| 研究生: |
謝昂軒 Sie, Ang-Syuan |
|---|---|
| 論文名稱: |
微波輔助合成氧化鎳奈米顆粒應用至鈣鈦礦太陽能電池之研究 Microwave-Assisted Synthesized Nickel Oxide Nanoparticles and Their Application for Perovskite Solar Cells |
| 指導教授: |
陳昭宇
Chen, Chao-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 118 |
| 中文關鍵詞: | 微波合成法 、氧化鎳 、鈣鈦礦太陽能電池 |
| 外文關鍵詞: | Microwave processing, Nickel oxide, Perovskite solar cells |
| 相關次數: | 點閱:109 下載:11 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究成功利用微波輔助合成法取代傳統水熱合成法製備氧化鎳奈米顆粒,達到縮短製程時間並減少能源損耗之效益,透過調變微波功率、微波溫度、微波時間及燒結溫度等參數,改變氧化鎳產物之形貌及顆粒大小,成功取代商用氧化鎳顆粒。選出合適參數進行鋰或銅摻雜實驗,增進氧化鎳導電率,經摻雜後,順利提升氧化鎳導電率,將其應用至鈣鈦礦元件系統中,降低整體元件的串聯電阻,改善其填充因子,減少輸出電流的損耗,進而使元件轉換效率增加。
採用未摻雜之微波合成氧化鎳顆粒所製備之元件,其元件表現為開路電壓1.04 V、短路電流密度16.8 mA/cm2、填充因子0.53、轉換效率9.4%;經鋰1 at%摻雜條件處理後,元件表現為開路電壓1.00 V、短路電流密度18.7 mA/cm2、填充因子0.65、轉換效率12.3%,成功提升電流密度與填充因子,進而改善元件效率。
In this study, we prepared nickel oxide (NiO) nanoparticles (NiOnp), Li-doped NiOnp, and Cu-doped NiOnp via microwave-assisted hydrothermal method and applied these NiOnp as hole transport materials (HTMs) for mesoscopic inverted (p-i-n heterojunction) organometallic lead halide perovskite solar cells (PSCs). Their electrical properties were studied when these NiOnp were spin-coated on the glass substrate to form mesoporous layers. The room temperature conductivity of undoped NiOnp mesoporous layer, derived from Hall effect measurements, was 4.6×10-4 S·cm-1. The conductivity of Li 7 at% and Cu 7 at% doped NiOnp films was estimated to be 6.2×10-3 S·cm-1 and 5.7×10-3 S·cm-1, respectively, which is 12~13 times better than that of the undoped reference. The series resistance (Rs) of the PSCs utilizing Li-doped NiOnp or Cu-doped NiOnp decreased with respect to that using undoped NiOnp, leading to a superior fill factor (FF) with a value exceeding 0.72. Accordingly, the fabricated PSC based on Li-doped and Cu-doped NiOnp exhibited an increased power conversion efficiency up to 12.3% and 11.1%, respectively, compared to the undoped NiOnp counterpart with an efficiency of 9.4%.
1. Williams, R., Becquerel Photovoltaic Effect in Binary Compounds. The Journal of Chemical Physics, 1960. 32(5): p. 1505-1514.
2. Gratzel, M., Powering the planet. Nature, 2000. 403(6768): p. 363-363.
3. Conibeer, G., Third-generation photovoltaics. Materials Today, 2007. 10(11): p. 42-50.
4. Schultz, O., S.W. Glunz, and G.P. Willeke, SHORT COMMUNICATION: ACCELERATED PUBLICATION: Multicrystalline silicon solar cells exceeding 20% efficiency. Progress in Photovoltaics: Research and Applications, 2004. 12(7): p. 553-558.
5. Antonio Luque, S.H., Handbook of Photovoltaic Science and Engineering, Second Edition. John Wiley & Sons, Ltd, 2011.
6. O'Regan, B. and M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991. 353(6346): p. 737-740.
7. Tsubomura, H., et al., Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell. Nature, 1976. 261(5559): p. 402-403.
8. Stranks, S.D. and H.J. Snaith, Metal-halide perovskites for photovoltaic and light-emitting devices. Nat Nano, 2015. 10(5): p. 391-402.
9. Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T., Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society, 2009. 131(17): p. 6050-6051.
10. Saliba, M., et al., Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy & Environmental Science, 2016.
11. NREL, http://www.nrel.gov/ncpv/images/efficiency_chart.jpg. 2016.
12. Wurfel, P., Physics of Solar Cells: From Basic Principles to Advanced Concepts. John Wiley & Sons, Inc., 2009.
13. Nelson, J., The Physics of Solar Cells. World Scientific Publishing Co Pte Ltd, 2003.
14. Yang, W.S., et al., High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015. 348(6240): p. 1234-1237.
15. Jeon, N.J., et al., Compositional engineering of perovskite materials for high-performance solar cells. Nature, 2015. 517(7535): p. 476-+.
16. Heo, J.H., et al., Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy & Environmental Science, 2015. 8(5): p. 1602-1608.
17. Nie, W.Y., et al., High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science, 2015. 347(6221): p. 522-525.
18. You, J.B., et al., Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nature Nanotechnology, 2016. 11(1): p. 75-+.
19. Xing, G., et al., Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3. Science, 2013. 342(6156): p. 344-347.
20. Stranks, S.D., et al., Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. Science, 2013. 342(6156): p. 341-344.
21. Jung, J.W., C.-C. Chueh, and A.K.Y. Jen, High-Performance Semitransparent Perovskite Solar Cells with 10% Power Conversion Efficiency and 25% Average Visible Transmittance Based on Transparent CuSCN as the Hole-Transporting Material. Advanced Energy Materials, 2015. 5(17): p. n/a-n/a.
22. Christians, J.A., R.C.M. Fung, and P.V. Kamat, An Inorganic Hole Conductor for Organo-Lead Halide Perovskite Solar Cells. Improved Hole Conductivity with Copper Iodide. Journal of the American Chemical Society, 2014. 136(2): p. 758-764.
23. Manders, J.R., et al., Solution-Processed Nickel Oxide Hole Transport Layers in High Efficiency Polymer Photovoltaic Cells. Advanced Functional Materials, 2013. 23(23): p. 2993-3001.
24. Irwin, M.D., et al., p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells. Proceedings of the National Academy of Sciences, 2008. 105(8): p. 2783-2787.
25. Chueh, C.-C., C.-Z. Li, and A.K.Y. Jen, Recent progress and perspective in solution-processed Interfacial materials for efficient and stable polymer and organometal perovskite solar cells. Energy & Environmental Science, 2015. 8(4): p. 1160-1189.
26. Chen, W., et al., Hybrid interfacial layer leads to solid performance improvement of inverted perovskite solar cells. Energy & Environmental Science, 2015. 8(2): p. 629-640.
27. Kim, Y.H., et al., Highly Conductive PEDOT:PSS Electrode with Optimized Solvent and Thermal Post-Treatment for ITO-Free Organic Solar Cells. Advanced Functional Materials, 2011. 21(6): p. 1076-1081.
28. Park, J.H., et al., Efficient CH3NH3PbI3 Perovskite Solar Cells Employing Nanostructured p-Type NiO Electrode Formed by a Pulsed Laser Deposition. Advanced Materials, 2015. 27(27): p. 4013-4019.
29. Kim, J.H., et al., High-Performance and Environmentally Stable Planar Heterojunction Perovskite Solar Cells Based on a Solution-Processed Copper-Doped Nickel Oxide Hole-Transporting Layer. Advanced Materials, 2015. 27(4): p. 695-701.
30. Zhu, Z., et al., High-Performance Hole-Extraction Layer of Sol–Gel-Processed NiO Nanocrystals for Inverted Planar Perovskite Solar Cells. Angewandte Chemie International Edition, 2014. 53(46): p. 12571-12575.
31. Wu, C.-C. and C.-F. Yang, Effect of annealing temperature on the characteristics of the modified spray deposited Li-doped NiO films and their applications in transparent heterojunction diode. Solar Energy Materials and Solar Cells, 2015. 132: p. 492-498.
32. Green, M.A., A. Ho-Baillie, and H.J. Snaith, The emergence of perovskite solar cells. Nat Photon, 2014. 8(7): p. 506-514.
33. Park, N.-G., Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell. The Journal of Physical Chemistry Letters, 2013. 4(15): p. 2423-2429.
34. Kazim, S., et al., Perovskite as Light Harvester: A Game Changer in Photovoltaics. Angewandte Chemie International Edition, 2014. 53(11): p. 2812-2824.
35. Snaith, H.J., Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells. The Journal of Physical Chemistry Letters, 2013. 4(21): p. 3623-3630.
36. Snaith, H.J. and M. Grätzel, Electron and Hole Transport through Mesoporous TiO2 Infiltrated with Spiro-MeOTAD. Advanced Materials, 2007. 19(21): p. 3643-3647.
37. Lee, M.M., et al., Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science, 2012. 338(6107): p. 643-647.
38. Kim, H.-S., et al., Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Scientific Reports, 2012. 2: p. 591.
39. Burlakov, V.M., et al., Controlling coverage of solution cast materials with unfavourable surface interactions. Applied Physics Letters, 2014. 104(9): p. 091602.
40. Eperon, G.E., et al., Morphological Control for High Performance, Solution-Processed Planar Heterojunction Perovskite Solar Cells. Advanced Functional Materials, 2014. 24(1): p. 151-157.
41. Saliba, M., et al., Influence of Thermal Processing Protocol upon the Crystallization and Photovoltaic Performance of Organic–Inorganic Lead Trihalide Perovskites. The Journal of Physical Chemistry C, 2014. 118(30): p. 17171-17177.
42. Liu, M., M.B. Johnston, and H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013. 501(7467): p. 395-398.
43. Barrows, A.T., et al., Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition. Energy & Environmental Science, 2014. 7(9): p. 2944-2950.
44. Burschka, J., et al., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013. 499(7458): p. 316-319.
45. Chen, Q., et al., Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process. Journal of the American Chemical Society, 2014. 136(2): p. 622-625.
46. Xiao, Z., et al., Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy & Environmental Science, 2014. 7(8): p. 2619-2623.
47. Im, J.-H., et al., Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nat Nano, 2014. 9(11): p. 927-932.
48. Jeon, N.J., et al., Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat Mater, 2014. 13(9): p. 897-903.
49. Jeon, N.J., et al., Compositional engineering of perovskite materials for high-performance solar cells. Nature, 2015. 517(7535): p. 476-480.
50. Xiao, M., et al., A Fast Deposition-Crystallization Procedure for Highly Efficient Lead Iodide Perovskite Thin-Film Solar Cells. Angewandte Chemie, 2014. 126(37): p. 10056-10061.
51. Xiao, Z., et al., Solvent Annealing of Perovskite-Induced Crystal Growth for Photovoltaic-Device Efficiency Enhancement. Advanced Materials, 2014. 26(37): p. 6503-6509.
52. Chiang, C.-H., Z.-L. Tseng, and C.-G. Wu, Planar heterojunction perovskite/PC71BM solar cells with enhanced open-circuit voltage via a (2/1)-step spin-coating process. Journal of Materials Chemistry A, 2014. 2(38): p. 15897-15903.
53. You, J., et al., Moisture assisted perovskite film growth for high performance solar cells. Applied Physics Letters, 2014. 105(18): p. 183902.
54. Bass, K.K., et al., Influence of moisture on the preparation, crystal structure, and photophysical properties of organohalide perovskites. Chemical Communications, 2014. 50(99): p. 15819-15822.
55. Lu, Y.M., et al., Properties of nickel oxide thin films deposited by RF reactive magnetron sputtering. Thin Solid Films, 2002. 420–421: p. 54-61.
56. Sato, H., et al., Transparent conducting p-type NiO thin films prepared by magnetron sputtering. Thin Solid Films, 1993. 236(1): p. 27-31.
57. Eiji, F., et al., Preferred Orientations of NiO Films Prepared by Plasma-Enhanced Metalorganic Chemical Vapor Deposition. Japanese Journal of Applied Physics, 1996. 35(3A): p. L328.
58. Scharber, M.C., et al., Design Rules for Donors in Bulk-Heterojunction Solar Cells—Towards 10 % Energy-Conversion Efficiency. Advanced Materials, 2006. 18(6): p. 789-794.
59. Kumagai, H., et al., Preparation and characteristics of nickel oxide thin film by controlled growth with sequential surface chemical reactions. Journal of Materials Science Letters, 1996. 15(12): p. 1081-1083.
60. Michihiko, K., et al., Preparation and Electrochromic Properties of RF-Sputtered N i O x Films Prepared in A r / O 2 / H 2 Atmosphere. Japanese Journal of Applied Physics, 1994. 33(12R): p. 6656.
61. Choi, J.-M. and S. Im, Ultraviolet enhanced Si-photodetector using p-NiO films. Applied Surface Science, 2005. 244(1–4): p. 435-438.
62. Kang, J.-K. and S.-W. Rhee, Chemical vapor deposition of nickel oxide films from Ni(C5H5)2/O2. Thin Solid Films, 2001. 391(1): p. 57-61.
63. Sta, I., et al., Structural, optical and electrical properties of undoped and Li-doped NiO thin films prepared by sol–gel spin coating method. Thin Solid Films, 2014. 555: p. 131-137.
64. Chia-Ching, W. and Y. Cheng-Fu, Investigation of the properties of nanostructured Li-doped NiO films using the modified spray pyrolysis method. Nanoscale Research Letters, 2013. 8(1): p. 1-5.
65. Wang, J., et al., Room-temperature ferromagnetism observed in Fe-doped NiO. Applied Physics Letters, 2005. 87(20): p. 202501.
66. Minoru, T., H. Takeshi, and K. Takeshi, Room-Temperature Heteroepitaxial Growth of NiO Thin Films using Pulsed Laser Deposition. Japanese Journal of Applied Physics, 2000. 39(4R): p. 1817.
67. Yang, T.S., et al., Atomic layer deposition of nickel oxide films using Ni(dmamp)2 and water. Journal of Vacuum Science & Technology A, 2005. 23(4): p. 1238-1243.
68. Justin, P., S.K. Meher, and G.R. Rao, Tuning of Capacitance Behavior of NiO Using Anionic, Cationic, and Nonionic Surfactants by Hydrothermal Synthesis. The Journal of Physical Chemistry C, 2010. 114(11): p. 5203-5210.
69. Lai, T.L., et al., Microwave-assisted and liquid oxidation combination techniques for the preparation of nickel oxide nanoparticles. Journal of Alloys and Compounds, 2008. 450(1-2): p. 318-322.
70. Al-Sehemi, A.G., et al., Microwave synthesis, optical properties and surface area studies of NiO nanoparticles. Journal of Molecular Structure, 2014. 1058: p. 56-61.
71. Kumar Rai, A., et al., Electrochemical study of NiO nanoparticles electrode for application in rechargeable lithium-ion batteries. Ceramics International, 2013. 39(6): p. 6611-6618.
72. Anandha Babu, G., et al., Influence of microwave power on the preparation of NiO nanoflakes for enhanced magnetic and supercapacitor applications. Dalton Transactions, 2015. 44(10): p. 4485-4497.
73. Wang, H.-T., et al., p-Type dye-sensitized solar cell based on nickel oxide photocathode with or without Li doping. Journal of Alloys and Compounds, 2014. 584: p. 142-147.
74. Tian, H., et al., Solid-State Perovskite-Sensitized p-Type Mesoporous Nickel Oxide Solar Cells. ChemSusChem, 2014. 7(8): p. 2150-2153.
75. Wang, K.-C., et al., p-type Mesoscopic Nickel Oxide/Organometallic Perovskite Heterojunction Solar Cells. Scientific Reports, 2014. 4: p. 4756.
76. Jeng, J.-Y., et al., Nickel Oxide Electrode Interlayer in CH3NH3PbI3 Perovskite/PCBM Planar-Heterojunction Hybrid Solar Cells. Advanced Materials, 2014. 26(24): p. 4107-4113.
77. Wang, K.-C., et al., Low-Temperature Sputtered Nickel Oxide Compact Thin Film as Effective Electron Blocking Layer for Mesoscopic NiO/CH3NH3PbI3 Perovskite Heterojunction Solar Cells. ACS Applied Materials & Interfaces, 2014. 6(15): p. 11851-11858.
78. Trifiletti, V., et al., NiO/MAPbI3-xClx/PCBM: A Model Case for an Improved Understanding of Inverted Mesoscopic Solar Cells. ACS Applied Materials & Interfaces, 2015. 7(7): p. 4283-4289.
79. Ponseca, C.S., et al., Organometal Halide Perovskite Solar Cell Materials Rationalized: Ultrafast Charge Generation, High and Microsecond-Long Balanced Mobilities, and Slow Recombination. Journal of the American Chemical Society, 2014. 136(14): p. 5189-5192.
80. Corani, A., et al., Ultrafast Dynamics of Hole Injection and Recombination in Organometal Halide Perovskite Using Nickel Oxide as p-Type Contact Electrode. The Journal of Physical Chemistry Letters, 2016. 7(7): p. 1096-1101.
81. Lai, W.C., et al., Perovskite-Based Solar Cells With Nickel-Oxidized Nickel Oxide Hole Transfer Layer. IEEE Transactions on Electron Devices, 2015. 62(5): p. 1590-1595.
82. Lai, W.-C., et al., Oxidized Ni/Au Transparent Electrode in Efficient CH3NH3PbI3 Perovskite/Fullerene Planar Heterojunction Hybrid Solar Cells. Advanced Materials, 2016. 28(17): p. 3290-3297.
83. Cui, J., et al., CH3NH3PbI3-Based Planar Solar Cells with Magnetron-Sputtered Nickel Oxide. ACS Applied Materials & Interfaces, 2014. 6(24): p. 22862-22870.
84. Xiao, M., et al., A Fast Deposition-Crystallization Procedure for Highly Efficient Lead Iodide Perovskite Thin-Film Solar Cells. Angewandte Chemie International Edition, 2014. 53(37): p. 9898-9903.
85. Park, I.J., et al., New Hybrid Hole Extraction Layer of Perovskite Solar Cells with a Planar p–i–n Geometry. The Journal of Physical Chemistry C, 2015. 119(49): p. 27285-27290.
86. Nakasa, A., et al., Synthesis of Porous Nickel Oxide Nanofiber. Chemistry Letters, 2005. 34(3): p. 428-429.
87. Docampo, P., et al., Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat Commun, 2013. 4.
88. Liu, Z., et al., p-Type mesoscopic NiO as an active interfacial layer for carbon counter electrode based perovskite solar cells. Dalton Transactions, 2015. 44(9): p. 3967-3973.
89. Jung, J.W., C.-C. Chueh, and A.K.Y. Jen, A Low-Temperature, Solution-Processable, Cu-Doped Nickel Oxide Hole-Transporting Layer via the Combustion Method for High-Performance Thin-Film Perovskite Solar Cells. Advanced Materials, 2015. 27(47): p. 7874-7880.
90. Yin, X., et al., High efficiency hysteresis-less inverted planar heterojunction perovskite solar cells with a solution-derived NiOx hole contact layer. Journal of Materials Chemistry A, 2015. 3(48): p. 24495-24503.
91. Zhang, H., et al., Pinhole-Free and Surface-Nanostructured NiOx Film by Room-Temperature Solution Process for High-Performance Flexible Perovskite Solar Cells with Good Stability and Reproducibility. ACS Nano, 2016. 10(1): p. 1503-1511.
92. You, J., et al., Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat Nano, 2016. 11(1): p. 75-81.
93. Chen, W., et al., Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science, 2015. 350(6263): p. 944-948.
94. Subbiah, A.S., et al., Inorganic Hole Conducting Layers for Perovskite-Based Solar Cells. The Journal of Physical Chemistry Letters, 2014. 5(10): p. 1748-1753.
95. Li, Y., et al., Hole-conductor-free planar perovskite solar cells with 16.0% efficiency. Journal of Materials Chemistry A, 2015. 3(36): p. 18389-18394.
96. Wilson, G.J., et al., Modification of TiO2 for Enhanced Surface Properties: Finite Ostwald Ripening by a Microwave Hydrothermal Process. Langmuir, 2006. 22(5): p. 2016-2027.
97. Satoshi Horikoshi, N.S., Microwaves in Nanoparticle Synthesis: Fundamentals and Applications. John Wiley & Sons, Inc., 2013.
98. Bilecka, I. and M. Niederberger, Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale, 2010. 2(8): p. 1358-1374.
99. Dallinger, D. and C.O. Kappe, Microwave-Assisted Synthesis in Water as Solvent. Chemical Reviews, 2007. 107(6): p. 2563-2591.
100. Anandan, K., Structural, optical and magnetic properties of well-dispersed NiO nanoparticles synthesized by CTAB assisted solvothermal process. Nanoscience and Nanotechnology: An International Journal, 2012. 2(4): p. 24-29.
101. M. Mohammadijoo, Z.N.K., S.K. Sadrnezhaad and V. Mazinani, Synthesis and characterization of nickel oxide nanoparticle with wide band gap energy prepared via thermochemical processing. Nanoscience and Nanotechnology: An International Journal, 2014. 4(1): p. 6-9.
102. Fominykh, K., et al., Ultrasmall Dispersible Crystalline Nickel Oxide Nanoparticles as High-Performance Catalysts for Electrochemical Water Splitting. Advanced Functional Materials, 2014. 24(21): p. 3123-3129.
103. Ito, S., et al., Fabrication of screen-printing pastes from TiO2 powders for dye-sensitised solar cells. Progress in Photovoltaics: Research and Applications, 2007. 15(7): p. 603-612.