簡易檢索 / 詳目顯示

研究生: 劉政德
Liu, Zhen-Te
論文名稱: 基於嵌入式系統之四軸摩托車設計與實現
Design and Implementation of the Quadrotor-Motorcycle Based on Embedded System
指導教授: 廖德祿
Liao, Teh-Lu
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 66
中文關鍵詞: 四旋翼無人飛機慣性座標控制系統互補式濾波器即時作業系統嵌入式系統
外文關鍵詞: quadrotor, UAV, inertial system, control system, complementary filter, RTOS, embedded system
相關次數: 點閱:103下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於四軸飛行器具有構造簡單、機動性高、操作容易等特點,常被拿來做為各種開發或應用,例如物流配送和軍事用途。因此,四軸飛行器在近年來已經被大量的作為理論及實務的研究議題。在本論文中,設計了新的無人機具,其核心硬體架構是將兩輪車體與四軸飛行器結合,可稱為四軸摩托車。在實際應用上,用於地形查勘時,不同於持續在空中飛行的四軸飛行器,四軸摩托車也能夠行走在地面上,使得移動方式有著更多的可能性,也可以節省電能消耗。
    本文是以提升四軸摩托車穩定度為主要研究目標,先在MATLAB上建立一四軸摩托車的模擬平台,透過其內建的Simulink來模擬飛行姿態與動態方程式。以所得到的動態行為,並在此模擬平台上設計PD回授控制器,作為四軸摩托車穩定飛行之軟體模擬。經模擬驗證後,以實體化方式將四軸飛行器的控制核心建立於嵌入式系統QCopterFC飛控板上。並且實現互補式濾波器來改善感測器的誤差與雜訊,進而提升該穩定性。
    飛控板的核心為ARM Cortex-M4架構的微處理器-STM32F405,在ARM架構下所需的作業系統,在本論文中移植其相容的FreeRTOS即時作業系統。透過排程器的選擇機制決定下一個執行工作,實現分時多工的功能。據此,四軸摩托車可擁有多個執行緒來執行不同任務,亦有利於此作業系統的其他應用。此外,本論文在Linux平台上也用Python語言設計一個地面站,實現圖形化使用者介面,提供使用者觀察四軸摩托車的姿態變化與參數調整。

    Since the quadrotors are characterized with simple structure, high mobility, and easy operation, it is commonly used in many development and application cases, including transportation logistics and military demands. The researches of the quadrotor have been extensively studied in recent years. In the thesis, design of the new unmanned vehicle combined a two-wheel vehicle with quadrotor is named quadrotor-motorcycle. In the practical application of topography exploration, it differs from general quadrotors that need to be sustained in the sky, the quadrotor-motorcycle can move on the ground, so that the moving method has more choices. In addition, it can make up the shortcoming of short endurance.
    This thesis aims to enhance the stability of quadrotor-motorcycle. With built-in Simulink of MATLAB, a simulation platform for building a model of the vehicle has been established. Based on the vehicle dynamic characteristics, the PD controller that supports control system is designed in the simulation platform. After simulation and verification, the flight control system can be implemented into an embedded system of QCopterFC flight control board. And, the complementary filter is adopted in order to reduce noise of sensors, making quadrotor-motorcycle’s flight attitude even more stable.
    In this thesis, the processor of flight control board is ARM Cortex-M4 architecture. The compatible Real Time Operating System (RTOS), called FreeRTOS, is then transplanted into an embedded system for implementation of the time-sharing multiplex functionality. Accordingly, by executing different threads, the quadrotor-motorcycle can process more tasks with applications. Besides, the Graphical User Interface (GUI) software of ground station has been implemented by Python based on Linux platform, so that Users can observe the real time data of flight attitude and adjust parameters on the GUI software.

    摘要 I Abstract III 誌謝 V Contents VI List of Figures IX List of Tables XII CHAPTER 1 INTRODUCTION 1 1.1 Background 1 1.2 Motivation and Objectives 2 1.3 Thesis Organization 4 CHAPTER 2 FUNDAMENTAL KNOWLEDGE 5 2.1 Coordinate System 5 2.1.1 Euler angles 6 2.1.2 Attitude Measurement 9 2.2 Quadrotor Principle 10 2.2.1 Quadrotor Movement 11 2.2.2 Flight Attitude Control 12 2.3 Hardware Components 14 2.3.1 Flight Control Board 14 2.3.2 Microcontroller System 15 2.3.3 IMU System 15 2.3.4 Motor System 18 2.3.5 Wireless Communication System 20 CHAPTER 3 SYSTEM DESIGN 21 3.1 Quadrotor-Motorcycle Model 21 3.2 Quadrotor-Motorcycle Model with Tube 25 3.3 Control System 28 3.3.1 Control Process 28 3.3.2 PD Controller 29 3.3.3 Control System of Quadrotor-Motorcycle 31 3.4 Sensor Fusion 32 3.4.1 Complimentary Filter 32 3.5 Real Time Operating System 36 3.5.1 Introduction to RTOS 37 3.5.2 FreeRTOS 37 3.5.3 Task States 39 CHAPTER 4 SIMULATION AND IMPLEMENTATION 41 4.1 MATLAB Simulation 41 4.1.1 Simulink of Quadrotor 42 4.1.2 Simulink of Quadrotor-Motorcycle 46 4.1.3 Simulink of Quadrotor-Motorcycle with tube 49 4.2 Hardware Implementation 52 4.2.1 Hardware Architecture 52 4.2.2 Quadrotor-Motorcycle Implementation 54 4.3 Software Implementation 56 4.3.1 Software Structure 56 4.3.2 Development of Ground Station 58 4.3.3 Experimental Analysis 60 CHAPTER 5 CONCLUSIONS AND FUTURE WORK 63 5.1 Conclusion 63 5.2 Future Work 63 References 65

    [1]A. Tayebi, S. McGilvray, “Attitude Stabilization of a VTOL Quadrotor Aircraft”, IEEE Transactions on Control Systems Technology, vol. 14(3), pp.562-571, 2006.
    [2]S. Bouabdallah, P. Murrieri, R. Siegwart, “Design and Control of an Indoor Micro Quadrotor”, IEEE International Conference on Robotics and Automation, vol. 5(10), pp.4393, 2004.
    [3]J.G. Leishman, “The Breguet-Richet Quad-Rotor Helicopter of 1907”, http://www.academia.edu/815361/The_breguet-richet_quad-rotor_helicopter_of_1907
    [4]H. Lim, J. Park, D. Lee, H.J. Kim, “Build Your Own Quadrotor Open-Source Projects on Unmanned Aerial Vehicles”, IEEE Robotics and Automation Magazine,vol. 19(3), pp.33-45, 2012.
    [5]S. Salazar, J. Escareño, D. Lara, R. Lozano, “Embedded control of a four-rotor UAV”, International Journal of Adaptive Control and Signal Processing, vol. 21, num. 2-3, pp. 189-204, 2007.
    [6]QCopterFC project, https://github.com/QCopter/QCopterFlightControl
    [7]The FreeRTOS project, http://www.freertos.org
    [8]A. Das, F. Lewis, K. Subbarao, “Backstepping Approach for Controlling a Quadrotor Using Lagrange Form Dynamics”, Journal of Intelligent and Robotic Systems, vol.56, pp. 127-151, 2009.
    [9]A.L. Salih, M. Moghavvemi, H.A.F. Mohamed, K.S. Gaeid, “Flight PID controller design for a UAV quadrotor”, Scientific Research and Essays, vol. 5, pp. 3360–3367, 2010.
    [10]L.M. Argentim, W.C. Rezende, P.E. Santos, R.A. Aguiar, PID, “LQR and LQR-PID on a quadcopter platform”, 2013 International Conference onInformatics, Electronics and Vision (ICIEV), pp. 1–6, 2013.
    [11]D.H. Titterton, J. L. Weston, “Strapdown Inertial Navigation Technology”, 2nd Edition, the Institution of Electrical Engineers, 2004.
    [12]J. Li and Y. Li, “Dynamic analysis and PID control for a quadrotor”, IEEE International Conference on Mechatronics and Automation, pp. 573–578, 2011.
    [13]T.A. Permadi, J. Halomoan, S. Hadiyoso, “Balancing system of tray on waiter robot using complementary filter and fuzzy logic”, 2014 International Conference on Industrial Automation, Information and Communications Technology (IAICT), pp. 15-19, 2014.
    [14]S. Colton, “The Balance Filter”, Submitted as Chief Delphi white paper, 2007.
    [15]S. Niu, J. Zhang, B. Wang, X. Fu, “Analysis and implementation of migrating real-time embedded operating system FreeRTOS kernel based on S3C44B0 processor”,2012 International Symposium on Information Science and Engineering (ISISE), pp.430 - 433, 2012.
    [16]M.H. Amoozgar, A. Chamseddine, Y. M. Zhang, “Experimental Test of a Two-Stage Kalman Filter for Actuator Fault Detection and Diagnosis of an Unmanned Quadrotor Helicopter”, Journal of Intelligent and Robotic Systems, vol. 70(1-4), pp.107-117, 2013.
    [17]R.F. Yang, “Attitude Control of Quadrotor”, National Cheng Kung University Press, 2010.
    [18]STM32F4 Series - STMicroelectronics Datasheet ,
    http://www.st.com/web/en/resource/technical/document/datasheet/DM00037051.pdf
    [19]MPU-9150 Product Specification Revision 4.3,
    http://www.invensense.com/mems/gyro/documents/PS-MPU-9150A-00v4_3.pdf
    [20]MS5611-01BA01 Variometer Module with LCP cap,
    http://www.daedalus.ei.tum.de/attachments/article/61/MS5611-01BA01.pdf

    無法下載圖示 校內:2020-07-16公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE