| 研究生: |
蔡仲軒 Tsai, Chung-Hsuan |
|---|---|
| 論文名稱: |
通過DFT計算研究鈦亞氨基錯合物與二氧化碳作用後產生尿素的反應 Titanium imido complexes react with CO2 to form urea by DFT Computational Study |
| 指導教授: |
鄭沐政
Cheng, Mu-Jeng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 31 |
| 中文關鍵詞: | 異氰酸酯的脱離 、反位效應 、尿素生成 |
| 外文關鍵詞: | the separation of isocyanate, trans effect, urea formation |
| 相關次數: | 點閱:32 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文透過密度泛函理論(density functional theory)計算來探討鈦亞胺錯合物和二氧化碳反應來產生尿素的反應機制。目前已經有各種的鈦亞胺錯合物和二氧化碳反應的文獻,其中有些反應後會產生尿素,有些則不會。我們希望透過密度泛函理論計算來找出為什麼有些鈦亞胺錯合物和二氧化碳反應後沒有產生尿素。我們發現錯合物 dichloro t-butylimido bispyridine titanium與文獻上所預測的反應途徑不同,它會先轉換成一個能量較高的異構物再和二氧化碳反應。異構物和二氧化碳反應的活化能較低是因為它有著反位效應(trans effect)。此外,第二步脫離出異氰酸酯的活化能不能太高。因為如果沒有異氰酸酯產生,就沒辦法進行第二次的碳氮鍵耦合反應。另外,鈦錯合物第一步和二氧化碳反應與第三步和異氰酸酯反應為競爭反應。如果第一步的活化能較低,則鈦錯合物會優先和二氧化碳反應。鈦錯合物也就不會和異氰酸酯反應,造成沒有尿素形式的鈦錯合物產生。如果實驗環境是在有過量二氧化碳的條件下進行,就需要遵照這個規則。這些結論是透過理論計算後,分析文獻上沒有辦法產生尿素的五個鈦錯合物原因所得出的。
The present study investigates the reaction mechanism of titanium imido complexes with carbon dioxide to produce urea using density functional theory (DFT) calculations. In the process of urea formation, the separation of isocyanate is a crucial step as it determines the subsequent reactions.
We found that titanium complex B follows a reaction pathway different from the one predicted in the literature. It does not react with carbon dioxide in its most stable molecular structure. Instead, it undergoes conversion to a higher-energy isomer before reacting with carbon dioxide. The lower activation energy for the isomer in its reaction with carbon dioxide is attributed to the trans effect, which has been confirmed through the analysis of HOMO and LUMO energies.
For urea formation to occur, the highest activation energy among the steps in the reaction should not exceed 24.4 kcal/mol, as determined by the highest activation energy observed in titanium complex B, known to produce urea. Additionally, the activation energy for the second step, the separation of isocyanate, should not be too high. Without the generation of isocyanate, the second carbon-nitrogen coupling reaction cannot proceed.
It was observed that the first step, the reaction between titanium complex and carbon dioxide, competes with the third step, the reaction with isocyanate. If the activation energy for the first step is lower, the titanium complex will preferentially react with carbon dioxide.
1. Hironori, A. M., A.; John, N. A.; Mark, A. B.; Eric, J. B.; Alexis, T. B.; John, E. B.; Carol, C.; Eckhard, D.; David, A. D.; Kazunari, D.; Daniel, L. D.; Juergen, E.; Etsuko, F.; Dorothy, H. G.; William, A. G.; D. Wayne, G.; Jay, K.; Gregory, J. K.; Harold, H. K.; James, E. L.; Leo, E. M.; Tobin, J. M.; Keiji, M.; Kenneth, M. N.; Roy, P.; Lawrence, Q.; Jens, R.; Wolfgang, M. H. S.; Lanny, D. S.; Ayusman, S.; Gabor, A. S.; Peter, C. S.; B. Ray, S.; William, T., Catalysis Research of Relevance to Carbon Management: Progress, Challenges, and Opportunities. Chem. Rev. 2001, 101, 953−996.
2. HILEMAN, B., CASE GROWS FOR CLIMATE CHANGE. Chem. Eng. News 1999, 77, 16–23.
3. Prasa, R., Fertilizer urea, food security, health a environment. Current Science 1998, 75, 677-683.
4. Pan, M.; Heinecke, G.; Bernardo, S.; Tsui, C.; Levitt, J., Urea: a comprehensive review of the clinical literature. Dermatology Online Journal 2013, 19, 4198 – 4216.
5. Celleno, L., Topical urea in skincare: A review. Dermatol Ther 2018, 31 (6), e12690.
6. Ayyappan, R.; Abdalghani, I.; Da Costa, R. C.; Owen, G. R., Recent developments on the transformation of CO2 utilising ligand cooperation and related strategies. Dalton Trans 2022, 51 (31), 11582-11611.
7. Anderson, J. C.; Moreno, R. B., Synthesis of ureas from titanium imido complexes using CO2 as a C-1 reagent at ambient temperature and pressure. Org Biomol Chem 2012, 10 (7), 1334-8.
8. imon C. Dunn, N. H., Andrew R. Cowley, Jennifer C. Green, and Philip Mountford, Synthesis and Reactions of Group 4 Imido Complexes Supported by Cyclooctatetraene Ligands. Organometallics 2006, 25, 1755–1770.
9. Aldo E. Guiducci, C. L. B., Eric Clot and Philip Mountford, Reactions of cyclopentadienyl-amidinate titanium imido compounds with CO2: cycloaddition-extrusion vs. cycloaddition-insertion. Dalton Trans 2009, 5960–5979.
10. Catherine, L. B. E., C.; Aldo, E. G.; Philip, M., Pendant Arm Functionalized Benzamidinate Titanium Imido Compounds: Experimental and Computational Studies of Their Reactions with CO2. Organometallics 2005, 24, 2347–2367.
11. Tiong, P. J.; Nova, A.; Groom, L. R.; Schwarz, A. D.; Selby, J. D.; Schofield, A. D.; Clot, E.; Mountford, P., Reactions of Cyclopentadienyl−Amidinate Titanium Hydrazides with CO2, CS2, and Isocyanates: Ti═Nα Cycloaddition, Cycloaddition−Insertion, and Cycloaddition−NNR2 Group Transfer Reactions. Organometallics 2011, 30 (5), 1182-1201.
12. Tiong, P. J.; Groom, L. R.; Clot, E.; Mountford, P., Synthesis, bonding and reactivity of a terminal titanium alkylidene hydrazido compound. Chemistry 2013, 19 (13), 4198-216.
13. Groom, L. R.; Russell, A. F.; Schwarz, A. D.; Mountford, P., Reactions of a Cyclopentadienyl–Amidinate Titanium Benzimidamido Complex. Organometallics 2014, 33 (4), 1002-1019.
14. Zhizhko, P. A.; Bushkov, N. S.; Pichugov, A. V.; Zarubin, D. N., Oxo/imido heterometathesis: From molecular stoichiometric studies to well-defined heterogeneous catalysts. Coordination Chemistry Reviews 2021, 448.
15. Dubberley, S. R.; Friedrich, A.; Willman, D. A.; Mountford, P.; Radius, U., Synthesis and reactivity of calix[4]arene-supported group 4 imido complexes. Chemistry 2003, 9 (15), 3634-54.
16. Alexander, J. B.; Jacqueline, M. M.; Philip, M.; Georgii, I. N.; Daniel, S.; David, J. W., Cycloaddition reactions of titanium and zirconium imido, oxo and hydrazido complexes supported by tetraaza macrocyclic ligands. J. Chem. Soc., Dalton Trans. 1999, 379–391.
17. Wertz, D. H., Relationship between the gas-phase entropies of molecules and their entropies of solvation in water and 1-octanol. Journal of the American Chemical Society 1980, 102 (16), 5316-5322.
18. Besora, M.; Vidossich, P.; Lledos, A.; Ujaque, G.; Maseras, F., Calculation of Reaction Free Energies in Solution: A Comparison of Current Approaches. J Phys Chem A 2018, 122 (5), 1392-1399.
19. Ziegler, J. C. a. T., A Density Functional Study of SN2 Substitution at Square-Planar Platinum(II) Complexes. Inorg. Chem. 2002, 41, 6614–6622.
20. J. V. QUAGLIANO, L. S., The Trans Effect in Complex Inorganic Compounds. Chem. Rev. 1952, 50, 201–260.