簡易檢索 / 詳目顯示

研究生: 呂育翰
Lu, Yu-Han
論文名稱: 相變化材料顆粒與奈米流體混合液之相關熱物性質量測與分析
Measurement and Analysis of Thermophysical Properties of a Mixture of Phase-Change-Material Particles and Nanofluid
指導教授: 何清政
Ho, Ching-Jenq
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 112
中文關鍵詞: 奈米流體相變化材料乳液粒徑熱傳導係數黏度密度pH值
外文關鍵詞: Phase change material suspension, Thermal conductivity, Nanoflui, Viscosity, Density, pH value
相關次數: 點閱:95下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究係先利用十六烷、水及界面活性劑調製成內含相變化材料(Phase Change Material, PCM)微粒懸浮乳液,另以氧化鋁奈米顆粒與水調配成所謂奈米流體,進而將兩者混合製成PCM微粒/氧化鋁奈米顆粒混合懸浮液。並針對所調配不同濃度比例之PCM微粒/氧化鋁奈米顆粒混合懸浮液之相關熱物理性質,諸如密度、pH值、黏度、粒徑、熔點、凝固點及熱傳導係數等進行實驗量測探討。實驗結果,PCM微粒懸浮乳液呈現過冷相現象,且隨PCM微粒濃度降低越顯著。此外,PCM微粒懸浮乳液之熱物性質受到濃度與溫度之影響。添加體積濃度 Cv = 1%氧化鋁奈米顆粒之奈米流體於不同濃度PCM微粒懸浮乳液而成之混合懸浮液,其密度與黏度皆有顯著上升;惟未導致其熱傳導係數或內含PCM微粒之熔點與凝固點有所變異。

    In the present study, a mixture of PCM (Phase Change Material) suspension, emulsified from n-hexadecane, water, and surfactant, and a nanofluid of water dispersed with aluminum oxide nanoparticles has been prepared. Thermophysical properties of the resulting suspension of PCM particles/alumina nanoparticles, such as density, pH value, viscosity, particle size, melting/freezing points, and effective thermal conductivity, are then investigated experimentally. The PCM suspension prepared displays significant degree of supercooling, in particular for the lower volumetric fractions. Addition of 1 wt% aluminum oxide nanoparticles to the PCM suspension was found to result in a marked increase in the density, viscosity, and particle size of the mixture; while the effective thermal conductivity as well as the melting/freezing points of PCM particles remain somewhat unaffected.

    摘要.............................................Ⅰ Abstract.........................................Ⅱ 致謝.............................................Ⅲ 目錄.............................................Ⅳ 表目錄...........................................Ⅷ 圖目錄...........................................Ⅸ 符號表.........................................ⅩⅢ 第一章 緒論.......................................1 1-1 研究背景與動機................................1 1-2 文獻回顧......................................2 1-3 研究主題與目的................................8 1-4 本文架構......................................8 第二章 乳液之製備與實驗量測.......................9 2-1 PCM溶液與奈米流體混合液之製備.................9 2-1-1 界面活性劑與HLB.............................9 2-1-2 混合液之製備...............................11 2-2 黏度量測.....................................14 2-2-1 儀器與原理.................................14 2-2-2 實驗設備...................................16 2-2-3 實驗步驟...................................16 2-2-4 結果誤差分析...............................17 2-3 粒徑量測.....................................18 2-3-1 儀器與原理.................................18 2-3-2 結果表示...................................19 2-3-3 實驗步驟...................................22 2-4 DSC量測......................................23 2-4-1 儀器簡介...................................23 2-4-2 DSC曲線與熔點、凝固點及潛熱值..............24 2-4-3 溫度校正...................................25 2-4-4 實驗步驟...................................27 2-5 密度量測.....................................28 2-6 pH值量測.....................................29 2-7 熱傳導係數量測.............................. 30 2-7-1 儀器簡介...................................30 2-7-2 假設與原理.................................30 2-7-3 實驗步驟...................................32 第三章 實驗量測與結果............................33 3-1 含氧化鋁之奈米流體實驗.......................33 3-2 pH值與密度量測...............................36 3-2-1 pH值結果...................................36 3-2-2 密度量測結果...............................37 3-2-3 熱膨脹係數.................................43 3-2-4 關係式.....................................46 3-3 黏度量測.....................................50 3-3-1 實驗結果...................................50 3-3-2 結果分析...................................55 3-3-3 與文獻比較.................................59 3-3-4 關係式.....................................62 3-4 粒徑量測.....................................66 3-5 DSC量測......................................70 3-5-1 校正曲線...................................70 3-5-2 實驗結果...................................71 3-6 熱傳導係數量測...............................76 3-6-1 實驗結果...................................76 3-6-2 結果分析...................................79 3-6-3 關係式.....................................81 第四章 結論與未來展望............................85 參考文獻.........................................87 附錄A 文獻回顧一覽表.............................92 附錄B Nano-Zs 儀器規格..........................103 附錄C 十六烷乳液與奈米流體製備比例..............104 附錄D DSC量測數據...............................105

    Alvarez, E., Gomez-Diaz, D., Dolores, M., and Navaza, J. M., “Densities and viscosities of aqueous ternary mixtures of 2-(Methylamino)ethanol and 2-(Ethylamino)ethanol with diethanolamine, triethanolamine, n-Methyldiethanolamine, or 2-Amino-1-methyl-1-propanol from,” Journal of Chemical and Engineering Data, Vol. 51, pp.955-962, 2006.
    Banu, D., Feldman, D., and Hawes, D., “Evaluation of thermal storage as latent heat in phase change material wallboard by differential scanning calorimetry and lager scale thermal testing,” Thermochimica Acta, Vol. 317, pp. 39-45, 1998.
    Camirand, C. P., “Measurement of thermal conductivity by differential scanning calorimetry,” Thermochimica Acta, Vol. 417, pp. 1-4, 2004.
    Choi, S. U. S., “Development and application of non-Newtonian flow,” ASME, FED-Vol. 1, pp. 99-106, 1995.
    Chon, C. H., Kihm, K. D., Lee, S. P., and Choi, S. U. S., “Empirical correlation finding the role of temperature and particle size for nonofluid ( ) thermal conductivity enhancement,” Applied Physics. Letters., Vol. 87, pp. 153107-1~153103-3, 2005.
    Curran, J. A., and Clyne, T. W., “The thermal conductivity of plasma electrolytic oxide coatings on aluminium and magnesium,” Surface and Coatings Technology, Vol. 199, pp. 177-183, 2005.
    Dak, M., Verma, R. C., and Sharma, G.P., “Flow characteristics of juice of “Totapuri” mangoes,” Journal of Food Engineering, Vol.76, pp. 557-561, 2006.
    Farah, M. A., Oliverira, R. C., Caldas, J. N., and Rajagopal, K., “Viscosity of water-in-oil emulsions: variation with temperature and water volume fraction,” Journal of Petroleum Science and Engineering, Vol. 48, pp. 169-184, 2005.
    Frusteri, F., Leonardi, V., Vasta, S., and Restuccia, G., “Thermal conductivity measurement of a PCM based storage system containing carbon fibers,” Applied Thermal Engineering, Vol. 25, pp. 1623-1633, 2005.
    Gschwander, S., Schossig, P., Henning, H. –M., “Micro-encapsulated paraffin in phase-change slurries,” Solar Energy Materials & Solar Cells, Vol. 89, pp. 307-315, 2005.
    Guzman, J. J., and Braga, S. L., “Supercooling water in cylindrical capsules,” International Journal of Thermophysics, Vol. 26, pp. 1781-1802, 2005.
    Humphries, W. R., and Griggs, E. I., “A Design Handbook for Phase Change Thermal Control and Energy Storage Devices,” NASA Technical Paper 1074. , 1977
    Inaba, H., Dai, C., and Horibe, A., “Natural convection heat transfer of microemulsion phase-change-material slurry in retangular cavities heated from below and cooled from above,” International Journal of Heat and Mass Transfer, Vol. 46, pp. 4427-4438, 2003.
    Inaba, H., Dai, C., and Horibe, A., “Natural convection heat transfer in enclosures with microemulsion phase change material slurry,” Heat and Mass Transfer, Vol. 40, pp. 179-189, 2004.
    Kudo, K., Nakata, K., Kuroda, A., and Oguma, M., “Study on super cooling of slurry containing phase change material,” Thermal Science and Engineering, Vol. 12, pp. 53-54, 2004.
    Kreith, F., and Bohn, M. S., Principles of Heat Transfer, 6th edition, BROOKS/COLE, 2001.
    Liu, M. S., Lin, M. C., Huang, I. T., and Wang, C. C., “Enhancement of thermal conductivity with CuO for nanofluids,” Chemical Engeering and Technology, Vol. 29, pp. 72-77, 2006.
    Montenegro, R., Antonietti, M., Mastai, Y., and Landfester, K., “Crystallization in miniemulsion droplet,” Journal of Physical Chemistry B, Vol. 107, pp. 5088-5094. , 2003
    Pal, R., “Evaluation of theoretical viscosity models for concentrated emulsions at low capillary numbers,” Chemical Engineering Journal, Vol. 81, pp. 827-835, 2001.
    Qi, W. H., “Size effect on melting temperature of nanosolids,” Physica B, Vol. 368, pp. 46-50, 2005.
    Rizvi, S. S. H., and Mittal, G. S., “Experimental method in food engineering.” New Delhi: CBS Pulisher and Distributions, pp. 35-51, 1997.
    Singh, B. P., Menchavez, R., Takai, C., Fuji, M., and Takahashi, M., “Stability of dispersions of colloidal alumina particles in aqueous suspension,” Journal of Colloid and Interface Science, Vol. 291, pp. 181-186, 2005.
    Sklyarchuk, V., and Plevachuk, Y., “A modified steady state apparatus for thermal conductivity measurements of liquid metals and semiconductors,” Measurement Science and Technology, Vol. 16, pp. 467-471, 2005.
    Stiller, S., Gers-Barlag, H., Lergenmueller, M., Pflucker, F., Schulz, J., Wittern, K. P., and Daniels, R., “Investigation of the stability in emulsions stabilized with different surface modified titanium dioxides,” Colloids and Surfaces A, Vol. 232, pp. 261-267, 2004.
    Tseng, W. J., and Wu, C. H., “Aggregation, rheology and electrophoretic packing structure of aqueous nanoparticle suspensions,” Acta Materialia, Vol. 50, pp. 3757-3766, 2002.
    Tseng, W. J., and Wu, C. H., “Sedimentation, rheology and particle-packing structure of aqueous suspensions,” Acta Materialia, Vol. 50, pp. 3757-3766, 2003.
    Varshney, S., and Singh, M., “Densities, viscosities, and excess molar volumes of ternary liquid mixtures of bromobenzene + 1,4-Dioxane or + toluene or + carbon tetrachloride) and some associated binary liquid mixtures,” Journal of Chemical Engineering Data, Vol. 51, pp. 1136-1140, 2006.
    Wang, X., Xu, X., and Choi, S., “Thermal conductivity of nanoparticle-fluid mixture,” Jounal of Thermophysics And Heat Transfer, Vol. 13, pp. 474-480, 1999.
    Wen, D., and Ding, Y., “Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions,” International Journal of Heat and Mass Transfer, Vol.47, pp. 5181-5188, 2004.
    Xie, H., Fujii, M., and Zhang, X., ”Thermal conductivity measurements of nanopowder-fluid mixtures,” Thermal Science and Engineering, Vol. 12, pp. 75-76, 2004.
    Xue, Q., and Xu, W. M., “A model of thermal conductivity of nanofluids with interfacial shells,” Materials Chemistry and Physics, Vol. 90, pp. 298-301, 2005.
    Yang, C., Lai, H., Liu, Z., and Ma, P., “Densities and viscosities of diethyl carbonate + toluene, + methanol, and + 2-Propanol from (293.15 to 363.15) K,” Journal of Chemical and Engineering Data, Vol. 51, pp. 584-589, 2006.
    Yang, C., Yu, W., and Tang, D., “Densities and viscosities of binary mixtures of m-cresol with ethylene glycol or methanol over several temperatures,” Journal of Chemical Engineering Data, Vol. 51, pp. 935-939, 2006.
    Yen, H., Hwang, S. J., and Lin J. J., “Span / Tween as combined surfactants for emulsion of orange oil.” Colloid and Interface Science, Vol. 20, pp. 33-41, 1997.
    Zhang, Y., Xu, X., Di, H., Lin, K., and Yang, R., “Experimental study on the thermal performance of the shape-stabilized phase change material floor used in passive solar building,” Journal of Solar Energy Engineering, Vol. 128, pp. 255-257, 2006.
    Zhou, Q., Wang, L. S., and Chen, H. P., “Densities and viscosities of 1-Butyl-3-methylimidazolium tetrafluorobrate + binary mixtures from (303.15 to 353.15) K,” Journal of Chemical Engineering Data, Vol. 51, pp. 905-908, 2006.
    何泰安, “矩形容器內含懸浮相變化微粒之自然對流熱傳之特性實驗研究,” 國立成功大學機械工程研究所碩士論文, 1999.
    陳士琦, “相變化材料微粒懸浮流體之相關熱物性質實驗量測與分析,” 國立成功大學機械工程研究所碩士論文, 2002.
    張榮弘, ”界面活性劑之乳化特論,” 中日合成化學公司, 第十五卷, 第三期, pp. 39-48, 1998.
    趙承琛, “乳化優劣的評估與其應用,” 界面科學, 第六卷, 第三期, pp. 2-5, 1983.
    趙承琛與陳翰样, “微乳液 (Microemulsion) (Ⅰ),” 界面科學, 第九卷, 第一期, pp. 42-45, 1986.

    下載圖示 校內:立即公開
    校外:2006-08-01公開
    QR CODE