| 研究生: |
古曼寧 Asri, Aji Kusumaning |
|---|---|
| 論文名稱: |
為何選擇居住於綠地附近?
透過空間分析、統計方法與機器學習探討其背後意涵 Why Live Near Green Spaces? Exploring Insights Through Spatial, Statistical, and Machine Learning Approaches |
| 指導教授: |
吳治達
Wu, Chih-Da |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 測量及空間資訊學系 Department of Geomatics |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 156 |
| 中文關鍵詞: | 氣喘兒童 、環境流行病學 、環境建模 、綠地空間 、人體微生物群 、機器學習 、芬多精 、空間導向方法 |
| 外文關鍵詞: | asthmatic children, environmental epidemiology, environmental modelling, green space, human microbiota, machine-learning, phytoncides, spatial-based approach |
| ORCID: | https://orcid.org/0000-0001-5421-263X |
| ResearchGate: | Aji Kusumaning Asri |
| 相關次數: | 點閱:16 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
綠地日益被視為關鍵的環境要素,能提升生態品質並促進人類健康,新興證據指出,接觸綠度可能減緩空氣與噪音污染、促進身體活動,並降低身心疾病風險,另有研究顯示,綠度可能透過複雜的生物與行為途徑,調節神經與免疫功能。
儘管綠地對健康的益處已有相當證據,仍存在重要的科學缺口。本文界定了兩個關鍵面向,以推進對綠地潛在健康支持作用的理解,其一,從環境流行病學的觀點,已有大量研究連結綠度暴露與身心健康結局的改善;然而,綠度對人體微生物群叢(microbiota)之潛在影響,人體微生物群叢為免疫功能、代謝過程與疾病易感性的關鍵調節者,然受到的關注相對有限,進一步而言,針對微生物群叢對綠度暴露的反應之研究,特別是在氣喘兒童等脆弱族群中,仍屬不足。
其二,從環境暴露評估的觀點,多數環境流行病學研究仰賴衛星衍生的植生指數量化綠度,該指數主要反映植被密度。此方法雖有助於評估整體綠覆,但可能無法涵蓋綠地其他具生物學意義的面向,尤其是植物所釋放、被認為可能具健康促進效果的芬多精(生物源揮發性有機化合物,biogenic volatile organic compounds, BVOCs)。不同於廣泛可得且標準化的植生指數,開放環境中芬多精濃度的資料仍極為有限。此外,現行暴露模式在空間解析度與方法學嚴謹性上常有不足,難以於複雜自然地景中準確估計此類化合物的分布與變異。
整體而言,這些缺口凸顯出一個整合式研究架構之必要:一方面釐清綠度與人體微生物群叢之間的潛在連結,另一方面發展更完善的方法以估算開放環境中的芬多精濃度。為回應此跨域課題,本文採取雙軌架構:(1)以環境流行病學方法檢驗周遭綠度與氣喘兒童微生物群叢組成之關聯(A部分);(2)以環境建模方法估算並空間化開放環境、森林地景中的環境芬多精濃度(B部分)。此架構旨在從微生物學與生物源化合物暴露兩條途徑,較為全面地理解綠地對健康的貢獻。
在第一個架構(A部分)中,本研究採用環境流行病學方法,探討以衛星植生指數量化之個人居住綠度與氣喘兒童微生物群叢(鼻腔與腸道)組成的統計關聯 (IRB Number: A-BR106-069)。分析結果顯示,較高的綠度暴露與鼻腔及腸道微生物α多樣性增加呈顯著正相關。具體而言,1個月延遲的綠度平均值與鼻腔微生物多樣性呈正相關,包括觀測菌數(係數= 6.212;95% 信賴區間:2.059–10.370)與菌豐富度(係數= 8.764;95% 信賴區間:1.094–16.430)。腸道微生物多樣性亦呈現類似趨勢,包括觀測菌數(係數=8.311;95% 信賴區間:1.530–16.090)與菌豐富度(係數=15.414;95% 信賴區間:0.265–30.560)。此外,居住地 250 m 緩衝區內的綠度與鼻腔中潛在致病菌屬(如Streptococcus)之相對豐度呈負相關;1 km 緩衝區內的綠度則與更有利的腸道微生物組成相關,包括有益菌屬Bifidobacterium的相對豐度較高。
在第二個架構(B部分)中,本研究發展地理空間機器學習方法,以估算森林環境中環境芬多精的空間分布,並產製高解析度暴露地圖,以補強傳統監測技術在空間細節上的限制。於所測試的模型中,隨機森林(Random Forest, RF)、極限梯度提升(Extreme Gradient Boosting, XGB)與梯度提升(Gradient Boosting, GB)在camphene、α-pinene與α-thujene的預測表現較佳,其R²分別為0.833 (RMSE = 0.046 ppb)、0.984 (RMSE = 0.0001 ppb)與0.789 (RMSE = 0.0001 ppb)。芬多精的空間變異主要受植被組成與密度、局部微氣候與地形特徵影響。模型可解釋性分析進一步指出,優勢樹種與氣象變數為關鍵預測因子。
綜合而言,以上結果從微生物與化學性暴露兩個層面,為綠地的健康支持作用提供互補證據。本研究強調結合環境建模與族群健康研究的重要性,並為後續旨在支援循證都市設計與公共衛生策略的研究提供方法學基礎。
Green spaces are increasingly recognized as critical environmental features that contribute to enhanced ecological quality and human health. Emerging evidence has shown that exposure to greenness may mitigate air and noise pollution, encourage physical activity, and reduce the risk of both physical and psychological disorders. Moreover, greenness has been implicated in modulating neural and immune functions through complex biological and behavioral pathways.
Despite the well-documented benefit effects of green spaces for human health, important scientific gaps remain. This study identified two key areas that advance understanding of the potential health-supportive roles of green space. First, from an environmental epidemiology perspective, numerous studies have linked greenness exposure to improved physical and psychological health outcomes. However, the potential role of greenness in influencing the human microbiota, an essential regulator of immune function, metabolic processes, and disease susceptibility, has received limited attention. Furthermore, investigations into microbiota responses to greenness exposure, particularly in vulnerable populations such as children with asthma, remain underexplored.
Second, from an environmental exposure assessment perspective, most environmental epidemiology studies have relied on satellite-derived vegetation indices to quantify greenness, primarily reflecting vegetation density. While this method is valuable for assessing general green coverage, it may fail to capture other biologically meaningful dimensions of green space, particularly the emission of phytoncides, or biogenic volatile organic compounds (BVOCs), which are emitted by vegetation and are known for their potential health-promoting effects. Unlike vegetation indices, which are widely available and standardized, data on ambient phytoncide concentrations in open environments remain limit. Moreover, current exposure models often lack the spatial resolution and methodological rigor needed to accurately estimate the distribution and variability of these compounds across complex natural landscapes.
Together, these gaps underscore the need for an integrated research framework that can elucidate the potential links between greenness and the human microbiota, while also developing improved methods to estimate ambient phytoncide levels in open environments. To deal with these interdisciplinary challenges, this pilot study adopted a dual-framework approach: (1) an environmental epidemiological approach to examine associations between surrounding greenness and microbiota composition in pediatric asthma patients (Part A); and (2) an environmental modeling approach to estimate and spatially map ambient phytoncide concentrations in open environment, forested landscapes (Part B). This framework was designed to serve a more comprehensive knowledge of how green area contributes to health via both microbiological and exposure to biogenic compounds.
In the first framework (Part A), applied an environmental epidemiological approach to explore statistical associations between personalized residential greenness, measured using satellite-derived vegetation indices, and the microbiota composition of children with asthma, a population particularly vulnerable to environmental exposures (IRB Number: A-BR106-069). The analysis revealed that higher levels of greenness exposure were significantly associated with increased microbial α-diversity in both nasal and gut microbiota. Specifically, the 1-month lagged average of greenness was positively associated with nasal microbiota diversity, including observed bacterial counts (coefficient = 6.212; 95% CI: 2.059–10.370) and bacterial richness (coefficient = 8.764; 95% CI: 1.094–16.430). Similarly, positive associations were observed for gut microbiota diversity, including observed bacteria (coefficient = 8.311; 95% CI: 1.530–16.090) and bacterial richness (coefficient = 15.414; 95% CI: 0.265–30.560). In addition, residential greenness within a 250 m buffer was inversely associated with the relative abundance of potentially pathogenic nasal genera such as Streptococcus. Greenness within a 1 km buffer was also linked to more favorable gut microbiota profiles, including an increased abundance of Bifidobacterium, a genus widely recognized for its beneficial effects on gut health.
In the second framework (Part B), a geospatial machine learning approach was developed to estimate the spatial distribution of ambient forest phytoncides. High-resolution exposure maps were generated to address limitations in conventional monitoring techniques, providing spatially detailed estimates of phytoncide concentrations. Among the tested models, Random Forest (RF), Extreme Gradient Boosting (XGB), and Gradient Boosting (GB) demonstrated superior predictive performance for estimating camphene, α-pinene, and α-thujene, with R² values of 0.833 (RMSE = 0.046 ppb), 0.984 (RMSE = 0.0001 ppb), and 0.789 (RMSE = 0.0001 ppb), respectively. Spatial variability in phytoncides was primarily influenced by vegetation composition and density, local microclimate, and topographic features. Model interpretability was further enhanced through explainable artificial intelligence tools, which identified dominant tree species and meteorological variables as key predictors.
Together, these results serve complementary insights into the health-supportive roles of green spaces, emphasizing the relevance of both microbiome and chemically exposure processes. This work underscores the importance of integrating environmental modeling with population-based health research and offers a foundation for future studies aimed at informing evidence-based urban design and public health strategies.
Abedin, M. Z., Moon, M. H., Hassan, M. K., & Hajek, P. (2021). Deep learning-based exchange rate prediction during the COVID-19 pandemic. Annals Opr. Research, 1–52.
Ahn, J. W., Dinh, T. V., Park, S. Y., Choi, I. Y., Park, C. R., & Son, Y. S. (2022). Characteristics of biogenic volatile organic compounds emitted from major species of street trees and urban forests. Atmospheric Pollution Research, 13(7), 101470.
Akay, H.K., Tokman, H.B., Hatipoglu, N., Hatipoglu, H., Siraneci, R., Demirci, M., Kocazeybek, B.S., 2014. The relationship between bifidobacteria and allergic asthma and/or allergic dermatitis: a prospective study of 0–3 years-old children in Turkey. Anaerobe 28, 98–103.
Allenspach, M., & Steuer, C. (2021). α-Pinene: A never-ending story. Phytochemistry, 190, 112857.
Alomari, Y., & Andó, M. (2024). SHAP-based insights for aerospace PHM: Temporal feature importance, dependencies, robustness, and interaction analysis. Results in Engineering, 21, 101834.
Antonelli, M., Donelli, D., Barbieri, G., Valussi, M., Maggini, V., & Firenzuoli, F. (2020). Forest Volatile Organic Compounds and Their Effects on Human Health: A State-of-the-Art Review. International Journal of Environmental Research and Public Health, 17(18), 1–36.
Appleton, J. (1996). The Experience of Landscape. Wiley. https://books.google.com.tw/books?id=eA9nQgAACAAJ
Asri, A.K., Lee, H.Y., Pan, W.C., Tsai, H.J., Chang, H.T., Lung, S.C.C., et al. (2021). Is green space exposure beneficial in a developing country? Landscape and Urban Planning 215, 104226.
Asri, A. K., Lee, H. Y., Chen, Y. L., Wong, P. Y., Hsu, C. Y., Chen, P. C., Lung, S. C. C., Chen, Y. C., & Wu, C. D (2024a). A machine learning-based ensemble model for estimating diurnal variations of nitrogen oxide concentrations in Taiwan. Science of The Total Environment, 916, 170209.
Asri, A. K., Newman, G. D., Tao, Z., Zhu, R., Chen, H.-L., Lung, S.-C. C., & Wu, C.-D. (2024b). What is the spatiotemporal pattern of benzene concentration spread over susceptible area surrounding the Hartman Park community, Houston, Texas? Journal of Hazardous Materials, 134666.
Babaan, J., Hsu, F. T., Wong, P. Y., Chen, P. C., Guo, Y. L., Lung, S. C. C., Chen, Y. C., & Wu, C. D. (2023). A Geo-AI-based ensemble mixed spatial prediction model with fine spatial-temporal resolution for estimating daytime/nighttime/daily average ozone concentrations variations in Taiwan. Journal of Hazardous Materials, 446, 130749.
Bach, A., Yáñez-Serrano, A. M., Llusià, J., Filella, I., Maneja, R., & Penuelas, J. (2020). Human Breathable Air in a Mediterranean Forest: Characterization of Monoterpene Concentrations under the Canopy. International Journal of Environmental Research and Public Health 2020, 17(12), 4391.
Bao, X., Zhou, W., Xu, L., & Zheng, Z. (2023). A meta-analysis on plant volatile organic compound emissions of different plant species and responses to environmental stress. Environmental Pollution, 318, 120886.
Basner, M., Babisch, W., Davis, A., Brink, M., Clark, C., Janssen, S., & Stansfeld, S. (2014). Auditory and non-auditory effects of noise on health. The Lancet 383 ( 9925), 1325–1332.
Beelen, R., de Hoogh, K., Eeftens, M., Meliefste, K., Cirach, M., de Nazelle, A., Nieuwenhuijsen, M., Molter, A., Cyrys, J., Birk, M., Bellander, T., Sugiri, D., Tsai, M.-Y., Ineichen, A., Madsen, C., Gryparis, A., Modig, L., Mosler, G., Vienneau, D., & Hoek, G. (2011). Estimating Long-term Exposure to Air Pollution in 38 Study Areas in Europe in a Harmonized Way Using Land Use Regression Modelin. Epidemiology, 22, S82.
Belyadi, H., & Haghighat, A. (2021). Supervised learning. Machine Learning Guide for Oil and Gas Using Python, 169–295.
Berman, M. G., Kross, E., Krpan, K. M., Askren, M. K., Burson, A., Deldin, P. J., Kaplan, S., Sherdell, L., Gotlib, I. H., & Jonides, J. (2012). Interacting with nature improves cognition and affect for individuals with depression. Journal of Affective Disorders, 140(3), 300–305.
Bharathi, M., Sivamaruthi, B. S., Kesika, P., Thangaleela, S., & Chaiyasut, C. (2022). Phytoncides could potentially inhibit the spike protein of SARS‐CoV‐2 variants. Phytotherapy Research, 36(11), 4020–4023.
Bischl, B., Binder, M., Lang, M., Pielok, T., Richter, J., Coors, S., Thomas, J., Ullmann, T., Becker, M., Boulesteix, A. L., Deng, D., & Lindauer, M. (2021). Hyperparameter Optimization: Foundations, Algorithms, Best Practices and Open Challenges. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 13(2).
Bischl, B., Binder, M., Lang, M., Pielok, T., Richter, J., Coors, S., Thomas, J., Ullmann, T., Becker, M., Boulesteix, A. L., Deng, D., & Lindauer, M. (2023). Hyperparameter optimization: Foundations, algorithms, best practices, and open challenges. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 13(2), e1484.
Borsdorf, H., Bentele, M., Müller, M., Rebmann, C., & Mayer, T. (2023). Comparison of Seasonal and Diurnal Concentration Profiles of BVOCs in Coniferous and Deciduous Forests. Atmosphere, 14(9), 1347.
Bowler, D. E., Buyung-Ali, L. M., Knight, T. M., & Pullin, A. S. (2010). A systematic review of evidence for the added benefits to health of exposure to natural environments. BMC Public Health, 10.
Bratman, G. N., Hamilton, J. P., & Daily, G. C. (2012). The impacts of nature experience on human cognitive function and mental health. Annals of the New York Academy of Sciences, 1249(1), 118–136.
Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.
Cai, J., Ge, Y., Li, H., Yang, C., Liu, C., Meng, X., Wang, W., Niu, C., Kan, L., Schikowski, T., Yan, B., Chillrud, S. N., Kan, H., & Jin, L. (2020). Application of land use regression to assess exposure and identify potential sources in PM2.5, BC, NO2 concentrations. Atmospheric Environment (Oxford, England : 1994), 223.
Calfapietra, C., Fares, S., Manes, F., Morani, A., Sgrigna, G., & Loreto, F. (2013). Role of Biogenic Volatile Organic Compounds (BVOC) emitted by urban trees on ozone concentration in cities: A review. Environmental Pollution, 183, 71–80.
Camacho-Cervantes, M., Schondube, J. E., Castillo, A., & MacGregor-Fors, I. (2014). How do people perceive urban trees? Assessing likes and dislikes in relation to the trees of a city. Urban Ecosystems, 17(3), 761–773.
Cao, J., Situ, S., Hao, Y., Xie, S., & Li, L. (2022). Enhanced summertime ozone and SOA from biogenic volatile organic compound emissions due to vegetation biomass variability during 1981-2018 in China. Atmospheric Chemistry and Physics, 22(4), 2351–2364.
Chen, P. C., & Lin, Y. T. (2022). Exposure assessment of PM2.5 using smart spatial interpolation on regulatory air quality stations with clustering of densely-deployed microsensors. Environmental Pollution, 292, 118401.
Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 13-17-August-2016, 785–794.
Chen, Y., Jia, Z., Mercola, D., & Xie, X. (2013). A gradient boosting algorithm for survival analysis via direct optimization of concordance index. Computational and Mathematical Methods in Medicine, 2013.
Chen, Y. J., Lin, C. Y., Cheng, S. S., & Chang, S. T. (2011). Phylogenetic relationships of the genus chamaecyparis inferred from leaf essential oil. Chemistry & Biodiversity, 8(6), 1083–1097.
Chênes, C., Giuliani, G., & Ray, N. (2021). Modelling Physical Accessibility to Public Green Spaces in Switzerland to Support the SDG11. Geomatics, 1(4), 383–398.
Cheng C, Hung C, Chen C, Pei C. (2013). Biomass carbon accumulation in aging Japanese cedar plantations in Xitou, central Taiwan. Bot Stud. 54:60.
Choi, Y., Kim, G., Park, S., Kim, E., & Kim, S. (2021). Prediction of natural volatile organic compounds emitted by bamboo groves in urban forests. Forests, 12(5), 543.
Choi, Y., Park, S., Kim, S., Kim, E., & Kim, G. (2022). A Model Combining Forest Environment Images and Online Microclimate Data Instead of On-Site Measurements to Predict Phytoncide Emissions. Forests, 13(11), 1895.
Choi, Y., Kim, G., Kim, S., Cho, J. H., & Park, S. (2023). Real-Time Phytoncide Monitoring in Forests: A Comparative Study of SIFT-MS and Conventional GC-MS Methods. Forests. 14(11), 2184.
Churkina, G., Kuik, F., Bonn, B., Lauer, A., Grote, R., Tomiak, K., & Butler, T. M. (2017). Effect of VOC Emissions from Vegetation on Air Quality in Berlin during a Heatwave. Environmental Science and Technology, 51(11), 6120–6130.
Ciccioli, P., Silibello, C., Finardi, S., Pepe, N., Ciccioli, P., Rapparini, F., Neri, L., Fares, S., Brilli, F., Mircea, M., Magliulo, E., & Baraldi, R. (2023). The potential impact of biogenic volatile organic compounds (BVOCs) from terrestrial vegetation on a Mediterranean area using two different emission models. Agricultural and Forest Meteorology, 328.
Dadvand, P., Sunyer, J., Basagaña, X., Ballester, F., Lertxundi, A., Fernández-Somoano, A., Estarlich, M., García-Esteban, R., Mendez, M. A., & Nieuwenhuijsen, M. J. (2012). Surrounding greenness and pregnancy outcomes in four Spanish birth cohorts. Environmental Health Perspectives, 120(10), 1481–1487.
Dadvand, P., Ostro, B., Figueras, F., Foraster, M., Basagana, X., Valentin, A., Martinez, D., Beelen, R., Cirach, M., Hoek, G., Jerrett, M., Brunekreef, B., & Nieuwenhuijsen, M. J. (2014). Residential proximity to major roads and term low birth weight: the roles of air pollution, heat, noise, and road-adjacent trees. Epidemiology, 25(4), 518–525.
Dadvand, P., Nieuwenhuijsen, M. J., Esnaola, M., Forns, J., Basagaña, X., Alvarez-Pedrerol, M., Rivas, I., López-Vicente, M., de Pascual, M. C., Su, J., Jerrett, M., Querol, X., & Sunyer, J. (2015). Green spaces and cognitive development in primary schoolchildren. Proceedings of the National Academy of Sciences of the United States of America, 112(26), 7937–7942.
Dadvand, P., Bartoll, X., Basagaña, X., Dalmau-Bueno, A., Martinez, D., Ambros, A., Cirach, M., Triguero-Mas, M., Gascon, M., Borrell, C., & Nieuwenhuijsen, M. J. (2016). Green spaces and General Health: Roles of mental health status, social support, and physical activity. Environment International, 91, 161–167.
de Hoogh, K., Korek, M., Vienneau, D., Keuken, M., Kukkonen, J., Nieuwenhuijsen, M. J., Badaloni, C., Beelen, R., et., al. (2014). Comparing land use regression and dispersion modelling to assess residential exposure to ambient air pollution for epidemiological studies. Environment International, 73, 382–392.
Demirci, M., (2021). Dialister in microbiome of cancer patients: A systematic review and meta-analysis. Eurasian Journal of Medicine and Oncology, 5(3), 260–272.
Dempsey, S., Lyons, S., & Nolan, A. (2018). Urban green space and obesity in older adults: Evidence from Ireland. SSM - Population Health, 4, 206–215.
Donzelli, G., & Suarez-Varela, M. M. (2024). Tropospheric Ozone: A Critical Review of the Literature on Emissions, Exposure, and Health Effects. Atmosphere. 15(7), 779.
Durack, J., & Christophersen, C. T. (2020). Human Respiratory and Gut Microbiomes—Do They Really Contribute to Respiratory Health? Frontiers in Pediatrics, 8, 528.
Dzhambov, A. (2015). Long-term noise exposure and the risk for type 2 diabetes: A meta-analysis. Noise and Health, 17(74), 23.
Dzhambov, A. M., Markevych, I., & Lercher, P. (2018). Green space seems protective of both high and low blood pressure among residents of an Alpine valley. Environment International, 121(1), 443–452.
Edney, E. O., Kleindienst, T. E., Jaoui, M., Lewandowski, M., Offenberg, J. H., Wang, W., & Claeys, M. (2005). Formation of 2-methyl tetrols and 2-methylglyceric acid in secondary organic aerosol from laboratory irradiated isoprene/NOX/SO2/air mixtures and their detection in ambient PM2.5 samples collected in the eastern United States. Atmospheric Environment, 39(29), 5281–5289.
Eeftens, M., Meier, R., Schindler, C., Aguilera, I., Phuleria, H., Ineichen, A., Davey, M., Ducret-Stich, R., Keidel, D., Probst-Hensch, N., Künzli, N., & Tsai, M. Y. (2016). Development of land use regression models for nitrogen dioxide, ultrafine particles, lung deposited surface area, and four other markers of particulate matter pollution in the Swiss SAPALDIA regions. Environmental Health: A global access science source, 15(1), 1–14.
Elgamal, Z., Singh, P., & Geraghty, P. (2021). The Upper Airway Microbiota, Environmental Exposures, Inflammation, and Disease. Medicina, 57(8), 823.
Elshawi, R., & Sakr, S. (2020). Automated Machine Learning: Techniques and Frameworks. Lecture Notes in Business Information Processing, 390, 40–69
Fazlollahi, M., Lee, T. D., Andrade, J., Oguntuyo, K., Chun, Y., Grishina, G., Grishin, A., & Bunyavanich, S. (2018). The nasal microbiome in asthma. Journal of Allergy and Clinical Immunology, 142(3), 834-843.
Feldner, J., Ramacher, M. O. P., Karl, M., Quante, M., & Luttkus, M. L. (2022). Analysis of the effect of abiotic stressors on BVOC emissions from urban green infrastructure in northern Germany. Environmental Science: Atmospheres, 2(5), 1132–1151.
Felipe, J., Rodrigues, M. V. P., Ferreira, A. D., Fonseca, E. S., Ribeiro, G. G. D. S., & Arana, A. R. A. (2019). Physical activity and environment: The influence of urban green spaces on health. Revista Brasileira de Medicina Do Esporte, 25(4), 305–309.
Fitzky, A. C., Kaser, L., Peron, A., Karl, T., Graus, M., Tholen, D., Halbwirth, H., Trimmel, H., Pesendorfer, M., Rewald, B., & Sandén, H. (2023). Same, same, but different: Drought and salinity affect BVOC emission rate and alter blend composition of urban trees. Urban Forestry & Urban Greening, 80, 127842.
Flores-Holguín, N., Aguilar-Elguézabal, A., Rodríguez-Valdez, L. M., & Glossman-Mitnik, D. (2008). Theoretical study of chemical reactivity of the main species in the α-pinene isomerization reaction. Journal of Molecular Structure: THEOCHEM, 854(1–3), 81–88.
Fontes, M., Borges, A., de Sousa Lacerda, R., Pintor De Assis Correia, J., Rodrigues De Melo, T., & Ferreira, S. B. (2022). Potential Antibacterial Action of α-Pinene. 11.
Fox, E. W., Hill, R. A., Leibowitz, S. G., Olsen, A. R., Thornbrugh, D. J., & Weber, M. H. (2017). Assessing the accuracy and stability of variable selection methods for random forest modeling in ecology. Environmental Monitoring and Assessment, 189(7), 1–20.
Freitas, R. P., Claude, A., Maison, A., Leitao, L., Repellin, A., Nadam, P., ... & Leymarie, J. (2023, April). Drought effect on urban plane tree ecophysiology and its isoprene emissions. In EGU General Assembly 2023 (pp. EGU23-13401).
Fromm, E. (1973). The Anatomy of Human Destructiveness. Holt, Rinehart and Winston. https://books.google.com.tw/books?id=hw2NAAAAMAAJ
Fuentes, J. D., & Wang, D. (1999). On the seasonality of isoprene emissions from a mixed temperate forest. Ecological Applications, 9(4), 1118–1131.
Fuseini, H., & Newcomb, D. C. (2017). Mechanisms driving gender differences in asthma. Current Allergy and Asthma Reports, 17(3), 19.
Futagami, K., Fukazawa, Y., Kapoor, N., & Kito, T. (2021). Pairwise acquisition prediction with SHAP value interpretation. Journal of Finance and Data Science, 7, 22–44.
Gao, S. (2021). Geospatial Artificial Intelligence (GeoAI). Geography.
Gisler, A., Korten, I., de Hoogh, K., Vienneau, D., Frey, U., Decrue, F., Gorlanova, O., Soti, A., Hilty, M., Latzin, P., & Usemann, J. (2021). Associations of air pollution and greenness with the nasal microbiota of healthy infants: A longitudinal study. Environmental Research, 202, 111633.
Haahtela, T., Holgate, S., Pawankar, R., Akdis, C. A., Benjaponpitak, S., Caraballo, L., Demain, J., Portnoy, J., & von Hertzen, L. (2013). The biodiversity hypothesis and allergic disease: world allergy organization position statement. The World Allergy Organization Journal, 6(1), 3.
Haahtela, T. (2019). A biodiversity hypothesis. Allergy, 74(8), 1445–1456.
Haro, K., Ogawa, M., Saito, M., Kusuhara, K., & Fukuda, K. (2020). Bacterial composition of nasal discharge in children based on highly accurate 16S rRNA gene sequencing analysis. Scientific Reports, 10(1), 1–10.
Hao, W., Liang, B., Chen, J., Chen, Y., Wang, Z., Zhao, X., Peng, C., Tian, M., & Yang, F. (2024). Secondary formation of oxygenated and nitrated polycyclic aromatic compounds under stagnant weather conditions: Drivers and seasonal variation. Science of The Total Environment, 929, 172487.
Hou, J., Zhang, Y., Zhu, Y., Zhou, B., Ren, C., Liang, S., & Guo, Y. (2019). α-Pinene induces apoptotic cell death via caspase activation in human ovarian cancer cells. Medical Science Monitor, 25, 6631–6638.
Hachlafi, N. E. L., Aanniz, T., Menyiy, N. el, Baaboua, A. el, Omari, N. el, Balahbib, A., Shariati, M. A., Zengin, G., Fikri-Benbrahim, K., & Bouyahya, A. (2023). In Vitro and in Vivo Biological Investigations of Camphene and Its Mechanism Insights: A Review. Food Reviews International, 39(4), 1799–1826.
Hashemi, S. M. B., Gholamhosseinpour, A., & Barba, F. J. (2023). Rosmarinus officinalis L. Essential Oils Impact on the Microbiological and Oxidative Stability of Sarshir (Kaymak). Molecules, 28(10), 4206–4206.
Holtan, M. T., Dieterlen, S. L., & Sullivan, W. C. (2015). Social Life Under Cover. Environment and Behavior, 47(5), 502–525.
Hsieh, C.J., Yu, P.Y., Tai, C.J., Jan, R.H., Wen, T.H., Lin, S.W., et al., (2019). Association between the first occurrence of asthma and residential greenness in children and teenagers in Taiwan. International Journal of Environmental Research and Public Health, 16 (12).
Hsieh, I. F., Kume, T., Lin, M. Y., Cheng, C. H., & Miki, T. (2016). Characteristics of soil CO2 efflux under an invasive species, Moso bamboo, in forests of central Taiwan. Trees - Structure and Function, 30(5), 1749–1759.
Hsu, C. Y., Xie, H. X., Wong, P. Y., Chen, Y. C., Chen, P. C., & Wu, C. D. (2022). A mixed spatial prediction model in estimating spatiotemporal variations in benzene concentrations in Taiwan. Chemosphere, 301, 134758.
Hsu, C. Y., Lin, T. W., Babaan, J. B., Asri, A. K., Wong, P. Y., Chi, K. H., Ngo, T. H., Yang, Y. H., Pan, W. C., & Wu, C. D. (2023). Estimating the daily average concentration variations of PCDD/Fs in Taiwan using a novel Geo-AI based ensemble mixed spatial model. Journal of Hazardous Materials, 458, 131859.
Huang, G., Zhou, S., Liu, J., Su, S., & Yin, D. (2020). Highly-selective solvent-free catalytic isomerization of α-pinene to camphene over reusable titanate nanotubes. RSC Advances, 10(18), 10606–10611.
Hufnagl, K., Pali-Sch¨oll, I., Roth-Walter, F., Jensen-Jarolim, E., 2020. Dysbiosis of the gut and lung microbiome has a role in asthma. In Seminars in immunopathology. Springer Berlin Heidelberg. 42, 75-93.
James, P., Banay, R., Hart, J., & Laden, F. (2015). A Review of the Health Benefits of Greenness. Current Epidemiology Reports, 2.
Jaung, W., Carrasco, L. R., Shaikh, S. F. E. A., Tan, P. Y., & Richards, D. R. (2020). Temperature and air pollution reductions by urban green spaces are highly valued in a tropical city-state. Urban Forestry & Urban Greening, 55, 126827.
Jennings, V., & Bamkole, O. (2019). The relationship between social cohesion and urban green space: An avenue for health promotion. International Journal of Environmental Research and Public Health, 16(3).
Ji, Y., Helldin, T., & Steinhauer, H. J. (2021). Explainable AI methods for credit card fraud detection : Evaluation of LIME and SHAP through a User Study.
Jia, P., Cao, X., Yang, H., Dai, S., He, P., Huang, G., Wu, T., & Wang, Y. (2020). Green space access in the neighbourhood and childhood obesity. Obesity Reviews, obr.13100.
Jimenez, R.B., Lane, K.J., Hutyra, L.R., Fabian, M.P., 2022. Spatial resolution of normalized difference vegetation index and greenness exposure misclassification in an urban cohort. J. Expo. Sci. Environ. Epidemiol. 32, 213–222.
Jo, H., Cha, B., Kim, H., Brito, S., Kwak, B. M., Kim, S. T., Bin, B. H., & Lee, M. G. (2021). α-Pinene Enhances the Anticancer Activity of Natural Killer Cells via ERK/AKT Pathway. International Journal of Molecular Sciences, 22(2), 656.
Jon, G. (2014). Sex-specific development of asthma differs between farm and nonfarm children: a cohort study. American Journal of Respiratory and Critical Care Medicine, 190(5), 588–590.
Kaplan, R., & Kaplan, S. (1989). The experience of nature: A psychological perspective. In The experience of nature: A psychological perspective. Cambridge University Press.
Kaplan, S. (1995). The restorative benefits of nature: Toward an integrative framework. Journal of Environmental Psychology, 15(3), 169–182.
Kellert, S. R., Wilson, E. O., McVay, S., Katcher, A., McCarthy, C., Wilkins, G., Ulrich, R., Shepard, P., Antoine, S. S., Diamond, J., & others. (1993). The Biophilia Hypothesis. Island Press. https://books.google.com.tw/books?id=oMzqiX3IH-UC
Kim, B.-U., Hyun, G.-W., Choi, J.-H., Hong, Y.-K., Yi, G.-H., Huh, I.-R., & Choi, S.-B. (2020). Survey of emission characteristics and weather factors for application in prediction modeling for phytoncide weather services. J. of Env. Health Sciences, 46(6), 636–645.
Kim, S., Kim, H., & Lee, J. T. (2019). Interactions between ambient air particles and greenness on cause-specific mortality in seven Korean metropolitan cities, 2008-2016. International Journal of Environmental Research and Public Health, 16(10).
Kozik, A., & Huang, Y. J. (2020). Ecological Interactions in Asthma: from Environment to Microbiota and Immune Responses. Current Opinion in Pulmonary Medicine, 26(1), 27.
Kumar, K., & Pande, B. P. (2023). Air pollution prediction with machine learning: a case study of Indian cities. Int. Journal of Environmental Science and Technology, 20(5), 5333.
Lai, H. C., Hsiao, M. C., Liou, J. L., Lai, L. W., Wu, P. C., & Fu, J. S. (2020). Using Costs and Health Benefits to Estimate the Priority of Air Pollution Control Action Plan: A Case Study in Taiwan. Applied Sciences, 10(17), 5970.
Lambert, K.A., Bowatte, G., Tham, R., Lodge, C., Prendergast, L., Heinrich, J., et al. (2017). Residential greenness and allergic respiratory diseases in children and adolescents - a systematic review and meta-analysis. Environ. Res. 159, 212–221.
Laothawornkitkul, J., Taylor, J. E., Paul, N. D., & Hewitt, C. N. (2009). Biogenic volatile organic compounds in the Earth system. New Phytologist, 183(1), 27–51.
Lee, A. C. K., Jordan, H. C., & Horsley, J. (2015). Value of urban green spaces in promoting healthy living and wellbeing: Prospects for planning. In Risk Management and Healthcare Policy 8, 131–137.
Lee, H.Y., Wu, Y.H., Asri, A.K., et al., (2020). Linkage between residential green spaces and allergic rhinitis among Asian children (case study: Taiwan). Landscape and Urban Planning 202, 103868.
Lee, S.-J., Kim, B.-U., Hong, Y.-K., Lee, Y.-S., Go, Y.-H., Yang, S.-P., Hyun, G.-W., Yi, G.-H., Kim, J.-C., & Kim, D.-Y. (2021). Regression Analysis-based Model Equation Predicting the Concentration of Phytoncide (Monoterpenes) - Focusing on Suri Hill in Chuncheon . Environmental Health Sciences, 47(6), 548–557.
Leung, T. V., W., Yee Tiffany Tam, T., Pan, W.-C., Wu, C.-D., Candice Lung, S.-C., & Spengler, J. D. (2019). How is environmental greenness related to students’ academic performance in English and Mathematics? Landscape and Urban Planning, 181, 118–124.
Lew, T., & Fleming, K. J. (2024). Phytoncides and immunity from forest to facility: A systematic review and meta-analysis. Pharmacological Research - Natural Products, 4, 100061.
Li, H., Wu, Z. F., Yang, X. R., An, X. L., Ren, Y., & Su, J. Q. (2021). Urban greenness and plant species are key factors in shaping air microbiomes and reducing airborne pathogens. Environment International, 153, 106539.
Li, Y., Jiang, F., Zhang, H., Bian, Y., & Saathoff, H. (2023). Biogenic volatile organic compounds concentrations and their conversion to oxidized VOCs and secondary organic aerosol particles.
Li, Q., Lerner, G., Bar, E., Lewinsohn, E., & Tas, E. (2024). Impact of meteorological conditions on the biogenic volatile organic compound (BVOC) emission rate from eastern Mediterranean vegetation under drought. Biogeosciences, 21(18), 4133–4147.
Liu, Y., Li, L., & Xie, C. X. (2016). Acidic functionalized ionic liquids as catalyst for the isomerization of α-pinene to camphene. Research on Chemical Intermediates, 42(2), 559–569.
Liu, T., Lin, C.-H., Chen, Y.-L., Jeng, S.-L., Tsai, H.-J., Ho, C.-L., Kuo, W.-S., Hsieh, M.-H., Chen, P.-C., Wu, L. S.-H., & Wang, J.-Y. (2022). Nasal Microbiome Change During and After Exacerbation in Asthmatic Children. Frontiers in Microbiology, 0, 4418.
Loreto, F. (1997). Emission of isoprenoids by plants: their role in atmospheric chemistry, response to the environment, and biochemical pathways. Journal of Environmental Pathology, Toxicology and Oncology : Official Organ of the International Society for Environmental Toxicology and Cancer, 16(2–3), 119–124.
Lundberg, S. M., Allen, P. G., & Lee, S.-I. (2017). A Unified Approach to Interpreting Model Predictions. Advances in Neural Information Processing Systems, 30.
Luttkus, M. L., Hoffmann, E. H., Poulain, L., Tilgner, A., & Wolke, R. (2022). The Effect of Land Use Classification on the Gas-Phase and Particle Composition of the Troposphere: Tree Species Versus Forest Type Information. Journal of Geophysical Research: Atmospheres, 127(7), e2021JD035305.
Ma, L. T., Liu, P. L., Cheng, Y. T., Shiu, T. F., & Chu, F. H. (2021). Unveiling monoterpene biosynthesis in taiwania cryptomerioides via functional characterization. Plants, 10(11).
Malik, T. G., Sahu, L. K., Gupta, M., Mir, B. A., Gajbhiye, T., Dubey, R., Clavijo McCormick, A., & Pandey, S. K. (2023). Environmental Factors Affecting Monoterpene Emissions from Terrestrial Vegetation. Plants, 12(17), 3146.
Manco, A., Brilli, F., Famulari, D., Gasbarra, D., Gioli, B., Vitale, L., Di Tommasi, P., Loubet, B., Arena, C., & Magliulo, V. (2021). Cross‑correlations of biogenic volatile organic compound (BVOC) emissions typify different phenological stages and stressful events in a Mediterranean Sorghum plantation. Agricultural and Forest Meteorology, 303, Article 108380.
Marcus, C. C., & Sachs, N. A. (2013). Therapeutic Landscapes: An Evidence-Based Approach to Designing Healing Gardens and Restorative Outdoor Spaces. Wiley. https://books.google.com.tw/books?id=FQT2AAAAQBAJ
McGenity, T. J., Crombie, A. T., & Murrell, J. C. (2018). Microbial cycling of isoprene, the most abundantly produced biological volatile organic compound on Earth. The ISME Journal, 12(4), 931–941.
Méndez, M., Merayo, M. G., & Núñez, M. (2023). Machine learning algorithms to forecast air quality: a survey. Artificial Intelligence Review, 56(9), 10031–10066.
Meng, X., Chen, L., Cai, J., Zou, B., Wu, C. F., Fu, Q., Zhang, Y., Liu, Y., & Kan, H. (2015). A land use regression model for estimating the NO2 concentration in shanghai, China. Environmental Research, 137, 308–315.
Mika, M., Maurer, J., Korten, I., Allemann, A., Aebi, S., Brugger, S. D., Qi, W., Frey, U., Latzin, P., & Hilty, M. (2017). Influence of the pneumococcal conjugate vaccines on the temporal variation of pneumococcal carriage and the nasal microbiota in healthy infants: a longitudinal analysis of a case-control study. Microbiome, 5(1), 85.
Mitchell, R., & Popham, F. (2008). Effect of exposure to natural environment on health inequalities: an observational population study. The Lancet, 372(9650), 1655–1660.
Mochizuki, T., Amagai, T., & Tani, A. (2018). Effects of soil water content and elevated CO2 concentration on the monoterpene emission rate of Cryptomeria japonica. Science of The Total Environment, 634, 900–908.
Molnar, C., 2020. Interpretable Machine Learning: A Guide for Making Black Box Models Explainable. Leanpub, United States
Molteni, U., Bose, A., Faiola, C., Gisler, J., & Gu, S. (2023). Biogenic volatile organic compound emissions from Scots pine seedlings under prolonged heat and drought.
Montejano-Ramírez, V., Ávila-Oviedo, J. L., Campos-Mendoza, F. J., & Valencia-Cantero, E. (2024). Microbial Volatile organic compounds: insights into plant defense. Plants, 13(15).
Mu, Z., Llusià, J., Zeng, J., Zhang, Y., Asensio, D., Yang, K., Yi, Z., Wang, X., & Peñuelas, J. (2022). An Overview of the Isoprenoid Emissions From Tropical Plant Species. Frontiers in Plant Science, 13, 833030.
National Center for Biotechnology Information (2023a). PubChem Compound Summary for CID 12444324, alpha-THUJENE, (+/-)-.
National Center for Biotechnology Information (2023b). PubChem Compound Summary for CID 6654, alpha-PINENE..
National Center for Biotechnology Information (2023c). PubChem Compound Summary for CID 440966, (-)-Camphene.
Niedenthal, P. M., & Setterlund, M. B. (1994). Emotion Congruence in Perception. Personality and Social Psychology Bulletin, 20(4), 401–411.
Niu, Y., Chen, R., Wang, C., Wang, W., Jiang, J., Wu, W., Cai, J., Zhao, Z., Xu, X., & Kan, H. (2020). Ozone exposure leads to changes in airway permeability, microbiota and metabolome: a randomised, double-blind, crossover trial. The European Respiratory Journal, 56(3).
Nohara, Y., Matsumoto, K., Soejima, H., & Nakashima, N. (2022). Explanation of machine learning models using shapley additive explanation and application for real data in hospital. Computer Methods and Programs in Biomedicine, 214, 106584.
Oh, H., Lee, J. S., Park, H., Son, P., Jeon, B. S., Lee, S. S., Sung, D., Lim, J.-M., & Choi, W. il. (2024). Phytochemical-Based Nanoantioxidants Stabilized with Polyvinylpyrrolidone for Enhanced Antibacterial, Antioxidant, and Anti-Inflammatory Activities. Antioxidants, 13(9), 1056.
Oyetayo, V.O., Oyetayo, F.L. (2005). Potential of probiotics as biotherapeutic agents targeting the innate immune system. African Journal of Biotechnology, 4 (2), 123–127.
Oumami, S., Arteta, J., Guidard, V., Tulet, P., & Hamer, P. D. (2024). Evaluation of isoprene emissions from the coupled model SURFEX–MEGANv2.1. Geoscientific Model Development, 17(8), 3385–3408.
Parajuli, A., Grönroos, M., Siter, N., Puhakka, R., Vari, H. K., Roslund, M. I., Jumpponen, A., Nurminen, N., Laitinen, O. H., Hyöty, H., Rajaniemi, J., & Sinkkonen, A. (2018). Urbanization reduces transfer of diverse environmental microbiota indoors. Frontiers in Microbiology, 9, 301841.
Parry, P. (2019). Automated machine learning for production and analytics: auto_ml.PyPI. MIT License.
Peñuelas, J. (2003). BVOCs: plant defense against climate warming? Cell.ComJ Peñuelas, J LlusiàTrends in Plant Science, 2003•cell.Com.
Peñuelas, J., & Staudt, M. (2010). BVOCs and global change. Trends in Plant Science, 15(3), 133–144
Pieber, S. M., Molteni, U., Luo, N., Kalberer, M., Faiola, C., & Gessler, A. (2023). Biogenic volatile organic compounds emitted by European Temperate forests: How do broadleaf species react to frost and drought?
P´erez-Burillo, S., Navajas-Porras, B., L´opez-Maldonado, A., Hinojosa-Nogueira, D., Pastoriza, S., Rufi´an-Henares, J.´A. (2021). Green tea and its relation to human gut microbiome. Molecules 26 (13), 3907.
Porres-Martínez, M., González-Burgos, E., Carretero, M. E., & Gómez-Serranillos, M. P. (2015). Major selected monoterpenes α-pinene and 1,8-cineole found in Salvia lavandulifolia (Spanish sage) essential oil as regulators of cellular redox balance. Pharmaceutical Biology, 53(6), 921–929.
Quintans-Júnior, L., Moreira, J. C. F., Pasquali, M. A. B., Rabie, S. M. S., Pires, A. S., Schröder, R., Rabelo, T. K., Santos, J. P. A., Lima, P. S. S., Cavalcanti, S. C. H., Araújo, A. A. S., Quintans, J. S. S., & Gelain, D. P. (2013). Antinociceptive Activity and Redox Profile of the Monoterpenes (+)-Camphene, p -Cymene, and Geranyl Acetate in Experimental Models . ISRN Toxicology, 2013, 1–11.
Ren, X., Mi, Z., & Georgopoulos, P. G. (2020). Comparison of Machine Learning and Land Use Regression for fine scale spatiotemporal estimation of ambient air pollution: Modeling ozone concentrations across the contiguous United States. Environment International, 142, 105827.
Richardson, E. A., Pearce, J., Mitchell, R., & Kingham, S. (2013). Role of physical activity in the relationship between urban green space and health. Public Health, 127(4), 318–324.
Rivera-González, L. O., Zhang, Z., Sánchez, B. N., Zhang, K., Brown, D. G., Rojas-Bracho, L., Osornio-Vargas, A., Vadillo-Ortega, F., & O’Neill, M. S. (2015). An Assessment of Air Pollutant Exposure Methods in Mexico City, Mexico. Journal of the Air & Waste Management Association (1995), 65(5), 581.
Rodrigues, G. M., Ortega, E. M. M., & Cordeiro, G. M. (2023). New partially linear regression and machine learning models applied to agronomic data. Axioms 12(11), 1027.
Roe, J. J., Ward Thompson, C., Aspinall, P. A., Brewer, M. J., Duff, E. I., Miller, D., Mitchell, R., & Clow, A. (2013). Green Space and Stress: Evidence from Cortisol Measures in Deprived Urban Communities. International Journal of Environmental Research and Public Health, 10(9), 4086.
Rojas-Rueda, D., Nieuwenhuijsen, M. J., Gascon, M., Perez-Leon, D., & Mudu, P. (2019). Green spaces and mortality: A systematic review and meta-analysis of cohort studies. The Lancet Planetary Health, 3(11), e469–e477.
Rook, G. A. (2013). Regulation of the immune system by biodiversity from the natural environment: an ecosystem service essential to health. Proceedings of the National Academy of Sciences, 110(46), 18360–18367.
Roslund, M. I., Puhakka, R., Grönroos, M., Nurminen, N., Oikarinen, S., Gazali, A. M., Cinek, O., Kramná, L., Siter, N., Vari, H. K., Soininen, L., Parajuli, A., Rajaniemi, J., Kinnunen, T., Laitinen, O. H., Hyöty, H., & Sinkkonen, A. (2020). Biodiversity intervention enhances immune regulation and health-associated commensal microbiota among daycare children. Science Advances, 6(42).
Roy, P. P., Abdullah, M. S., & Siddique, I. M. (2024). Corresponding author: Iqtiar Md. Siddique Machine learning empowered geographic information systems: Advancing Spatial analysis and decision making.
Rozemberczki, B., Watson, L., Bayer, P., Yang, H. T., Kiss, O., Nilsson, S., & Sarkar, R. (2022). The Shapley Value in Machine Learning. IJCAI International Joint Conference on Artificial Intelligence, 5572–5579.
Rufino, A. T., Ribeiro, M., Judas, F., Salgueiro, L., Lopes, M. C., Cavaleiro, C., & Mendes, A. F. (2014). Anti-inflammatory and chondroprotective activity of (+)-α-pinene: Structural and enantiomeric selectivity. Journal of Natural Products, 77(2), 264–269.
Rusdah, D. A., & Murfi, H. (2020). XGBoost in handling missing values for life insurance risk prediction. SN Applied Sciences, 2(8), 1–10.
Russo, E. B., & Marcu, J. (2017). Cannabis Pharmacology: The Usual Suspects and a Few Promising Leads. Advances in Pharmacology, 80, 67–134.
Sadhasivam, S., Palanivel, S., & Ghosh, S. (2016). Synergistic antimicrobial activity of Burseraceae essential oil with various azoles against pathogens associated with skin, scalp and nail infections. Letters in Applied Microbiology, 63(6), 495–501.
Salvador, C. M., Chou, C. C. K., Ho, T. T., Tsai, C. Y., Tsao, T. M., Tsai, M. J., & Su, T. C. (2020). Contribution of Terpenes to Ozone Formation and Secondary Organic Aerosols in a Subtropical Forest Impacted by Urban Pollution. Atmosphere, 11(11), 1232.
Samad, A., Garuda, S., Vogt, U., & Yang, B. (2023). Air pollution prediction using machine learning techniques – An approach to replace existing monitoring stations with virtual monitoring stations. Atmospheric Environment, 310, 119987.
Sarkar, C., Webster, C., & Gallacher, J. (2018). Residential greenness and prevalence of major depressive disorders: a cross-sectional, observational, associational study of 94 879 adult UK Biobank participants. The Lancet. Planetary Health, 2(4), e162–e173.
Sarker, I. H. (2021). Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Computer Science, 2(3), 1–21.
Satyal, P., & Setzer, W. (2016). Chemical composition of Cryptomeria japonica leaf oil from Nepal. American Journal of Essential Oils and Natural Products, 3, 7–10.
Selye, H. (1956). The stress of life. In The stress of life. McGraw-Hill.
Seo, S., Choi, S., Kim, K., Kim, S. M., & Park, S. M. (2019). Association between urban green space and the risk of cardiovascular disease: A longitudinal study in seven Korean metropolitan areas. Environment International, 125, 51–57.
Šimpraga, M., Ghimire, R. P., van der Straeten, D., Blande, J. D., Kasurinen, A., Sorvari, J., Holopainen, T., Adriaenssens, S., Holopainen, J. K., & Kivimäenpää, M. (2019). Unravelling the functions of biogenic volatiles in boreal and temperate forest ecosystems. European Journal of Forest Research, 138(5), 763–787.
Singh, G. B., & Atal, C. K. (1986). Pharmacology of an extract of salai guggal ex-Boswellia serrata, a new non-steroidal anti-inflammatory agent. Agents & Actions, 18(3-4), 407-412.
Sinnott, R. O., & Guan, Z. (2018). Prediction of Air Pollution through Machine Learning Approaches on the Cloud. Proceedings - 5th IEEE/ACM International Conference on Big Data Computing, Applications and Technologies, BDCAT 2018, 51–60.
Siwko, M. E., Marrink, S. J., de Vries, A. H., Kozubek, A., Schoot U, A. J. M., & Mark, A. E. (2007). Does isoprene protect plant membranes from thermal shock? A molecular dynamics study. Biochimica et Biophysica Acta - Biomembranes, 1768(2), 198–206.
Slavin, J. (2013). Fiber and prebiotics: mechanisms and health benefits. Nutrients 5 (4), 1417–1435.
Song, H., Lane, K. J., Kim, H., Kim, H., Byun, G., Le, M., Choi, Y., Park, C. R., & Lee, J.-T. (2019). Association between Urban Greenness and Depressive Symptoms: Evaluation of Greenness Using Various Indicators. International Journal of Environmental Research and Public Health, 16(2), 173.
Sotiropoulou, N. S. D., Kokkini, M. K., Megremi, S. F. P., Daferera, D. J., Skotti, E. P., Kimbaris, A. C., Polissiou, M. G., & Tarantilis, P. A. (2016). Determination of ɑ-and β-thujone in wormwood and sage infusions of Greek flora and estimation of their average toxicity. Current Research in Nutrition and Food Science, 4(SpecialIssue2), 152–160.
Stein, M. M., Hrusch, C. L., Gozdz, J., Igartua, C., Pivniouk, V., Murray, S. E., ... & Sperling, A. I. (2016). Innate immunity and asthma risk in Amish and Hutterite farm children. New England journal of medicine, 375(5), 411-421.
Sternberg, E. M. (2010). Healing Spaces: Harvard University Press. https://books.google.com.tw/books?id=xyDqRAAACAAJ
Sunjaya, A. F., & Sunjaya, A. P. (2018). Protective Effects of Phytoncides Against Cancer. Advanced Science Letters, 24(9), 6837–6840.
Toivonen, L., Karppinen, S., Schuez-Havupalo, L., Waris, M., He, Q., Hoffman, K. L., Petrosino, J. F., Dumas, O., Camargo, C. A., Hasegawa, K., & Peltola, V. (2020). Longitudinal Changes in Early Nasal Microbiota and the Risk of Childhood Asthma ARTICLE. 146(4), 20200421. http://publications.aap.org/pediatrics/article-pdf/146/4/e20200421/1080702/peds_20200421.pdf
Tani, A., Masui, N., Chang, T. W., Okumura, M., & Kokubu, Y. (2024). Basal emission rates of isoprene and monoterpenes from major tree species in Japan: interspecies and intraspecies variabilities. Progress in Earth and Planetary Science, 11(1), 1–18.
Thangaleela, S., Sivamaruthi, B. S., Kesika, P., Bharathi, M., Kunaviktikul, W., Klunklin, A., Chanthapoon, C., & Chaiyasut, C. (2022). Essential Oils, Phytoncides, Aromachology, and Aromatherapy—A Review. Applied Sciences, 12(9), 4495–4495.
Thurman, E. M. (2020). Analysis of terpenes in hemp (Cannabis sativa) by gas chromatography/mass spectrometry: Isomer identification analysis. Comprehensive Analytical Chemistry, 90, 197–233.
Tiwari, M., & Kakkar, P. (2009). Plant derived antioxidants - Geraniol and camphene protect rat alveolar macrophages against t-BHP induced oxidative stress. Toxicology in Vitro : An International Journal Published in Association with BIBRA, 23(2), 295–301.
Tripathi, N., & Sahu, L. K. (2020). Emissions and atmospheric concentrations of α-pinene at an urban site of India: Role of changes in meteorology. Chemosphere, 256, 127071.
Tschugaeff, L. (1900). Ueber das Thujen, ein neues bicyclisches Terpen. Berichte Der Deutschen Chemischen Gesellschaft, 33(3), 3118–3126.
Tsuruta, J., Okumura, M., Makita, N., Kosugi, Y., Miyama, T., Kume, T., & Tohno, S. (2018). A comparison of the biogenic volatile organic compound emissions from the fine roots of 15 tree species in Japan and Taiwan.Ulrich, R. S., Simons, R. F., Losito, B. D., Fiorito, E., Miles, M. A., & Zelson, M. (1991). Stress recovery during exposure to natural and urban environments. Journal of Environmental Psychology, 11(3), 201–230.
Ulrich, R. (1993). Biophilia, biophobia, and natural landscapes. Biophilia, Biophobia, and Natural Landscapes, 73–137.
Ulrich, R. S., Zimring, C., Zhu, X., DuBose, J., Seo, H.-B., Choi, Y.-S., Quan, X., & Joseph, A. (2008). A Review of the Research Literature on Evidence-Based Healthcare Design. HERD: Health Environments Research & Design Journal, 1(3), 61–125.
Vabalas, A., Gowen, E., Poliakoff, E., & Casson, A. J. (2019). Machine learning algorithm validation with a limited sample size. PLOS ONE, 14(11), e0224365.
Vaeztavakoli, A., Lak, A., & Yigitcanlar, T. (2018). Blue and Green Spaces as Therapeutic Landscapes: Health Effects of Urban Water Canal Areas of Isfahan. Sustainability, 10(11), 4010.
van den Berg, M., van Poppel, M., van Kamp, I., Andrusaityte, S., Balseviciene, B., Cirach, M., Danileviciute, A., Ellis, N., Hurst, G., Masterson, D., Smith, G., Triguero-Mas, M., Uzdanaviciute, I., Wit, P. de, van Mechelen, W., Gidlow, C., Grazuleviciene, R., Nieuwenhuijsen, M. J., Kruize, H., & Maas, J. (2016). Visiting green space is associated with mental health and vitality: A cross-sectional study in four european cities. Health and Place, 38, 8–15.
Vallianou, I., Peroulis, N., Pantazis, P., & Hadzopoulou-Cladaras, M. (2011). Camphene, a plant-derived monoterpene, reduces plasma cholesterol and triglycerides in hyperlipidemic rats independently of HMG-CoA reductase activity. PloS One, 6(11).
Vautard, R., Colette, A., van Meijgaard, E., Meleux, F., van Oldenborgh, G. J., Otto, F., Tobin, I., & Yiou, P. (2018). Attribution of wintertime anticyclonic stagnation contributing to air pollution in W. Europe. Bulletin of the American Meteorological Society, 99(1), S70–S75.
Vermeuel, M. P., Novak, G. A., Kilgour, D. B., Claflin, M. S., Lerner, B. M., Trowbridge, A. M., Thom, J., Cleary, P. A., Desai, A. R., & Bertram, T. H. (2023). Observations of biogenic volatile organic compounds over a mixed temperate forest during the summer to autumn transition. Atmospheric Chemistry and Physics, 23(7), 4123–4148.
Wang, X. (2021). The difference of industrial NOx emission and the effect of income division reduction in China. IOP Conf. Series: Earth and Environmental Science, 791(1), 012163.
Wang, H., Dai, X., Wu, J., Wu, X., & Nie, X. (2019). Influence of urban green open space on residents’ physical activity in China. BMC Public Health, 19(1), 1093.
Watanabe, T., Fujihara, M., Murakami, E., Miyoshi, M., Tanaka, Y., Koba, S., & Tachibana, H. (2011). Green odor and depressive-like state in rats: Toward an evidence-based alternative medicine? Behavioural Brain Research, 224(2), 290–296.
Weier, J., Herring, D. (2000). Measuring Vegetation (NDVI & EVI). NASA Earth Observatory, Washington DC. Retrieved from. 〈https://scirp.org/reference/referen〉cespapers.aspx?referenceid=2089851
Weston-Green, K., Clunas, H., & Jimenez Naranjo, C. (2021). A Review of the Potential Use of Pinene and Linalool as Terpene-Based Medicines for Brain Health: Discovering Novel Therapeutics in the Flavours and Fragrances of Cannabis. Frontiers in Psychiatry, 12, 583211.
Wong, P. Y., Su, H. J., Lung, S. C. C., & Wu, C. D. (2023). An ensemble mixed spatial model in estimating long-term and diurnal variations of PM2.5 in Taiwan. Science of The Total Environment, 866, 161336.
Wong, P. Y., Lee, H. Y., Zeng, Y. T., Chern, Y. R., Chen, N. T., Candice Lung, S. C., Su, H. J., & Wu, C. D. (2021a). Using a land use regression model with machine learning to estimate ground level PM2.5. Environmental Pollution, 277, 116846.
Wong, P. Y., Su, H. J., Lee, H. Y., Chen, Y. C., Hsiao, Y. P., Huang, J. W., Teo, T. A., Wu, C. D, & Spengler, J. D. (2021b). Using land-use machine learning models to estimate daily NO2 concentration variations in Taiwan. Journal of Cleaner Production, 317, 128411.
Wong, P. Y., Hsu, C. Y., Wu, J. Y., Teo, T. A., Huang, J. W., Guo, H. R., Su, H. J., Wu, C. D, & Spengler, J. D. (2021c). Incorporating land-use regression into machine learning algorithms in estimating the spatial-temporal variation of carbon monoxide in Taiwan. Environmental Modelling & Software, 139, 104996.
Wu, C. C., O’Keefe, J., Ding, Y., & Sullivan, W. C. (2024). Biodiversity of urban green spaces and human health: a systematic review of recent research. Frontiers in Ecology and Evolution, 12, 1467568.
Wu, C.-D., Chen, Y.-C., Pan, W.-C., Zeng, Y.-T., Chen, M.-J., Guo, Y. L., & Lung, S.-C. C. (2017). Land-use regression with long-term satellite-based greenness index and culture-specific sources to model PM2.5 spatial-temporal variability. Environmental Pollution, 224, 148–157.
Wu, J., Zhang, Q., Wang, L., Li, L., Lun, X., Chen, W., Gao, Y., Huang, L., Wang, Q., & Liu, B. (2024). Seasonal biogenic volatile organic compound emission factors in temperate tree species: Implications for emission estimation and ozone formation. Environmental Pollution, 361, 124895.
Wu, K., Guo, B., Guo, Y., Han, M., Xu, H., Luo, R., Hong, Z., Zhang, B., Dong, K., Wu, J., Zhang, N., Chen, G., Li, S., Zhao, X., Pei, X., & Zuo, H. (2022). Association between residential greenness and gut microbiota in Chinese adults. Environment International, 163, 107216.
Yang, S., Zhang, H., Yang, S., & Zhang, H. (2018). Comparison of several data mining methods in credit card default prediction. Inte. Information Management, 10(5), 115–122.
Ying, Y.-H. F., Weng, Y. C., & Chang, K. (2017). The prevalence and patient’s quality of life for asthma in Taiwan. International Journal of Pulmonary & Respiratory Sciences, 1(2), 37–41.
Zein, J. G., & Erzurum, S. C. (2015). Asthma is Different in Women. Current Allergy and Asthma Reports, 15(6).
Zenone, T., Hendriks, C., Brilli, F., Fransen, E., Gioli, B., Portillo-Estrada, M., Schaap, M., & Ceulemans, R. (2016). Interaction between isoprene and O3 fluxes in a poplar plantation and its impact on air quality at the European level. Scientific Reports, 6(1), 1–9.
Zhang, F., & Qian, H. (2024). A comprehensive review of the environmental benefits of urban green spaces. Environmental Research, 252, 118837.
Zhang, S., Lyu, Y., Yang, X., Yuan, L., Wang, Y., Wang, L., Liang, Y., Qiao, Y., & Wang, S. (2022). Modeling BVOCs Emissions and Subsequent Impacts on Ozone Air Quality in the Sichuan Basin, Southwestern China. Frontiers in Ecology and Evolution, 10, 924944.
Zhou, L., Pan, S., Wang, J., & Vasilakos, A. v. (2017). Machine learning on big data: Opportunities and challenges. Neurocomputing, 237, 350–361.
Zhou, Y., Jackson, D., Bacharier, L. B., Mauger, D., Boushey, H., Castro, M., Durack, J., Huang, Y., Lemanske, R. F., Storch, G. A., Weinstock, G. M., Wylie, K., Covar, R., Fitzpatrick, A. M., Phipatanakul, W., Robison, R. G., & Beigelman, A. (2019). The upper-airway microbiota and loss of asthma control among asthmatic children. Nature Communications, 10(1).
Zhu, R., Guo, Z., Zhang, X., Ramón, F., Higueruela, F., Manuel, J., & Rodríguez, J. (2021). Forest 3D Reconstruction and Individual Tree Parameter Extraction Combining Close-Range Photo Enhancement and Feature Matching. Remote Sensing, 13(9), 1633.
Zhu, S. X., Hu, F. F., He, S. Y., Qiu, Q., Su, Y., He, Q., & Li, J. Y. (2021). Comprehensive Evaluation of Healthcare Benefits of Different Forest Types: A Case Study in Shimen National Forest Park, China. Forests, 12(2), 207.
Zorić, M., Farkić, J., Kebert, M., Mladenović, E., Karaklić, D., Isailović, G., & Orlović, S. (2022). Developing Forest Therapy Programmes Based on the Health Benefits of Terpenes in Dominant Tree Species in Tara National Park (Serbia). International Journal of Environmental Research and Public Health, 19(9), 5504.