簡易檢索 / 詳目顯示

研究生: 王詩婷
Wang, Shih-Ting
論文名稱: 利用溶劑熱還原法與銀奈米粒子裝飾探討氧化石墨烯之光激發光特性
Photoluminescence of solvothermal reduced graphene oxide with surface decoration by silver nanoparticles
指導教授: 劉全璞
Liu, Chuan-Pu
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 94
中文關鍵詞: 氧化石墨烯溶劑熱還原法水熱法-溶劑熱法轉換氧官能基銀奈米粒子光激發光表面電漿子
外文關鍵詞: graphene oxide, solvothermal reduction, hydrothermal-solvothermal transition, oxygen-containing functional groups, silver nanoparticles, photoluminescence, surface plasmons
相關次數: 點閱:123下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們利用開放之N-甲基吡咯酮/水(NMP/H2O)系統來溶劑熱還原(solvothermal reduction)氧化石墨烯(graphene oxide)。N-甲基吡咯酮(N-methyl-2-pyrrolidone, NMP)具有高沸點,以及氧官能基排除之特性,早已被用於煤炭之萃取,因此可還原氧化石墨烯之化學還原劑。相較於傳統利用聯胺(H2N2)進行還原,不僅毒性較低,且還原反應快速且有效。在第一部分的研究中,我們利用改良式的Hummer’s method合成氧化石墨烯,並探討其基本性質。在第二部分中,我們利用水熱法-溶劑熱法(hydrothermal-solvothermal)轉換來解釋溶劑熱還原系統在反應過程約60-80 分鐘時所經歷之氧官能基快速移除,以及能隙由3 eV左右驟降至小於1 eV的現象。此系統在二小時左右即完成主要的還原反應,溶液溫度達成平衡(約167oC),而後續的加熱過程能使氧化石墨烯表面帶微量氧官能基,使其再度具有親水性。我們利用光激發光(photoluminescence, PL)探討光學性質小之可調性質,證實在還原過程中,sp2集合體使綠光區的發光產生30-40 eV左右的藍位移。最後,在第三部分中,我們也利用N-甲基吡咯酮,使氧化石墨烯及還原後之氧化石墨烯表面裝飾大小可調之銀奈米粒子,並測得其有效提升其光激發光強度,並與吸收光譜的結果相符,而證實為表面電漿子(surface plasmons)共振造成的效果。綜合上述,在本論文中,利用簡單的還原系統進行氧化石墨烯的還原,並證實其可調之光學性質,同時,利用此系統製備大小可調之銀奈米粒子,裝飾於氧化石墨烯表面,並研究其光學性質,以期對未來發展光學元件、能源與生物醫學技術有所貢獻。

    N-methly-2-pyrrolidone (NMP) has been used for efficient extraction of coals due to its high-boiling point and oxygen-scavenging properties. In this study, we performed reduction of graphene oxide (GO) with NMP/H2O open-air system and demonstrated fast and efficient reduction within two hours. In the first part of this work, we synthesized graphene oxide with modified Hummer’s method as starting material, and characterized its structure and chemical properties. In the second part, we provided a hydrothermal-solvothermal transition at about 60-80 minutes of reduction that causes efficient removal of oxygen-containing functional groups, and rapid decrease of band gap from about 3 eV to 1 eV during the reduction process. Moreover, a 30-40 eV blue shift in the green emission region was shown in photoluminescence (PL) characterization, which correlates to the structural restoration of sp2 carbon rings. In the last part of work, NMP was used in developing silver nanoparticles-decorated (reduced) GO sheets, which exhibited enhancement in the PL intensity by surface plasmon resonance and size adjustable properties of silver nanoparticles. In summary, tunable optical properties by reducing GO with a fast and efficient solvothermal method is provided in this work. In addition, the use of NMP as chemical reagent improves stabilization of silver nanoparticles on reduced GO with adjustable size, and enhancement of the emission intensity. We expect this work to attribute in the development in optoelectronics, energy, and biomedical techniques.

    摘要 I ABSTRACT II 致謝 IV CONTENT V TABLES VII FIGURES VIII CHAPTER1 INTRODUCTION 1 CHAPTER 2 LITERATURE REVIEW 3 2.1 Structure of Graphene Oxide 3 2.2 Reduction of Graphene Oxide 10 2.2.1 Thermal Reduction (thermal annealing) 12 2.2.2 Chemical Reagent Reduction (hydrazine vapor) 14 2.2.3 Solvothermal Reduction (N-methyl-pyrrolidone, NMP) 15 2.3 Graphene Oxidation (Oxygen Plasma treatment) 16 2.4 Optical Properties of Graphene Oxide 18 2.4.1 Introduction to molecular fluorescence 18 2.4.2 The Luminescence of Graphene Oxide 20 2.4.3. Origin of surface plasmon resonance (SPR) in metal nanoparticles 28 2.4.4 Decoration of Metal Nanoparticles on Graphene Oxide 30 CHAPTER 3 EXPERIMENTAL METHODS 32 3.1 Preparation of Graphene Oxide Powder 32 3.1 Solvothermal Reduction of Graphene Oxide 34 3.2 Solvothermal Reduction of Graphene Oxide Decorated with Silver Nanoparticles 34 3.3 Characterization 37 CHAPTER 4 RESULTS AND DISCUSSION 40 4.1 PART 1 - Preparation of Graphene Oxide 40 4.2 PART 2 – Solvothermal Reduction of Graphene Oxide 47 4.3 PART 3 - Silver Nanoparticles-Decorated Graphene Oxide with Oxidized NMP 70 CHAPTER 5 CONCLUSIONS 82 REFERENCES 84 Appendix 93

    1. X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric, H. Dai, Nano Res., 1, 203 (2008).
    2. S. Wu, N. Duan, X. Ma, Y. Xia, H. Wang, Z. Wang, and Q. Zhang, Ana. Chem. 84, 6263-6270 (2012).
    3. K. P. Loh, Q. Bao, G. Eda and M. Chhowalla, Nature Chemistry, Vol. 2 (2012).
    4. F. Bonaccorso, Z. Sun, T. Hasan and A. C. Ferrari, Nature Photonics, Vol. 4 (2010).
    5. H. Chang, H. Wu, Adv. Funct. Mater 23, 16, 1984-1997 (2013).
    6. G. Eda, Y. -Y. Lin, C. Mattevi, H. Yamahuchi, H. -An Chen, I. -S. Chen, C. -W. Chen, M. Chhowalla, Adv. Mater. 21, 1-5 (2009).
    7. G. Xin, Y. Meng, Y. Ma, D. Ho, N. Kim, S. M. Cho, H. Chae, Mat. Lett. 74, 71-73, 2012.
    8. C. -T. Chien, S.-S. Li, W. -J. Lai, Y. -C. Yeh, H. -A. Chen, I. -S. Chen, L. -C. Chen, K. -H. Chen, T. N. Nemoto, S. Isoda, M. Chen, T. Fujita, G. Eda, H. Yamguchi, M. Chhowalla, and C. -W. Chen, Ang. Chen. Int. Ed., 51, 6622-6666 (2012).
    9. J. -L. Chen, and X. -P. Yan, Chem. Commun. 47, 3135-3137 (2011).
    10. Z. X. Gan, S. J. Xiong, X. L. Wu, C. Y. He, J. C. Shen, and P. K. Chu, Nano Lett. 11, 3951-3956 (2011).
    11. C. Liu, Z. Wang, H. Jia, and Z. Li, Chem. Commun, 47, 4661-4663 (2011).
    12. D. R. Jung, J. Kim, S. Nam, C. Nahm, H. Choi, J. I. Kim, J. Lee, C. Kim, and B. Park, Appl. Phys. Lett., 99, 041906 (2011).
    13. Y. Lu, Y. Jiang, W. Wei, H. Wu, M. Liu, L. Niu, and W.Chen, J. Mater. Chem., 22, 2929-2934 (2012).
    14. Q. Mei, K. Zhang, G. Guan, B. Liu, S. Wang, and Z. Zhang, Chem. Commun., 46, 7319-7321 (2010).
    15. W. Lu, C. -H. You, S. Wu, B. Li, Z. -P. Zhu, M. Wang, Q. -H. Yang, and F. Kang, Carbon, 50, 3233-3239 (2012).
    16. H. V. -Rizo, I. M. -Gullón, and M. Terrones, ACS Nano, VOL.6, No. 6, 4565-4572 (2012).
    17. S. Y. Han, I. Y. Kim, K. Y. Jo, and S. -J. Hwang, J. Phys. Chem. C, 116, 7269-7279 (2012).
    18. A. Mathkar, D. Tozier, P. Cox, P. Ong, C. Galande, K. Balakrishnan, A. L. M. Reddy, and P. M. Ajayan, J. Phys. Chem. Lett., 3, 986-991 (2012).
    19. S. Shukla, and S. Saxena, Appl. Phys. Lett. 98, 073104 (2011).
    20. J. Shang, L. Ma, J. Li, W. Ai, T. Yu, and G. G. Gurzadyan, Scientific Reports, 2, 792 (2012).
    21. Sittig, M. (1985) Handbook of Toxic and Hazardous Chemicals and Carcinogens, 2nd ed., Noyes 
Publications: Park Ridge, NJ.
    22. C. Botas, P. Álvarez, C. Blanco, R. Santamaría, M. Granda, M. D. Gutiérrez, F. R. Reinoso, R. Menéndez, Carbon 52, 476-485 (2013).
    23. M. J. F. -Merino, L. Guardia, J. L. Parades, S. V. –Rodil, P. S. Fernández, A. M. Alonso, and J. M.D. Tascón, J. Phys. Chem. C, 114, 6426-6432 (2010).
    24. S. Pei, J. Zhao, J. Du, W. Ren, H. -M. Cheng, Carbon 48, 15, 4466-4474 (2010).
    25. A. Lerf, H. He, M. Forster, and J. Klinowski, J. Phys. Chem. B, 102, 4477-4482 (1998).
    26. T. Szabó, O. Berkesi, P. Forgó, K. Josepovits, Y. Sanakis, D. Petridis, I. Dékány, Chem. Mater, 18, 2740-2749, 2006.
    27. W. S. Hummers, JR., and R. E. Offeman, J. Am. Chem. Soc. 80 (6), 1339 (1958).
    28. B. C. Brodie, F. R. S., Phil. Trans. R. Soc. B, 149, 249-259 (1859).
    29. X. Gao, J. Jang, S. Nagase, J. Phys. Chem. C, 114, 832-842 (2010).
    30. I. Langmuir, Proc. R. Soc. Lond. A, 170, 1-39 (1939).
    31. Y. Gao, X. Chen, H. Xu, Y. Zou, R. Gu, M. Xu, A. K.-Y. Jen, H. Chen, Carbon 48, 4475–4482 (2010).
    32. N. R. Wilson, P. A. Pandey, R. Bealand. R. J. Young, I. A. Kinloch, L. Gong, Z. Liu, K. Suenaga, J. P. Rourke, S. J. York, J. Sloan, ACS Nano 3, 2547-2556 (2009).
    33. A. Buchsteiner, A. Lerf, J. Pieper, J. Phys. Chem. B 110, 45, 22328-22338 (2006).
    34. D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, Chem. Soc. Rev. 39, 228-240 (2010).
    35. W. Cai, R. D. Piner, F. J. Stadermann, S. Park, M. A. Shaibat, Y. Ishii, D. Yang, A. Velamakanni, S. J. An, M. Stoller, J. An, D. Chen, and R. S. Ruoff, Science 321, 1815-1817 (2008).
    36. C. G. -Navarro, J. C. Meyer, R. S. Sundaram, A. Chuvilin, S. Kurasch, M. Burghard, K. Kern, U. Kaiser, Nano. Lett. 10, 1144-1148 (2010).
    37. K. A. Mkhoyan, A. W. Contryman, J. Silcox, D. A. Stewart, G. Eda, C. Mattevi, S. Miller, and M. Chhowalla, Nano Lett. 9, 3, 1058-1063 (2009).
    38. S. Kim, Y. Hu, M. Acik, Y. J. Chabal, C. Berger, W. de Heer, A. Bongiorno, and E. Riedo, Nature Materials 11, 544-549 (2012).
    39. G. Shao, Y. Lu, F. Wu, C. Yang, F. Zeng, Q. Wu, J Mater Sci. 47,4400–4409 (2012).
    40. X. Wu, M. Sprinkle, X. Li, F. Ming, C. Berger, and W. A. de Heer, PRL 101, 026801 (2008).
    41. S. Ameen, M. S. Akhtar, M. Song and H. S. Shin, ACS Appl. Mater. Interfaces 4, 4405−4412 (2012).
    42. V. L ́opez, R. S. Sundaram, C. G. -Navarro, D. Olea, M. Burghard, J. G. -Herrero, F ́. Zamora, and K. Kern, Adv. Mater. 21, 4683-4686 (2009).
    43. S. Pei, H. -M. Cheng, Carbon 50, 9, 3210-3228 (2012).
    44. S. Mao, H. Pu, J. Chen, RSC Adv. 2, 2643-2662 (2012).
    45. M. J. McAllister, J. -L. Li, D. H. Adamson, H. C. Schniepp, A. A. Abdala, J. Liu, M. H. -Alonso, D. L. Millius, R. Car, R. K. Prud’homme, and I. A. Aksay, Chem. Mater. 19, 4396-4404 (2007).
    46. Z. S. Wu, W. Ren, L. Gao, J. Zhao, Z. Chen, B. Liu, D. Tang, B. Yu, C. Jiang, and H. -M. Cheng, ACS Nano 3, 2, 411-417 (2009).
    47. S. H. Huh, Thermal Reduction of Graphene Oxide, Physics and Applications of Graphene- Experiments, S. Mikhailov (Ed.), ISBN 978-953-307-217-3.
    48. H. C. Schniepp, J. -L. Li, M. J. McAllister, H. Sai, M. H. -Alnso, D. H. Adamson, R. K. Prud’homme, R. Car, D. A. Saville, and I. A. Aksay, J. Phys. Chem. B, 110, 17, 8535-8539 (2006).
    49. X. Wang, L. Zhi, and K. Müllen, Nano Lett. 8, 1, 323-327 (2008).
    50. Q. Su, S. Pang, V. Alijani, C. Li, X. Feng, K. Müllen, Adv. Mater. 21, 31, 3191-3195 (2009).
    51. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, R. S. Ruoff, Carbon 45, 1558-1565 (2007).
    52. G. Eda, C. Mattevi, H. Yamaguchi, H. Kim, and M. Chhowalla, J. Phys. Chem. C, 113, 15768-15771 (2009).
    53. G. Demazeau, J. Mater. Chem. 9, 15-18 (1999).
    54. Y. Zhou, Q. Bao, L. A. L. Tang, Y. Zhong, and K. P. Loh, Chem. Mater. 21, 13, 2950-2956 (2009).
    55. H. Wang, J. T. Robinson, X. Li, and H. Dai, J. Am. Chem. Soc. 131, 9910-9911 (2009).
    56. S. Dubin, S. Gilje, K. Wang, V. C. Tung, K. Cha, A. S. Hall, J. Farrar, R. Varshneya, Y. Yang, and R. B. Kaner, ACS Nano 4, 7, 3845-3852 (2010).
    57. V. H. Pham, T. V. Cuong, S. H. Hur, E. Oh, E. J. Kim, E. W. Shin, and J. S. Chung, J. Mater. Chem. 21, 3371-3377 (2011).
    58. C. M. White, P. C. Rohar, G. A. Veloski, R. R. Anderson, Energy & Fuels 11, 5 (1997).
    59. J. I. Paredes, S. V. Rodil, A. M. Alonso, and J. -M. Tascón, Langmiur, 24, 10560-10564 (2008).
    60. T. J. Carver, G. B. Drew, and P. M. Rodger, Phys. Chem. Chem. Phys. 1, 1807-1816 (1999).
    61. C. Berrueco, P. Alvarez, S. Venditti, T. J. Morgan, A. A. Herod, M. Millan, and R. Kandiyoti, Energy Fuels 23, 3008 (2009).
    62. G. Xin, S. Gong, N. Kim, J. Kim, W. Hwang, J. Nam, Y. -H. Cho, S. M. Cho, H. Chae, Sensors and Actuators B, 176, 81-85 (2013).
    63. H. K. Jeong, M. H. Jin, K. P. So, S. C. Lim, and Y. H. Lee, J. Phys. D: Appl. Phys. 42, 065418 (2009).
    64. H. Wang, and Y. H. Hu, Ind. Eng. Chem. Res., 50, 6132-6137 (2011).
    65. A. Nourbakhsh, M. Cantoro, T. Vosch, G. Pourtois, F. Clemente, M. H. van der Veen, J. Hofkens, M. M. Heyns, S. De Gendt, and B. F. Sels, Nanotechnology 21, 435203 (2010).
    66. L. Liu, S. Ryu, M. R. Tomasik, E. Stolyarova, N. Jung, M. S. Hybertsen, M. L. Steigerwald, L. E. Brus, and G. W. Flynn, Nano Lett. 8, 7, 1965-1970 (2008).
    67. M. Kasha, Discuss. Faraday Soc., 9, 14-19 (1950).
    68. U. Noomnarm, R. M. Clegg, Photosynth. Res., 101, 181-194 (2009).
    69. P. R. Wallace, Phy. Rev. 71, 9, 622-634 (1947).
    70. S. Reich, J. Maultzsch, and C. Thomsen, Phy. Rev. B 66, 035412 (2002).
    71. T. Eberlein, U. Bangert, R. R. Nair, R. Jones, M. Gass, A. K. Bleloch, K. S. Novoselov, A. Geim, and P. R. Briddon, Phy. Rev. B 77, 233406 (2008).
    72. T. Ohta, A. Bostwick, T. Seyller, K. Horn, E. Rotenberg, Science 313, 951 (2006).
    73. P. Johari, and V. B. Shenoy, ACS Nano 5, 9 7640-7647 (2011).
    74. C. H. Lui, K. F. Mak, J. Shan, and T. F. Heinz, Phys. Rev. Lett. 105, 127404 (2010).
    75. C. Galande, A. D. Mohite, A. V. Naumov, W. Gao, L.Ci, A. Ajayan, H. Gao, A. Srivastava, R. B. Weisman, and P. M. Ajayan, Scientfic Reports 1:85 (2011).
    76. C. Mathioudakis, G. Kopidakis, P. C. Kelires, P. Patsalas, M. Gioti, S. Logothetidis, Thin Solid Films, 482, 151 (2005).
    77. C. W. Chen, J. Robertson, J. Non-Cryst. Solids, 227, 602 (1998).
    78. T. V. Cuong, V. H. Pham, Q. T. Tran, S. H. Hahn, J. S. Chung, E. W. Shin, and E. J. Kim, Materials Letters 64, 339-401 (2010).
    79. P. V. Kumar, M. Bernardi, and J. C. Grossman, ACS Nano 7(2), 1638-1645 (2013).
    80. M. Li, S. k. Cushing, X. Zhou, S. Guo, and N. Wu, J. Mater. Chem. 22, 23374-23379 (2012).
    81. Z. Qian, C. Wang, G. Du, J. Zhou, C. Chen, J. Ma, J. Chen, and H. Feng, Cryst. Eng. Comm. 14, 4976-4979 (2012).
    82. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, J. Phys. Chem. B, 107, 668-677 (2003).
    83. Mie, G., Beitrage zur Optik truber Medien, speziell kolloidaler Metallosungen. Ann. Phys., 25, 377-445 (1908).
    84. Kreibig, U., Vollmer, M., Optical Properties of Metal Clusters. Springer: Berlin, 25, p 532 (1995).
    85. Link, S., El-Sayed, M. A., Optical Properties and Ultrafast Dynamics of Metallic Nanocrystals. Annu. Rev. Phys. Chem., 54, 331-366 (2003).
    86. S. Stankovicha, R. D. Pinera, S. T. Nguyenb, and R. S. Ruoff, Carbon 44, 15, 3342-3347 (2006).
    87. S. Stankovich, D. A. Dikin, G. H. B. Dommet, K. M. Kohlhass, R. S. Ruoff, Nature 442, 282 (2006).
    88. X. Yang, M. Xu, W. Qiu, X. Chen, M. Deng, J. Zhang, H. Iwai, E. Watanabe, and H. Chen, J. Mater. Chem. 21, 8096-8103 (2011).
    89. R. Pasricha, S. Gupta, and A. K. Srivastava, Small 5, 20, 2253-2259 (2009).
    90. J. Tian, S. Liu, Y. Zhang, H. Li, L. Wang, Y. Luo, A. M. Asiri, A. O. Al-Youbi, and X. Sun, Inorg. Chem., 51, 4742-4746 (2012).
    91. A. M. Panich, A. I. Shames, A. E. Aleksenskii, A. Dideikin, Solid State Communications, 152, 466-468 (2012).
    92. X Zhang, X. Yang, Y. Ma, Y. Huang, and Y. Chen, J. Nanosci, Nanotechnol. 10, 5, 2984-2987 (2010).
    93. R. Pasricha, S. Gupta, A. G. Joshi, N. Bahadur, D. Haranath, K. N. Sood, S. Singh, and S. Singh, Materials Today 3, 15, 118-125 (2012).
    94. H. Ping, S. -X. Hai, G. -H. Cheng, Acta. Phys. -Chem. Sin. 20 (10), 2000-2003 (2004).
    95. Y. Li, X. Fan, J. Qi, J. Ji, S. Wang, G. Zhang, F. Zhang, Mater. Res. Bull. 45, 1413-1418 (2010).
    96. Schmid, G., 1994, Clusters and Colloids: From Theory to Application (Weinheim: VCH).
    97. S. Link and M. A. E. -Sayed, Int. Reviews in Physical Chemistry 19 (3), 409-453 (2000).
    98. R. Muszynski, B. Seger, and P. V. Kamat, J. Phys. Chem. C 112 (14), 5263-5266 (2008).
    99. Z. X. Gan, S. J. Xiong, X. L. Wu, C. Y. He, and P. K. Chu, Nano Lett. 11, 3951-3956 (2011).
    100. S. Pan, X. Liu, X. Wang, Mater. Charac. 62, 1094-1101 (2011).
    101. Y. Wang, S. -S. Li, Y. C. Yeh, C. -C. Yu, H. -L. Chen, F. -C. Li, Y. -M. Chang, C. -W. Chen, Nanoscale 5, 1687-1691 (2013).
    102. D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, and J. M. Tour, ACS Nano 4, 8, 4806-4814 (2010).
    103. G. Eda, G. Fanchini, and M. Chhowalla, Nature Technology, 3, 270-274 (2008).
    104. F. H. Allen, O. Kennard and D. G. Watson, J. Chem. Soc Perkin, Trans. II (1987).
    105. Tuinstra, F.; Koenig, J. L. Journal of Chemical Physics 53, 1126-1130 (1970).
    106. C. Mattevi, G. Eda, S. Agnoli, S. Miller,
K. A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, and M. Chhowalla, Adv. Funct. Mater. 19, 2577–2583 (2009).
    107. A. Bagri, C. Mattevi, M. Acik, Y. J. Chabal, M. Chhowalla, C. B. Shenoy, Nat. Chem. 2(7), 581-587 (2011).
    108. S. -H. Jeon, P. Xu, N. H. Mack, L. Y. Chiang, L. Brown, and H. -L. Wang, J. Phys. Chem. C, 114, 36–40 (2010).
    109. O. A. D. Gallardo, R. Moiraghi, M. A. Macchione, J. A. Godoy, M. A. Pe ́rez, E. A. Coronado and V. A. Macagno, RSC Adv. 2, 2923–2929, 2012.

    下載圖示 校內:2018-08-19公開
    校外:2018-08-19公開
    QR CODE