| 研究生: |
呂育翰 Lu, Yu-Han |
|---|---|
| 論文名稱: |
相變化材料顆粒與奈米流體混合液之相關熱物性質量測與分析 Measurement and Analysis of Thermophysical Properties of a Mixture of Phase-Change-Material Particles and Nanofluid |
| 指導教授: |
何清政
Ho, Ching-Jenq |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 112 |
| 中文關鍵詞: | 奈米流體 、相變化材料乳液 、粒徑 、熱傳導係數 、黏度 、密度 、pH值 |
| 外文關鍵詞: | Phase change material suspension, Thermal conductivity, Nanoflui, Viscosity, Density, pH value |
| 相關次數: | 點閱:95 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究係先利用十六烷、水及界面活性劑調製成內含相變化材料(Phase Change Material, PCM)微粒懸浮乳液,另以氧化鋁奈米顆粒與水調配成所謂奈米流體,進而將兩者混合製成PCM微粒/氧化鋁奈米顆粒混合懸浮液。並針對所調配不同濃度比例之PCM微粒/氧化鋁奈米顆粒混合懸浮液之相關熱物理性質,諸如密度、pH值、黏度、粒徑、熔點、凝固點及熱傳導係數等進行實驗量測探討。實驗結果,PCM微粒懸浮乳液呈現過冷相現象,且隨PCM微粒濃度降低越顯著。此外,PCM微粒懸浮乳液之熱物性質受到濃度與溫度之影響。添加體積濃度 Cv = 1%氧化鋁奈米顆粒之奈米流體於不同濃度PCM微粒懸浮乳液而成之混合懸浮液,其密度與黏度皆有顯著上升;惟未導致其熱傳導係數或內含PCM微粒之熔點與凝固點有所變異。
In the present study, a mixture of PCM (Phase Change Material) suspension, emulsified from n-hexadecane, water, and surfactant, and a nanofluid of water dispersed with aluminum oxide nanoparticles has been prepared. Thermophysical properties of the resulting suspension of PCM particles/alumina nanoparticles, such as density, pH value, viscosity, particle size, melting/freezing points, and effective thermal conductivity, are then investigated experimentally. The PCM suspension prepared displays significant degree of supercooling, in particular for the lower volumetric fractions. Addition of 1 wt% aluminum oxide nanoparticles to the PCM suspension was found to result in a marked increase in the density, viscosity, and particle size of the mixture; while the effective thermal conductivity as well as the melting/freezing points of PCM particles remain somewhat unaffected.
Alvarez, E., Gomez-Diaz, D., Dolores, M., and Navaza, J. M., “Densities and viscosities of aqueous ternary mixtures of 2-(Methylamino)ethanol and 2-(Ethylamino)ethanol with diethanolamine, triethanolamine, n-Methyldiethanolamine, or 2-Amino-1-methyl-1-propanol from,” Journal of Chemical and Engineering Data, Vol. 51, pp.955-962, 2006.
Banu, D., Feldman, D., and Hawes, D., “Evaluation of thermal storage as latent heat in phase change material wallboard by differential scanning calorimetry and lager scale thermal testing,” Thermochimica Acta, Vol. 317, pp. 39-45, 1998.
Camirand, C. P., “Measurement of thermal conductivity by differential scanning calorimetry,” Thermochimica Acta, Vol. 417, pp. 1-4, 2004.
Choi, S. U. S., “Development and application of non-Newtonian flow,” ASME, FED-Vol. 1, pp. 99-106, 1995.
Chon, C. H., Kihm, K. D., Lee, S. P., and Choi, S. U. S., “Empirical correlation finding the role of temperature and particle size for nonofluid ( ) thermal conductivity enhancement,” Applied Physics. Letters., Vol. 87, pp. 153107-1~153103-3, 2005.
Curran, J. A., and Clyne, T. W., “The thermal conductivity of plasma electrolytic oxide coatings on aluminium and magnesium,” Surface and Coatings Technology, Vol. 199, pp. 177-183, 2005.
Dak, M., Verma, R. C., and Sharma, G.P., “Flow characteristics of juice of “Totapuri” mangoes,” Journal of Food Engineering, Vol.76, pp. 557-561, 2006.
Farah, M. A., Oliverira, R. C., Caldas, J. N., and Rajagopal, K., “Viscosity of water-in-oil emulsions: variation with temperature and water volume fraction,” Journal of Petroleum Science and Engineering, Vol. 48, pp. 169-184, 2005.
Frusteri, F., Leonardi, V., Vasta, S., and Restuccia, G., “Thermal conductivity measurement of a PCM based storage system containing carbon fibers,” Applied Thermal Engineering, Vol. 25, pp. 1623-1633, 2005.
Gschwander, S., Schossig, P., Henning, H. –M., “Micro-encapsulated paraffin in phase-change slurries,” Solar Energy Materials & Solar Cells, Vol. 89, pp. 307-315, 2005.
Guzman, J. J., and Braga, S. L., “Supercooling water in cylindrical capsules,” International Journal of Thermophysics, Vol. 26, pp. 1781-1802, 2005.
Humphries, W. R., and Griggs, E. I., “A Design Handbook for Phase Change Thermal Control and Energy Storage Devices,” NASA Technical Paper 1074. , 1977
Inaba, H., Dai, C., and Horibe, A., “Natural convection heat transfer of microemulsion phase-change-material slurry in retangular cavities heated from below and cooled from above,” International Journal of Heat and Mass Transfer, Vol. 46, pp. 4427-4438, 2003.
Inaba, H., Dai, C., and Horibe, A., “Natural convection heat transfer in enclosures with microemulsion phase change material slurry,” Heat and Mass Transfer, Vol. 40, pp. 179-189, 2004.
Kudo, K., Nakata, K., Kuroda, A., and Oguma, M., “Study on super cooling of slurry containing phase change material,” Thermal Science and Engineering, Vol. 12, pp. 53-54, 2004.
Kreith, F., and Bohn, M. S., Principles of Heat Transfer, 6th edition, BROOKS/COLE, 2001.
Liu, M. S., Lin, M. C., Huang, I. T., and Wang, C. C., “Enhancement of thermal conductivity with CuO for nanofluids,” Chemical Engeering and Technology, Vol. 29, pp. 72-77, 2006.
Montenegro, R., Antonietti, M., Mastai, Y., and Landfester, K., “Crystallization in miniemulsion droplet,” Journal of Physical Chemistry B, Vol. 107, pp. 5088-5094. , 2003
Pal, R., “Evaluation of theoretical viscosity models for concentrated emulsions at low capillary numbers,” Chemical Engineering Journal, Vol. 81, pp. 827-835, 2001.
Qi, W. H., “Size effect on melting temperature of nanosolids,” Physica B, Vol. 368, pp. 46-50, 2005.
Rizvi, S. S. H., and Mittal, G. S., “Experimental method in food engineering.” New Delhi: CBS Pulisher and Distributions, pp. 35-51, 1997.
Singh, B. P., Menchavez, R., Takai, C., Fuji, M., and Takahashi, M., “Stability of dispersions of colloidal alumina particles in aqueous suspension,” Journal of Colloid and Interface Science, Vol. 291, pp. 181-186, 2005.
Sklyarchuk, V., and Plevachuk, Y., “A modified steady state apparatus for thermal conductivity measurements of liquid metals and semiconductors,” Measurement Science and Technology, Vol. 16, pp. 467-471, 2005.
Stiller, S., Gers-Barlag, H., Lergenmueller, M., Pflucker, F., Schulz, J., Wittern, K. P., and Daniels, R., “Investigation of the stability in emulsions stabilized with different surface modified titanium dioxides,” Colloids and Surfaces A, Vol. 232, pp. 261-267, 2004.
Tseng, W. J., and Wu, C. H., “Aggregation, rheology and electrophoretic packing structure of aqueous nanoparticle suspensions,” Acta Materialia, Vol. 50, pp. 3757-3766, 2002.
Tseng, W. J., and Wu, C. H., “Sedimentation, rheology and particle-packing structure of aqueous suspensions,” Acta Materialia, Vol. 50, pp. 3757-3766, 2003.
Varshney, S., and Singh, M., “Densities, viscosities, and excess molar volumes of ternary liquid mixtures of bromobenzene + 1,4-Dioxane or + toluene or + carbon tetrachloride) and some associated binary liquid mixtures,” Journal of Chemical Engineering Data, Vol. 51, pp. 1136-1140, 2006.
Wang, X., Xu, X., and Choi, S., “Thermal conductivity of nanoparticle-fluid mixture,” Jounal of Thermophysics And Heat Transfer, Vol. 13, pp. 474-480, 1999.
Wen, D., and Ding, Y., “Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions,” International Journal of Heat and Mass Transfer, Vol.47, pp. 5181-5188, 2004.
Xie, H., Fujii, M., and Zhang, X., ”Thermal conductivity measurements of nanopowder-fluid mixtures,” Thermal Science and Engineering, Vol. 12, pp. 75-76, 2004.
Xue, Q., and Xu, W. M., “A model of thermal conductivity of nanofluids with interfacial shells,” Materials Chemistry and Physics, Vol. 90, pp. 298-301, 2005.
Yang, C., Lai, H., Liu, Z., and Ma, P., “Densities and viscosities of diethyl carbonate + toluene, + methanol, and + 2-Propanol from (293.15 to 363.15) K,” Journal of Chemical and Engineering Data, Vol. 51, pp. 584-589, 2006.
Yang, C., Yu, W., and Tang, D., “Densities and viscosities of binary mixtures of m-cresol with ethylene glycol or methanol over several temperatures,” Journal of Chemical Engineering Data, Vol. 51, pp. 935-939, 2006.
Yen, H., Hwang, S. J., and Lin J. J., “Span / Tween as combined surfactants for emulsion of orange oil.” Colloid and Interface Science, Vol. 20, pp. 33-41, 1997.
Zhang, Y., Xu, X., Di, H., Lin, K., and Yang, R., “Experimental study on the thermal performance of the shape-stabilized phase change material floor used in passive solar building,” Journal of Solar Energy Engineering, Vol. 128, pp. 255-257, 2006.
Zhou, Q., Wang, L. S., and Chen, H. P., “Densities and viscosities of 1-Butyl-3-methylimidazolium tetrafluorobrate + binary mixtures from (303.15 to 353.15) K,” Journal of Chemical Engineering Data, Vol. 51, pp. 905-908, 2006.
何泰安, “矩形容器內含懸浮相變化微粒之自然對流熱傳之特性實驗研究,” 國立成功大學機械工程研究所碩士論文, 1999.
陳士琦, “相變化材料微粒懸浮流體之相關熱物性質實驗量測與分析,” 國立成功大學機械工程研究所碩士論文, 2002.
張榮弘, ”界面活性劑之乳化特論,” 中日合成化學公司, 第十五卷, 第三期, pp. 39-48, 1998.
趙承琛, “乳化優劣的評估與其應用,” 界面科學, 第六卷, 第三期, pp. 2-5, 1983.
趙承琛與陳翰样, “微乳液 (Microemulsion) (Ⅰ),” 界面科學, 第九卷, 第一期, pp. 42-45, 1986.