Y2O2S: Eu phosphor particles of different sizes by a flux method, J. Electrochem. Soc. 124, 413 (1977).
    [29] B. K. Park, S. S. Lee, J. K. Kang, S. H. Byeon, Single-step solid-state synthesis of CeMgAl11O19:Tb phosphor, Bull. Korean Chem. Soc. 28, 1467 (2007).
    [30] S. H. Lee, H. Y. Koo, D. S. Jung, J. M. Han, Y. C. Kang, Effects of BaF2 flux on the properties of yellow-light-emitting terbium aluminum garnet phosphor powders prepared by spray pyrolysis, Optic. Mater. 31, 870 (2009).
    [31] Y. Y. Ma, F. Xiao, S. Ye, Q. Y. Zhang, Effects of Ce3+ and NH4Cl on Structural and Luminescent Properties of Y2Si3O3N4:Ce Phosphors, J. Electrochem. Soc. 159, J39 (2012).
    [32] H. Y. Chen, R. Y. Yang , S. J. Chang, Y. K. Yang, Microstructure and photoluminescent properties of Sr2SiO4:Eu3+ phosphors with various NH4Cl flux concentrations, Mater. Res. Bull. 47, 1412 (2012).
    [33] T. L. Barry, Fluorescence of Eu2+‐activated phases in binary alkaline earth orthosilicate systems, J. Electrochem. Soc. 115, 1181(1968).
    [34] T. L. Barry, Equilibria and Eu2+ luminescence of subsolidus phases bounded by Ba3MgSi2O8, Sr3MgSi2O8, and Ca3MgSi2 O 8, J. Electrochem. Soc. 115, 733 (1968).
    [35] H. S. Kang, Y. C. Kang, K. Y. Jung, S. B. Park, Eu-doped barium strontium silicate phosphor particles prepared from spray solution containing NH4Cl flux by spray pyrolysis, Mater. Sci. Eng., B 121, 81 (2005).
    [36] Z. Yang, G. Yang, S. Wang, J. Tian, X. Li, Q. Guo, G. Fu, A novel green-emitting phosphor NaCaPO4:Eu2+ for white LEDs, Mater. Lett. 62, 1884 (2008).
    [37] K. N. Shinde, S. J. Dhoble, A. Kumar, Combustion synthesis of Ce3+, Eu3+ and Dy3+ activated NaCaPO4 phosphor, J. rare earths 29, 527 (2009).
    [38] E. V. Zubar, B. I. Zadneprovskii, N. P. Efryushina, V. P. Dotsenko, Synthesis and luminescence examination of β-NaCaPO4:Eu2+, phosphor promising for white light-emitting diode applications, Russ. J. Appl. Chem. 84, 1483 (2011).
    [39] J. H. Lee, Y. J. Kim, A correlation between a phase transition and luminescent properties of Sr2SiO4: Eu2+ prepared by a flux method, J. Ceram. Process Res. 10, 81 (2009).
    [40] J. Y. Park, H. C. Jung, G. S. R. Raju, B. K. Moon, J. H. Jeong, S. M. Son, J. H. Kim, Sintering temperature effect on structural and luminescence properties of 10 mol% Y substituted Gd3Al5O12:Ce phosphors, Opt. Mater. 32, 293 (2009).
    [41] Y. J. Hsiao, Y. L. Chai, L. W. Ji, T. H. Fang, T. H. Meen, J. K. Tsai, K. L. Chen, S. D. Prior, Optical characteristics of LiZnVO4 green phosphor at low temperature preparation, Mater. Lett. 70, 163 (2012).
    [42] X. Zhang, A. Marathe, S. Sohal, M. Holtz, M. Davis, L. J. Hope-Weeks, J. Chaudhuri, Synthesis and photoluminescence properties of hierarchical architectures of YBO3:Eu3+, J. Mater. Chem. 22, 6485 (2012).
    [43] D. Tu, Y. Liang, R. Liu, Z. Cheng, F. Yang, W. Yang, Photoluminescent properties of LiSrxBa1-xPO4: RE3+ (RE= Sm3+, Eu3+) f-f transition phosphors, J. Alloys Compd. 509, 5596 (2011).
    [44] S. Das, A. A. Reddy, S. Ahmad, R. Nagarajan, G. V. Prakash, Synthesis and optical characterization of strong red light emitting KLaF4:Eu3+ nanophosphors, Chem. Phys. Lett. 508, 117 (2011).
    [45] Y. Zhu, N. Narendran, Optimizing the performance of remote phosphor LEDs, J. Light &Vis. Env. 32, 115 (2008).
    [46] S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, Q. Y. Zhang, Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties, Mater. Sci. Eng. R 71, 1 (2010).
    [47] P. Dai, X. Zhang, M. Zhou, X. Li, J. Yang, P. Sun, C. Xu, Y. Liu, Thermally Stable Pyrochlore Y2Ti2O7: Eu3+ Orange-Red Emitting Phosphors, J. Am. Ceram. Soc. 95, 658 (2012).
    [48] G. S. R. Raju, H. C. Jung, J. Y. Park, B. K. Moon, R. Balakrishnaiah, J. H. Jeong, J. H. Kim, The influence of sintering temperature on the photoluminescence properties of oxyapatite Eu3+:Ca2Gd8Si6O26 nanophosphors, Sens. Actuators, B 146, 395 (2010).
    [49] G. Pucker, K. Gatterer, H.P. Fritzer, M. Bettinelli, M. Ferrari, Optical investigation of Eu3+ in a sodium borosilicate glass: Evidence for two different site distributions, Phys. Rev. B 53, 6225 (1996).
    [50] B. Yan, X.Q. Su, In situ chemical coprecipitation composition of hybrid precursors to synthesize YPxV1-xO4:Eu3+ micron crystalline phosphors, Mater. Sci. Eng. B 116, 196 (2005).
    [51] Y. K. Su, Y. M. Peng, R. Y. Yang, J. L. Chen, Effects of NaCl flux on microstructure and luminescent characteristics of KSrPO4:Eu2+ phosphors, Opt. Mater. 34, 1598 (2012).
    [52] 陳皇宇,微波輔助燒結製備應用於白光LED之紅光及綠光螢光粉,博士論文,國立成功大學,2013。
    [53] H. Y. Chen, R. Y. Yang, S. J. Chang, Improving crystalline morphology and photoluminescent properties of BaY2ZnO5:Eu3+ phosphors prepared using microwave assisted sintering, Mater. Lett. 64, 2548 (2010).
    [54] H. Y. Chen, M. H. Weng, S. J. Chang, R. Y. Yang, Preparation of Sr2SiO4:Eu3+ phosphors by microwave-assisted sintering and their luminescent properties, Ceramics Int. 38, 125 (2011).
    [55] J. Sun, X. Zhang, Z. Xia, H. Du, Luminescent properties of LiBaPO4:RE (RE = Eu2+, Tb3+, Sm3+) phosphors for white light-emitting diodes, J. appl. physics 111, 013101 (2012).
    [56] D. Jia, W. M. Yen, Enhanced Vk3+ center afterglow in MgAl2O4 by doping with Ce3+, J. Lumin. 101, 115 (2003).
    [57] A. Nag, T. G. N. Kutty, The light induce valence change of europium in Sr2SiO4:Eu involving transient crystal structure, J. Mater. Chem. 14, 1598 (2004).
    [58] E. D. Bacce, A. M. Pires, M. R. Davolos, Influence of Zn2+ co-doping ion on Eu3+–O2− associate luminescence in Sr2SiO4, J. Alloys Compd. 344, 312 (2002).
    [59] R. Y. Yang , M. H. Weng, H. Y. Chen, C. M. Hsiung, S. H. Chen, The influence of Eu3+ doping on photoluminescent properties of red emitting phosphor YInGe2O7:Eu3+ by microwave assisted and conventional sintering method, J. Lumin. 132, 478 (2012).
    [60] N. Hirosaki, R. J. Xie, K. Kimoto, T. Sekiguchi, Y. Yamamoto, T. Suehiro, M. Mitomo, Characterization and properties of green-emitting β-SiAlON:Eu2+ powder phosphors for white light-emitting diodes , Appl. Phys. Lett. 86, 211905 (2005).
    [61] Z. C. Wu, J. X. Shi, J. Wang, M. L. Gong, Q. Su, A novel blue-emitting phosphor LiSrPO4:Eu2+ for white LEDs, J. Solid State Chem. 179, 2356 (2006).
    [62] S. Zhang, Y. Huang, H. J. Seo, Luminescence properties and structure of Eu2+ doped KMgPO4 phosphor, Opt. Mater. 32, 1545 (2010).
    [63] J. H. Cha, K. H. Kim, Y. S. Park, S. J. Park, H. W. Choi, Photoluminescence characteristics of nanocrystalline ZnGa2O4 phosphors obtained at different sintering temperatures, Mol. Cryst. Liq. Cryst. 499, 85 (2009).
    [64] Y. Huang, W. Kai, Y. Cao, K. Jang, H. S. Lee, I. Kim, E. Cho, Spectroscopic and structural studies of Sm2+ doped orthophosphate KSrPO4 crystal, J. Appl. Phys. 103, 053501 (2008).
    [65] I. Omkaram, B. Vengala Rao, S. Buddhudu, Photoluminescence properties of Eu3+:MgAl2O4 powder phosphor, J. Alloys. Compd. 474, 565 (2009).
    [66] L. Zhou, J. Huang, L.Yi, M. Gong, Luminescent properties of Ba3Gd(BO3)3:Eu3+ phosphor for white LED applications, J. rare earths 27, 57 (2009).
    [67] H. Jing, C. Guo, N. Zhang, Z. Ren, J. Bai, Effects of Eu3+ Sites on Photoluminescence in Ba2Ln(BO3)2Cl (Ln= Gd, Y) Hosts, ECS J. Solid State Sci. & Tech. 2, R1 (2013).
    [68] K. N. Shinde, V. B. Pawade, S. J. Dhoble, P. W. Yawalkar, Orange emission in Eu3+-activated Mg2M (PO4)2(M=Sr and KNa) and KSrPO4 phosphors, Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry 41, 524 (2011).
    [69] B. F. dos Santos Jr, M. V. dos Santos Rezende, P. J. R. Montes, R. M. Araujo, M. A.C. dos Santos, M. E. G. Valerio, Spectroscopy study of SrAl2O4:Eu3+, J. Lumin. 132, 1015 (2012).
    [70] S. Zhang, Y. Nakai, T. Tsuboi, Y. Huang, H. J. Seo, The thermal stabilities of luminescence and microstructures of Eu2+-doped KBaPO4 and NaSrPO4 with β-K2SO4 type structure, Inorganic Chem. 50, 2897 (2011).
    [71] W. R. Liu, Y. C. Chiu, C. Y. Tung, Y. T. Yeh, S. M. Jang, T. M. Chen, A Study on the luminescence properties of CaAlBO4:RE3+ (RE= Ce, Tb, and Eu) phosphors, J. Electrochem. Soc. 155, J252 (2008).
    [72] N. Yaiphaba, R. S. Ningthoujam, N. Shanta Singh, R. K. Vatsa, N. Rajmuhon Singh, Sangita Dhara, N. L. Misra, R. Tewari, Luminescence, lifetime, and quantum yield studies of redispersible Eu3+-doped GdPO4 crystalline nanoneedles: Core-shell and concentration Effects, J. Appl. Phys. 107, 034301 (2010).
    [73] S. H. M. Poort, W. Janssen, G. Blasse, Optical properties of Eu2+-activated orthosilicates and orthophosphates, J. Alloys Compd. 260, 93 (1997).
    [74] H. S. Peng, H. W. Song, B. J. Chen, J. W. Wang, S. Z. Lu, X. G. Kong, Temperature dependence of luminescent spectra and dynamics in nanocrystalline Y2O3:Eu3+, J. Chem. Phys. 118, 3282 (2003).
    [75] 賴炫霖,以固態反應法製備LiBaPO4:Re3+ (Re3+:Pr3+,Ce3+)螢光粉之微結構與發光特性之研究,碩士論文,國立屏東科技大學,2013。
    [76] Z. Wu, J. Liu, Q. Guo, M. Gong, A Novel Blue-green-emitting Phosphor LiBaPO4: Eu2+ for White Light-emitting Diodes, Chem. Lett. 37, 190 (2008).
    [77] W. J. Park, M. K. Jung, T. Masaki, S.J. Im, D.H. Yoon, Characterization of YVO4:Eu3+, Sm3+ red phosphor quick synthesized by microwave rapid heating method, Mater. Sci. Eng., B 146, 95 (2008).
    [78] L. Yang, X. Yu, S. Yang, C. Zhou, P. Zhou, W. Gao, P. Ye, Preparation and luminescence properties of LED conversion novel phosphors SrZnO2:Sm, Mater. Lett. 62, 907 (2008).
    [79] Z. Wu, J. Liu, Q. Guo, M. Gong, Thermally stable luminescence of SrMg2(PO4)2: Eu2+ phosphor for white light NUV light-emitting diodes, Chem. Phys. Lett. 466, 88 (2008).
    [80] V. Pankratov, A. I. Popov, A. Kotlov, C. Feldmann, Luminescence of nano and macrosized LaPO4:Ce,Tb excited by synchrotron radiation, Opt. Mater. 33, 1102 (2011).
    [81] S. D. Cheng, C. H. Kam, S. Buddhudu, Enhancement of green emission from Tb3+:GdOBr phosphors with Ce3+ ion co-doping, Mater. Res. Bull. 36, 1131 (2001).
    [82] D. Jia, J. Zhu, B. Wu, S. E, Luminescence and energy transfer in CaAl4O7 : Tb3+, Ce3+, J. Lumin. 93, 107 (2001).
    [83] K. Y. Jung, H. W. Lee, Enhanced luminescent properties of Y3Al5O12:Tb3+,Ce3+ phosphor prepared by spray pyrolysis, J. Lumin. 126, 469 (2007).
    [84] G. Blasse, Energy transfer between inequivalent Eu2+ ions, J. Solid State Chem. 62, 207 (1986).
    [85] D. L. Dexter, A theory of sensitized luminescence in solids, J. Chem. Phys. 21, 836 (1953).
    [86] N. Guo, Y. Song, H. You, G. Jia, M. Yang, K. Liu, Y. Zheng, Y. Huang, H. Zhang, Optical properties and energy transfer of NaCaPO4:Ce3+, Tb3+ phosphors for potential application in light‐emitting diodes, Eur. J. Inorg. Chem. 2010, 4636 (2010).
    [87] G. Zhu, Y. Wang, Z. Ci, B. Liu, Y. Shi, S. Xin, Ca8Mg(SiO4)4Cl2:Ce3+, Tb3+: A potential single-phased phosphor for white-light-emitting diodes, J. Lumin. 132, 531 (2012).

    下載圖示 校內:2019-04-17公開
    校外:2019-04-17公開
    QR CODE