| 研究生: |
劉海平 Liu, Hai-Ping |
|---|---|
| 論文名稱: |
氫化物氣相法於圖案化藍寶石基板成長GaN晶體之研究 Study of GaN Crystals Growth on Patterned Sapphire Substrate by Hydride Vapor Phase Epitaxy Method |
| 指導教授: |
陳引幹
Chen, In-Gann |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 153 |
| 中文關鍵詞: | 磊晶側向成長法 、陰極激發光 、圖案化藍寶石基板 、氫化物氣相磊晶沈積法 |
| 外文關鍵詞: | HVPE, PSS, CL, ELO |
| 相關次數: | 點閱:70 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文使用氫化物氣相磊晶沈積法(Hydride Vapor Phase Epitaxy:HVPE) 和磊晶側向成長法(Epitaxial Lateral Overgrowth: ELO) 沉積在點狀和條狀的圖案化藍寶石基板(Patterned Sapphire Substrate:PSS)成長GaN晶體和厚膜(大於100 μm),調變參數控制不同的磊晶溫度(825℃ ~ 1050 ℃)和不同的載氣氣氛比例(H2, N2 和 N2/H2)。
本研究中發現,在H2載氣氣氛下,我們觀察到GaN晶體會有高溫成長模式(HT-Growth mode)和低溫成核模式(LT-nucleation mode)的現象。在850 ℃時,我們發現有異於高溫形成的六面柱體的特別型式的六面柱體生成。此外,使用低溫(850 ℃ ~900 ℃)和高溫(950 ℃ ~ 1050 ℃)兩階段成長法,可以控制 和 {1-101} 晶面成長速率,使穿晶差排彎折以降低穿晶差排密度和增加薄膜生長速率。使用不同的載氣氣氛比例(H2, N2, N2/H2),有相同的效果可以控制 和 {1-101} 晶面成長速率,以降低穿晶差排密度,獲得高品質的磊晶薄膜。
我們使用掃描式電子顯微鏡(Scanning Electron Microscopy : SEM)來觀察樣品的表面形態。另外對於本身材料的發光特性,我們採用陰極激發光(Cathodoluminescence : CL)和 拉曼光譜 (Raman spectroscopy)的方式來確定其發光波長位置和局部的應變分佈。為了能深入觀察差排在GaN厚膜裡的分佈範圍,我們以穿透式電子顯微鏡(Transmission Electron Microscopy:TEM)進行分析。最後為了確定GaN厚膜品質,我們利用 X-ray 分析其半高寬寬度(Full Width Half Maximum:FWHM)。
In this dissertation, the hydride vapor phase epitaxy (HVPE) process and epitaxial lateral overgrowth (ELO) method were adopted to deposit the GaN thick films ( > 100 μm ) on patterned sapphire substrate (PSS) with control the growth temperatures in the range of 825 ℃ ~ 1050 ℃ and different carrier gas ratios (i.e. H2, N2, and N2/H2 ).
The high temperature growth mode and low temperature nucleation mode were studied using H2 as a carrier gas. It is found that the formation mechanism of special GaN hexagonal columns at the low temperature of 850 ℃ is different from that of the high temperature GaN columns. Besides, the two step-growth method (i.e. low temperature from 850 ℃ to 900 ℃ and high temperature from 950 ℃ to 1050 ℃) is performed to control the growth rate of (0001) and {1-101} facets to reduce dislocation density by bending the threading dislocations and to increase thick film growth rate. Similar results by varying different carrier gas ratios (i.e. H2, N2, and N2/H2) are also shown to be effective in producing high quality thick epitaxial films with low threading dislocation density.
The scanning electron microscopy (SEM) analysis was examined to observe the surface morphologies of GaN samples. The cathodoluminescence (CL) and Raman spectroscopy analyses were examined to detect luminescent spectra and local strain distribution, which can be associated with threading dislocation distribution by transmission electron microscopy (TEM) observation. X-ray rocking curves were examined to estimate GaN epitaxial quality and revealed that GaN samples grown in N2/H2 (147 arsec)or H2 (728 arsec) carrier gas are better than that grown in N2 (2913 arsec) carrier gas.
第一章
[1] S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, “High-power InGaN single- quantum- well- structure blue and violet light-emitting diodes”, Appl. Phys. Lett. 67, 1868 (1995).
[2] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate”, Appl. Phys. Lett. 72, 211 (1998).
[3] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi- quantum- well- structure laser diodes with a long lifetime”, Appl. Phys. Lett. 70, 868 (1997).
[4] L. Shen, S. Heikman, B. Moran, R. Coffie, N.Q. Zhang, D. Buttari, I.P. Smorchkova, S.Keller, S.P. DenBaars, and U.K. Mishra, “AlGaN/AlN/GaN High-Power Microwave HEMT”, IEEE Electron Device Lett. 22, 457 (2001).
[5] www.keol.net/educate_file/seminar_4_4time.pdf
[6] S. Strite and H. Morkoc, “GaN, AlN and InN, A review”, J. Vac. Sci. Technol. B10, 1237 (1992).
[7] http://www.sei.co.jp (Sumitomo Electric Inc.)
[8] S. Nakamura, “In Situ Monitoring of GaN Growth Using Interference Effects”, Jpn. J. Appl. Phys. 30, 1620 (1991).
[9] J.L. Rouviere, M. Arlery, B. Daudin, G. Feuillet, O. Briot, “Transmission electron microscopy structural characterization of GaN layers grown on (0001) sapphire”, Mater. Sci. and Eng. B50, 61 (1997).
[10] S. Porowski, I.Grzegory, “Thermodynamical properties of III-V nitrides and crystal growth of GaN at high N2 pressure”, J. Crystal Growth 178, 174 (1997).
[11] I. Grzegory, M. Boćkowski, B. Łucznik, S. Krukowski, Z. Romanowski, M. Wróblewski, S. Porowski, “Mechanisms of crystallization of bulk GaN from the solution under high N2 pressure”, J. Cryst. Growth 246, 177 (2002).
[12] Landolt- Börnstein, (springer, New York, 1982), Vol. 17.
[13] H. MorkoG, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large-band-gap SIC, Ill-V nitride, and II-VI ZnSe-based semiconductor device technologies”, J. Appl. Phys., 76, 1363 (1994).
[14] Y. Narukawa, Y. Kawakami, M. Funato, S. Fujita, S. Fujita, S. Nakamura, “Role of self-formed InGaN quantum dots for exciton localization in the purple laser diode emitting at 420 nm”, Appl. Phys. Lett. 70, 981 (1997).
[15] K.P. O’Donnell, R.W. Martin, P.G. Middleton, “Origin of Luminescence from InGaN Diodes”, Phys. Rev. Lett. 82, 237 (1999.).
[16] M.R. Krames, M. Ochiai-Holcomb, G. E. Höfler, C. Carter-Coman, E.I. Chen, I.H. Tan, P. Grillot, N.F. Gardner, H.C. Chui, J.W. Huang, S.A. Stockman, F.A. Kish, M.G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-Power truncated-inverted-pyramid (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency”, Applied Physics Letters, 75, 2365 (1999).
[17] http://www.photonicsonline.com/
[18]www.crm.itis.org.tw/pub/1908/93/14/BookFile/39174737.PDF
[19] K. Moti, T. Okahisa, N. Matsumoto, M. Matsushima, H. Kimura, H. Kasai, K. Takemoto, K. Uematsu, T. Hirano, M. Nakayama, S. Nakahata, M. Ueno, D. hara, Y. Kumagai, A. Koukitu and H. Seki, “Preparation of Large Freestanding GaN Substrates by Hydride Vapor Phase Epitaxy Using GaAs as a Starting Substrate”, Jpn. J. Appl. Phys 40, L140 (2001).
[20] www.sumitomo.com
第二章
[1] http://www.opt.ees.saitama-u.ac.jp/~zyoho/t-oka/epitaxy.html
[2] C. Y. Hwang, Ph.D. Mechanics and Materials Science, Rutgers University, Piscataway, NJ (1995).
[3] J. W. Orton and C. T. Foxon, “The electron mobility and compensation in n-type GaN”, Semicond. Sci. Technol. 13, 310 (1998).
[4]史光國,“GaN 藍色發光及雷射二極體之發展現況“, 工業材料第126期。
[5]廖偉材,“氮化鋁鎵/氮化鎵超晶格原子層磊晶之研究“,逢甲大學材料科學研究所碩士論文,民國93年。
[6]史光國編著,“現代半導體發光及雷射二極體材料技術“,全華出版社,2.1 節。
[7] P. Waltereit, M.D. Craven, S.P. DenBaars, J.S. Speck, “Investigation of the piezoelectric polarization in (In,Ga)N/GaN multiple quantum wells grown by plasma-assisted molecular beam epitaxy”, J. Appl. Phys., 92, 456 (2002).
[8] J.A. Freitas, G.C.B. Braga, W.J. Moore, J.G. Tischler, J.C. Culbertson, M. Fatemi, S.S. Park, S.K. Lee, Y. Park, “Structural and optical properties of thick freestanding GaN templates”, J. Cryst. Growth 231, 322 (2001).
[9] L. Liu, J.H. Edgar, “Substrates for gallium nitride epitaxy”, Mater. Sci. and Eng. R 37, 61 (2002).
[10] I. Grzegory, M. Boćkowski, B. Łucznik, S. Krukowski, Z. Romanowski, M. Wróblewski, and S. Porowski, “Mechanisms of crystallization of bulk GaN from the solution under high N2 pressure”. J. Cryst. Growth, 246, 177 (2002).
[11] C. Klemenz, H.J. Scheel, “Crystal growth and liquid-phase epitaxy of gallium nitride”, J. Cryst. Growth, 211, 62 (2000).
[12] D.R. Ketchum, J.W. Kolis, “Crystal growth of gallium nitride in supercritical ammonia”, J. Cryst. Growth, 222, 431 (2001).
[13] M. Aoki, H. Yamane, M. Shimada, S. Sarayama and F.J. DiSalvo, “GaN single crystal growth using high-purity Na as a flux”, J. Cryst. Growth, 242, 70 (2002).
[14] 曾素芬、龔志榮、林昆明,“含鋁之Ⅲ族氮化物多層結構影響氮化鎵薄膜內貫穿式差排行為之研究“,逢甲大學材料科學研究所碩士論文,92年。
[15] M.K. Kelly, R.P. Vaudo, B.M. Phanse, L. Gorgens, O. Ambacher and M. Stutzmann, “Large Free-Standing GaN Substrates by Hydride Vapor Phase Epitaxy and Laser-Induced Liftoff”, Jpn. J. Appl. Phys, 38, L217 (1999).
[16] H.P. Liu, I.G. Chen, J.D. Tsay, W.Y. Liu, Y.D. Guo, and J.T. Hsu, “Influence of Growth Temperature on Surface Morphologies of GaN Crystals Grown on Dot-Patterned Substrate by Hydride Vapor Phase Epitaxy”, Journal of Electroceramics, 13, 839 (2004).
[17] E. Aujol, J. Napierala, A. Trassoudaine, E. Gil-Lafon, R. Cadoret, “Thermodynamical and kinetic study of the GaN growth by HVPE under nitrogen”, J. Cryst. Growth, 222, 538 (2001).
[18] Boris V. L'vov, “Kinetics and mechanism of thermal decomposition of GaN”, Thermochimica Acta, 360, 85 (2000).
[19] 劉海平、陳引幹、蔡政達、劉文岳、郭義德、許榮宗, “氫化物氣相磊晶成長法成長氮化鎵晶體“,光電工程季刊 2002年第四季。
[20] A. Usui, A. Sakai, H. Sunakawa, M. Mizuta, Y. Matsumoto, “GaN Crystal Film, a Group III Element Nitride Semiconductor Wafer and a Manufacturing Process Therefor”, U.S. Patent, US006252261, Jun. 26, (2001).
[21] M. Kuball, M. Benyoucef, B. Beaumont and P.Gibart, “Raman mapping of epitaxial lateral overgrown GaN: Stress at the coalescence boundary”, J. Appl. Phys., 90, 3656 (2001).
[22] F. Bertram, T. Riemann, J. Christen, A. Kaschner, A. Hoffmann, K. Hiramatsu, T. Shibata, N. Sawaki, “Epitaxial lateral overgrowth of GaN structures: spatially resolved characterization by cathodoluminescence microscopy and micro-Raman spectroscopy”, Mater. Sci. and Eng. B59,117 (1999).
[23] T. Lei, K. F. Ludwig, Jr., and T. D. Moustakas, “Heteroepitaxy, polymorphism, and faulting in GaN thin films on silicon and sapphire substrates”, J. Appl. Phys., 74, 4430 (1993).
[24] W.A. Melton and J.I. Pankove, “GaN growth on sapphire”, J. Cryst. Growth, 178, 168 (1997).
[25] K. Hiramatsu, “Epitaxial lateral overgrowth techniques used in group III nitride epitaxy”, J. Phys.: Condens. Matter, 13, 6961 (2001).
[26] A. Usui, H. Sunakawa, A. Sakai, A. Yamaguchi, “Thick GaN Epitaxial Growth with Low Dislocation Density by Hydride Vapor Phase Epitaxy”, Jpn. J. Appl. Phys. 36, L899 (1997).
[27] T.S. Zheleva, S.A. Smith, D.T. Thomson, T. Gehrke, K.J. Linthicum, P. Rajagopal, E. Carlson, W.M. Ashmawi, R.F. Davis, Mater. Res. Soc. Symp. Proc. 537, G3.38 (1999).
[28] Y. Kawaguchi, S. Nambu, H. Sone, T. Shibata, H. Matsushima, M. Yamaguchi, H. Miyake, K. Hiramatsu, N. Sawaki, “Selective Area Growth of GaN Using Tungsten Mask by Metalorganic Vapor Phase Epitaxy”, Jpn. J. Appl. Phys. 37, L845 (1998).
[29] H. Sone, S. Nambu, Y. Kawaguchi, M. Yamaguchi, H. Miyake, K. Hiramatsu, Y. Iyechika, T. Maeda and N. Sawaki, “Optical and Crystalline Properties of Epitaxial Lateral Overgrown GaN Using Tungsten Mask by Hydride Vapor Phase Epitaxy”, Jpn. J. Appl. Phys. 38, L356 (1999).
[30] I. Kidoguchi, A. Ishibashi, G. Sugahara, Y. Ban, “Air-bridged lateral epitaxial overgrowth of GaN thin films”, Appl. Phys. Lett. 76, 3768 (2000).
[31] I. Kidoguchi, A. Ishibashi, G. Sugahara, and Y. Ban, “Improvement of Crystalline Quality in GaN Films by Air-Bridged Lateral Epitaxial Growth”, Jpn. J. Appl. Phys. 39, L453 (2000).
[32] T. Detchprohm, M. Yano, S. Sano, R. Nakamura, S. Mochiduki, T. Nakamura, H. Amano and I. Akasaki: Heteroepitaxial Lateral Overgrowth of GaN on Periodically Grooved Substrates, “A New Approach for Growing Low-Dislocation-Density GaN Single Crystals”, Jpn. J. Appl. Phys. 40, L16 (2001).
[33] X. Zhang, R.R. Li, P.D. Dapkus and D.H. Rich, “Direct lateral epitaxy overgrowth of GaN on sapphire substrates based on a sparse GaN nucleation technique”, Appl. Phys. Lett. 77, 2213 (2000).
[34] K. Hiramatsu, K. Nishiyama, M. Onishi, H. Mizutani, M. Narukawa, A. Motogaito, H. Miyake, Y. Iyechika, T. Maeda, “Fabrication and characterization of low defect density GaN using facet-controlled epitaxial lateral overgrowth (FACELO)”, J. Cryst. Growth, 221, 316 (2000).
[35] K. Hiramatsu, K. Nishiyama, A. Motogaito, H. Miyake, Y. Iyechika and T. Maeda, “Epitaxial lateral overgrowth techniques used in group III nitride Epitaxy”, Phys. Status Solidi A 176, 535 (1999).
[36] Y. Fu, F. Yun, Y.T. Moon, Ü. Özgür, J.Q. Xie, X.F. Ni, N. Biyikli, H. Morkoç, L. Zhou, D.J. Smith, C.K. Inoki, T.S. Kuan, “Dislocation reduction in GaN grown on porous TiN networks by metal-organic vapor-phase epitaxy”, J. Appl. Phys. 99, 33518 (2006).
[37] Y. Oshima, T. Eri, M. Shibata, H. Sunakawa, K. Kobayashi, T. Ichihashi and A. Usui, “Preparation of Freestanding GaN Wafers by Hydride Vapor Phase Epitaxy with Void-Assisted Separation”, Jpn. J. Appl. Phys. 42 L1-L3 (2003).
第三章
[1]http://www.asu.edu/clas/csss/chrem/facilities/jsm6300.html
[2]張靜宜,“側向磊晶技術成長氮化鎵之研究“,國立成功大學材料科學及工程學研究所碩士論文,民國94年。
[3]車吉平,“半導體奈米帶與奈米線之光譜研究“,國立台灣師範大學物理研究所碩士論文,民國93年。
[4] W. Hayes, R. Loudon, “Scattering of light by crystals” (Wiley, New York 1978).
[5] I. Gorczyca, N.E. Christensen, E.L. Peltzer Blancá, C.O. Rodriguez, “Optical phonon modes in GaN and AlN”, Phys. Rev. B 51, 11936 (1995).
[6] F. Demangeot, J. Frandon, M.A. Renucci, O. Briot, B. Gil, and R.L. Aulombard, “Raman determination of phonon deformation potentials in α-GaN”, Solid State Commun., 100, 207 (1996).
[7] C. Kisielowski, J. Kruger, S. Ruvimov, T. Suski, J.W. Ager III, E. Jones, Z. Liliental-Weber, “Stain-related phenomena in GaN thin films”, Phys. Rev. B, 54, 177452 (1996).
[8] M. Kuball, M. Benyoucef, B. Beaumont and P.Gibart, “Raman mapping of epitaxial lateral overgrown GaN: Stress at the coalescence boundary”, J. Appl. Phys., 90, 3656 (2001).
第四章
[1]劉海平、陳引幹、蔡政達、劉文岳、郭義德、許榮宗,”氫化物氣相磊晶成長法成長氮化鎵晶體”,光電工程季刊 2002年第四季。
[2] N. Kobayahi, “Surface photoabsorption monitoring of III-V and GaN MOVPE surfaces”, J. Cryst. Growh, 195, 228 (1998).
[3] N. Kobayashi, Y. Kobayashi, “In-situ optical monitoring of surface morphology and stoichiometry during GaN metal organic vapor phase epitaxy, Applied Surface Science”, 159/160, 398 (2000).
[4] H.P. Liu, J.D. Tsay, W.Y. Liu, Y.D. Guo, J.T. Hsu, I.G. Chen, “The growth mechanism of GaN grown by hydride vapor phase epitaxy in N2 and H2 carrier gas”, J. Cryst. Growth, 260, 79 (2004).
[5] K. Hiramatsu., K. Nishiyama, A. Motogaito, H. Miyake, Y. Iyechika and T. Maeda, “Recent progress in Selective Area Growth and Epitaxial Lateral Overgrowth of III-Nitrides: Effects of Reactor Pressure in MOVPE Growth”, Phys. Status Solidi (a)176, 535 (1999).
[6]張靜宜,“側向磊晶技術成長氮化鎵之研究”,國立成功大學材料科學及工程學研究所碩士論文,民國94年。
[7] T. Akasaka, Y. Kobayashi, S. Ando, and N. Kobayashi, “GaN hexagonal microprisms with smooth vertical facets fabricated by selective metalorganic vapor phase epitaxy”, Appl. Phys. Lett. 71, 2196 (1997).
[8] Y.H. Cho, H.M. Kim, T.W. Kang, J.J. Song, and W. Yang, “Spatially resolved cathodoluminescence of laterally overgrown GaN pyramids on Si(111) substrate: Strong correlation between structural and optical properties”, Appl. Phys. Lett., 80, 1141 (2002).
第五章
[1] H.P. Liu, I.G. Chen, J.D. Tsay, W.Y. Liu, Y.D. Guo, and J.T. Hsu, “Influence of Growth Temperature on Surface Morphologies of GaN Crystals Grown on Dot-Patterned Substrate by Hydride Vapor Phase Epitaxy”, Journal of Electroceramics, 13, 839 (2004).
[2] F. Dwikusuma, J. Mayer, and T.F. Kuech, “Nucleation and initial growth kinetics of GaN on sapphire substrate by hydride vapor phase epitaxy”, J. Cryst. Growh, 258, 65 (2003).
[3] K. Hiramatsu., K. Nishiyama, A. Motogaito, H. Miyake, Y. Iyechika and T. Maeda, “Recent Progress in Selective Area Growth and Epitaxial Lateral Overgrowth of III-Nitrides: Effects of Reactor Pressure in MOVPE Growth”, Phys. Status Solidi (a)176, 535 (1999).
[4] D.D. Koleske, A.E. Wickenden, R.L. Henry, W.J. DeSisto, and R.J. Gorman, “Growth model for GaN with comparison to structural, optical, and electrical properties”, J. Appl. Phys., 84, 1998 (1998).
[5] V. Wagner, O. Parillaud, H. J. Bühlmann, M. Ilegems, S. Gradecak, P. Stadelmann, T. Riemann, and J. Christen, “Influence of the carrier gas composition on morphology, dislocations and microscopic luminescence properties of selectively grown GaN by HVPE”, J. Appl. Phys., 92, 1307 (2002).
[6] Rates of Phase Transformations, edited by R.H. Doremus (Academic Press, 1985), p. 106–108.
[7] Q. K. K. Liu, A. Hoffmann, H. Siegle, A. Kaschner, C. Thomsen, J. Christen, F. Bertram, “Stress analysis of selective epitaxial growth of GaN”, Appl. Phys. Lett. 77, 3122 (1999).
[8] V.Y. Davydov, Yu.E. Kitaev, I.N. Goncharuk, A.N. Smirnov, J. Graul, O. Semchinova, D. Uffmann, M.B. Smirnov, A.P. Mirgorodsky, R.A. Evarestov, “Phonon dispersion and Raman scattering in hexagonal GaN and AlN”, Phys. Rev. B 58, 12899 (1998).
[9] C. Kisielowski, J. Kruger, S. Ruvimov, T. Suski, J.W. Ager III, E. Jones, Z. Liliental-Weber, “Stain-related phenomena in GaN thin films”, Phys. Rev. B, 54, 177452 (1996).
第六章
[1] H.P. Liu, I.G. Chen, J.D. Tsay, W.Y. Liu, Y.D. Guo, “Influence of Carrier Gas on surface Morphology of GaN Grown on SiO2 dot-Patterned Substrate by Hydride Vapor Phase Epitaxy”, Thin solid films, in press (2005).
[2] Zhonghai Yu, M.A.L. Johnson, J.D. Brown, N.A. El-Masry, J.W. Cook Jr., J.F. Schetzina, “Study of the epitaxial lateral overgrowth (ELO) process for GaN on sapphire”, J. Cryst. Growh, 195, 333 (1998).
[3] E. Aujol, J. Napierala, A. Trassoudaine, E. Gil-Lafon, and R. Cadoret, “Thermodynamical and kinetic study of the GaN growth by HVPE under nitrogen”, J. Cryst. Growh, 222, 538 (2001).
[4] H. Miyake, S. Bohyama, M. Fukui, K. Hiramatsu, Y. Iyechika, and T. Maeda, “Carrier-gas dependence of ELO GaN grown by hydride VPE”, J. Cryst. Growh, 237/239, 1055 (2002).
[5] Yasuyuki Kobayahi, Naoki Kobayahi, “Influence of N2 carrier gas on surface stoichiometry in GaN MOVPE studied by surface photoabsorption”, J. Cryst. Growh, 189/190, 301 (1998).
[6] D. D. Koleske, A. E. Wickenden, R. L. Henry, W. J. DeSisto, and R. J. Gorman, “Growth model for GaN with comparison to structural, optical, and electrical properties”, J. Appl. Phys., 84, 1998 (1998).
[7] Robert E Reed-Hill, Reza Abbaschian, Physical Metallurgy Principles, (PWS-KENT, Boston, Massachusettts, 1992) 3rd ed., p.439.
[8] D.A. Porter and K.E. Easterling, “Phase Transformations in Metals and Alloys”, ( Chapman & Hall, London, UK, 1992) 2nd ed., p.168-169.
[9] V. Wagner, O. Parillaud, H. J. Bu¨hlmann, M. Ilegems, S. Gradecak, P. Stadelmann, T. Riemann and J. Christen, “Influence of the carrier gas composition on morphology, dislocations, and microscopic luminescence properties of selectively grown GaN by hydride vapor phase epitaxy”, J. Appl. Phys., 92 , 1307 (2002).
[10] C. Kisielowski, J. Krüger, S. Ruvimov, T. Suski, J. W. Ager III, E. Jones, Z. Liliental-Weber, M. Rubin, E. R. Weber, M. D. Bremser, and R. F. Davis, “Strain-related phenomena in GaN thin films”, Phys. Rev. B, 54, 17745 (1996).
[11] E. Aujol, J. Napierala, A. Trassoudaine, E. Gil-Lafon, and R. Cadoret, “Thermodynamical and kinetic study of the GaN growth by HVPE under nitrogen”, J. Cryst. Growh, 222, 538 (2001).
[12] T. Hino, S. Tomiya, T. Miyajima, K. Yanashima, S. Hashimoto and M. Ikeda, “Characterization of threading dislocations in GaN epitaxial layer”, Appl. Phys. Lett., 76, 3421 (2000).
[13] F. Bertram, J. Christen, M. Schmidt, K. Hiramatsu, S. Kitamura, and N. Sawaki, “Direct imaging of local strain relaxation along the {1-101} side facets and the edges of hexagonal GaN pyramids by cathodoluminescence microscopy”, Physica E, 2, 552 (1998).
[14]Y.H. Cho, H.M. Kim, T.W. Kang, J.J. Song, and W. Yang, “Spatially resolved cathodoluminescence of laterally overgrown GaN pyramids on 111 silicon substrate, “Strong correlation between structural and optical properties”, Appl. Phys. Lett., 80 ,1141 (2002).
[15] S. Gradečak, V. Wagner, M. Ilegems, T. Riemann and J. Christen, P. Stadelmann, “Microscopic evidence of point defect incorporation in laterally overgrown GaN”, Appl. Phys. Lett., 80, 2866 (2002).
[16] H. Teisseyre, P. Perlin, T. Suski, I. Grzegory, S. Porowski, J. Jun, A. Pietraszko, and T. D. Moustakas, “Temperature dependence of the energy gap in GaN bulk single crystals and epitaxial layer”, J. Appl. Phys., 76,
[17] J.L. Rouviere, M. Arlery, B. Daudin, G.. Feuillet, O. Briot, “Transmission electron microscopy structure characterization of GaN layers grown on (0001) sapphire”, Mater. Sci. and Eng. B50, 61 (1997).
[18] Akira Sakai, Haruo Sunakawa, and Akira Usui, “Defect structure in selectively grown GaN films with low threading dislocation density”, Appl. Phys. Lett., 71, 2259 (1997).
[19] Shigeyasu Tanaka, Yasutoshi Kawaguchi, Nobuhiko Sawaki, Michio Hibino, Kazumasa Hiramatsu, “Defect structure in selective area growth GaN pyramid on 111.Si substrate”, Appl. Phys. Lett. 76, 2701 (2000).
[20] Q. K. K. Liu, A. Hoffmann, H. Siegle, A. Kaschner, C. Thomsen, J. Christen, F. Bertram, “Stress analysis of selective epitaxial growth of GaN”, Appl. Phys. Lett. 77, 3122 (1999).
[21] V. Y. Davydov, Yu. E. Kitaev, I. N. Goncharuk, A. N. Smirnov, J. Graul, O. Semchinova, D. Uffmann, M. B. Smirnov, A. P. Mirgorodsky, R. A. Evarestov, “Phonon dispersion and Raman scattering in hexagonal GaN and AlN”, Phys. Rev. B 58, 12899 (1998).
[22] T. Kozawa, T. Kachi, H. Kano, and H. Nagase, “Thermal stress in GaN epitaxial layers grown on sapphire substrates”, J. Appl. Phys. 77, 4389 (1995).
第七章
[1] V. Wagner, O. Parillaud, H. J. Bu¨hlmann, M. Ilegems, S. Gradečak, P. Stadelmann, T. Riemann and J. Christen,” Influence of the carrier gas composition on morphology, dislocations, and microscopic luminescence properties of selectively grown GaNby hydride vapor phase epitaxy”, J. Appl. Phys. 92, 1307 (2002).
[2] H. Miyake, S. Bohyama, M. Fukui, K. Hiramatsu, Y. Iyechika, and T. Maeda, ”Carrier-gas dependence of ELO GaN grown by hydride VPE”, J. Cryst. Growh, 237-239, 1055 (2002).
[3] B.D. Cullity, “Elements of X-Ray Diffraction”, 2th edition. p.501, Addison- Wesley (1978).
校內:2105-06-20公開