簡易檢索 / 詳目顯示

研究生: 李嘉芙
Lei, Ka-Fu
論文名稱: 探討先天免疫調控分子TAPE在調控NLRP3及非典型性發炎小體之角色
Role of TAPE innate immune adaptor in regulation of NLRP3 and non-canonical inflammasomes
指導教授: 凌斌
Ling, Pin
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 58
中文關鍵詞: TLR4NLRP3炎性小體非典型性炎性小體caspase11TAPE白介素1細胞凋亡脂多醣
外文關鍵詞: TLR4, NLRP3 inflammasome, non-canonical inflammasomes, caspase-11, TAPE, Interleukin 1, pyroptosis, LPS
相關次數: 點閱:102下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 發炎反應是宿主對抗病原體感染或組織損傷的一種免疫反應,建設性的發炎反應有助於宿主防禦病原體感染或恢復組織穩定狀態。但是,失調的發炎反應也會導致感染性或炎症性的疾病。 Toll樣受體4(TLR4)是脂多醣(LPS)的識別受體,脂多醣是革蘭氏陰性細菌外膜的組成部分,會引起敗血症。典型的NLRP3炎性小體和非典型性caspase-11或人類caspase-4 / caspase-5炎性小體的活化會導致白介素1β,白介素18和細胞凋亡(pyroptosis)相關的損傷相關分子模式(DAMPs)分泌。TAPE(溶酶體中TBK1蛋白的相關蛋白)是一種先天性免疫的調節劑,目前已被發現其與TLR4路徑有關,並可能參與炎症小體路徑的調節。我的論文工作集中在以下幾個研究目標:目的一是進行ex vivo和in vivo分析,以評估TAPE在TLR4路徑中的作用。目標二和目標三是研究TAPE在調節NLRP3和非典型炎症小體中的作用。我的結果表明,缺乏TAPE會削弱TLR4-Trif路徑導致的IRF3蛋白磷酸化,這表明TAPE參與在TLR4-TRIF路徑去影響第一型IFN的產生。而對於NLRP3炎性體研究,TAPE敲除的巨噬細胞實驗顯示,缺乏TAPE的細胞在幾種NLRP3配體(包括ATP,Nigericin和SiO2)刺激後所產生的白介素1β和白介素1α會被削弱。明礬(Alum)誘導腹膜炎模型的實驗還顯示,TAPE對於召集中性粒細胞和產生白介素1β是必需的。此外,我的研究結果還表明,TAPE參與了初代巨噬細胞和哺乳動物細胞中非典型炎性小體活化。我的結果還發現TAPE與caspase11炎性小體會有相互的作用並與調節其寡聚有關。總結來說,這些數據表明,TAPE是參與典型性NLRP3炎性小體和非典型性caspase-11炎性小體活化的一個調節劑。

    Inflammation is a host immune response to pathogen infection or tissue damage. Constructive inflammation helps the host to defend pathogen infection or restore tissue homeostasis. However, dysregulated inflammatory responses often lead to infectious or inflammatory diseases. Toll-like receptor 4 (TLR4) is a pattern-recognition receptor for lipopolysaccharide (LPS), which is a component of the outer membrane of Gram-negative bacteria responsible for sepsis. Canonical NLRP3 inflammasome and non-canonical caspase-11 or human caspase-4/caspase-5 inflammasomes are implicated in inflammatory responses through regulating the secretion of IL-1β, and IL-18, or DAMPs by pyroptosis. TAPE (TBK1-Associated Protein in Endolysosomes) is an innate immune regulator shown to implicate in the TLR4 pathway and potentially in the regulation of the inflammasome pathways. My thesis work focuses on the following study aims. The Aim 1 is to conduct ex vivo and in vivo analyses to assess the role of TAPE in the TLR4 pathway. The Aim 2 and Aim 3 are to study the roles of TAPE in regulating NLRP3 and non-canonical inflammasomes. My results showed that TAPE deficiency impaired the TLR4-Trif pathway to the phosphorylation of IRF3, suggesting that TAPE is involved in the TLR4-TRIF pathway to type I IFN production. For the NLRP3 inflammasome study, TAPE-knockout macrophages were shown to impair the production of IL-1β and IL-1α in response to several NLRP3 ligands, including ATP, Nigericin, and SiO2. In vivo data from the Alum-induced peritonitis model also showed that TAPE was required for the recruitment of neutrophils and IL-1β production. Moreover, my results that TAPE was involved in non-canonical inflammasome activation in primary macrophages and mammalian cells. My results also showed that TAPE was associated with the caspase11 inflammasome and modulated caspase-11 oligomerization. Together, these data suggest that TAPE is a common regulator involved in the activation of canonical NLRP3 inflammasome and non-canonical caspase-11 inflammasome.

    摘要 I ABSTRACT II 誌謝 IV TABLE OF CONTENTS V LIST OF FIGURES VIII 1. INTRODUCTION 1 1.1 Innate immunity 1 1.2 Toll-like receptor 4 signaling pathway in biology and disease 1 1.3 NLRP3 inflammasome 2 1.4 Non-canonical inflammasome 4 1.5 Role of TAPE in innate immune pathways 5 2. MATERIALS 7 3. METHODS 11 3.1 Cells, reagents and antibodies 11 3.2 Plasmids 12 3.3 Mice 12 3.4 In vivo studies 12 3.5 Isolation, differentiation, and stimulation of mouse bone marrow-derived macrophages (BMDMs) and peritoneal macrophages (pMs) 13 3.6 Co-immunoprecipitation and Western blotting 15 3.7 Cytotocixity assay and cell viability assay 16 3.8 Enzyme-linked immunosorbent assay (ELISA) 16 3.9 Immunofluorescence assay and confocal microscopy 17 3.10 Native PAGE electrophoresis 17 4. RESULTS 19 4.1 TAPE deficiency impairs in the TLR4-Trif pathway but not the TLR4-MyD88 pathway in primary macrophages. 19 4.2 TAPE is required for the activation of the NLRP3 inflammasome in primary macrophages. 20 4.3 TAPE regulates NLRP3 inflammasome activation in vivo. 21 4.4 TAPE is required for the activation of the caspase-11 inflammasome in primary macrophages. 21 4.5 TAPE promotes caspasse11 inflammasome activation. 22 4.6 TAPE interacts with the caspase-11 inflammasome complex. 22 4.7 TAPE is co-localized with caspase-11 in cells. 23 4.8 TAPE modulates the oligomerization of caspase-11. 24 5. DISCUSSION 25 6. REFERENCES 28 7. FIGURES AND FIGURE LEGENDS 34 8. APPENDIXES 50 Appendix 1. TAPE-deficiency abrogates the activation of the NLRP3 inflammasome in primary macrophages. 51 Appendix 2. Alum-induced peritoneal neutrophil infiltration in Tapef/f and Tapef/f CD11C-Cre+ mice. 52 Appendix 3. TAPE-deficiency abrogates the activation of the caspase-11 inflammasome in primary macrophages. 53 Appendix 4. TAPE promotes caspasse11 inflammasome activation. 54 Appendix 5. TAPE interacts with the caspase-11 inflammasome complex. 56 Appendix 6. Caspase-11 is not co-localized with early endosome and late endosome. 57

    1. Takeuchi, O., and Akira, S. (2010) Pattern recognition receptors and inflammation. Cell 140, 805-820
    2. Fitzgerald, K. A., and Kagan, J. C. (2020) Toll-like Receptors and the Control of Immunity. Cell 180, 1044-1066
    3. Kumari, P., Russo, A. J., Shivcharan, S., and Rathinam, V. A. (2020) AIM2 in health and disease: Inflammasome and beyond. Immunological reviews
    4. Brubaker, S. W., Bonham, K. S., Zanoni, I., and Kagan, J. C. (2015) Innate immune pattern recognition: a cell biological perspective. Annual review of immunology 33, 257-290
    5. Kim, H. M., Park, B. S., Kim, J. I., Kim, S. E., Lee, J., Oh, S. C., Enkhbayar, P., Matsushima, N., Lee, H., Yoo, O. J., and Lee, J. O. (2007) Crystal structure of the TLR4-MD-2 complex with bound endotoxin antagonist Eritoran. Cell 130, 906-917
    6. Kagan, J. C., Su, T., Horng, T., Chow, A., Akira, S., and Medzhitov, R. (2008) TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-β. Nature immunology 9, 361-368
    7. Dorrington, M. G., and Fraser, I. D. C. (2019) NF-κB Signaling in Macrophages: Dynamics, Crosstalk, and Signal Integration. Frontiers in immunology 10, 705
    8. Tan, Y., Zanoni, I., Cullen, T. W., Goodman, A. L., and Kagan, J. C. (2015) Mechanisms of Toll-like receptor 4 endocytosis reveal a common immune-evasion strategy used by pathogenic and commensal bacteria. Immunity 43, 909-922
    9. Zanoni, I., Ostuni, R., Marek, L. R., Barresi, S., Barbalat, R., Barton, G. M., Granucci, F., and Kagan, J. C. (2011) CD14 controls the LPS-induced endocytosis of Toll-like receptor 4. Cell 147, 868-880
    10. Casanova, J. L., Abel, L., and Quintana-Murci, L. (2011) Human TLRs and IL-1Rs in host defense: natural insights from evolutionary, epidemiological, and clinical genetics. Annu Rev Immunol 29, 447-491
    11. Odendall, C., Voak, A. A., and Kagan, J. C. (2017) Type III IFNs are commonly induced by bacteria-sensing TLRs and reinforce epithelial barriers during infection. The Journal of Immunology 199, 3270-3279
    12. Swanson, K. V., Deng, M., and Ting, J. P. Y. (2019) The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nature Reviews Immunology 19, 477-489
    13. Mangan, M. S. J., Olhava, E. J., Roush, W. R., Seidel, H. M., Glick, G. D., and Latz, E. (2018) Targeting the NLRP3 inflammasome in inflammatory diseases. Nat Rev Drug Discov 17, 588-606
    14. Schroder, K., and Tschopp, J. (2010) The inflammasomes. Cell 140, 821-832
    15. Zhou, R., Yazdi, A. S., Menu, P., and Tschopp, J. (2011) A role for mitochondria in NLRP3 inflammasome activation. Nature 469, 221-225
    16. Lu, A., Magupalli, V. G., Ruan, J., Yin, Q., Atianand, M. K., Vos, M. R., Schroder, G. F., Fitzgerald, K. A., Wu, H., and Egelman, E. H. (2014) Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell 156, 1193-1206
    17. Fernandes-Alnemri, T., Wu, J., Yu, J. W., Datta, P., Miller, B., Jankowski, W., Rosenberg, S., Zhang, J., and Alnemri, E. S. (2007) The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell death and differentiation 14, 1590-1604
    18. Hoss, F., Rodriguez-Alcazar, J. F., and Latz, E. (2017) Assembly and regulation of ASC specks. Cellular and molecular life sciences : CMLS 74, 1211-1229
    19. Kostura, M. J., Tocci, M. J., Limjuco, G., Chin, J., Cameron, P., Hillman, A. G., Chartrain, N. A., and Schmidt, J. A. (1989) Identification of a monocyte specific pre-interleukin 1 beta convertase activity. Proceedings of the National Academy of Sciences 86, 5227-5231
    20. Miao, E. A., Leaf, I. A., Treuting, P. M., Mao, D. P., Dors, M., Sarkar, A., Warren, S. E., Wewers, M. D., and Aderem, A. (2010) Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nature immunology 11, 1136-1142
    21. Bergsbaken, T., Fink, S. L., and Cookson, B. T. (2009) Pyroptosis: host cell death and inflammation. Nature reviews 7, 99-109
    22. Kesavardhana, S., Malireddi, R. K. S., and Kanneganti, T. D. (2020) Caspases in Cell Death, Inflammation, and Pyroptosis. Annu Rev Immunol 38, 567-595
    23. Xia, S., Hollingsworth, L. R. t., and Wu, H. (2020) Mechanism and Regulation of Gasdermin-Mediated Cell Death. Cold Spring Harb Perspect Biol 12
    24. LaRock, C. N., and Cookson, B. T. (2013) Burning down the house: cellular actions during pyroptosis. PLoS Pathog 9, e1003793
    25. Shi, J., Zhao, Y., Wang, K., Shi, X., Wang, Y., Huang, H., Zhuang, Y., Cai, T., Wang, F., and Shao, F. (2015) Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526, 660-665
    26. Kayagaki, N., Stowe, I. B., Lee, B. L., O'Rourke, K., Anderson, K., Warming, S., Cuellar, T., Haley, B., Roose-Girma, M., Phung, Q. T., Liu, P. S., Lill, J. R., Li, H., Wu, J., Kummerfeld, S., Zhang, J., Lee, W. P., Snipas, S. J., Salvesen, G. S., Morris, L. X., Fitzgerald, L., Zhang, Y., Bertram, E. M., Goodnow, C. C., and Dixit, V. M. (2015) Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526, 666-671
    27. Aglietti, R. A., Estevez, A., Gupta, A., Ramirez, M. G., Liu, P. S., Kayagaki, N., Ciferri, C., Dixit, V. M., and Dueber, E. C. (2016) GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes. Proceedings of the National Academy of Sciences 113, 7858-7863
    28. Ding, J., Wang, K., Liu, W., She, Y., Sun, Q., Shi, J., Sun, H., Wang, D.-C., and Shao, F. (2016) Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 535, 111-116
    29. Liu, X., Zhang, Z., Ruan, J., Pan, Y., Magupalli, V. G., Wu, H., and Lieberman, J. (2016) Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 535, 153-158
    30. Sborgi, L., Rühl, S., Mulvihill, E., Pipercevic, J., Heilig, R., Stahlberg, H., Farady, C. J., Müller, D. J., Broz, P., and Hiller, S. (2016) GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death. The EMBO journal 35, 1766-1778
    31. Rathinam, V. A. K., Zhao, Y., and Shao, F. (2019) Innate immunity to intracellular LPS. Nature immunology 20, 527-533
    32. Orning, P., Lien, E., and Fitzgerald, K. A. (2019) Gasdermins and their role in immunity and inflammation. Journal of Experimental Medicine 216, 2453-2465
    33. Hoffman, H. M., Mueller, J. L., Broide, D. H., Wanderer, A. A., and Kolodner, R. D. (2001) Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle–Wells syndrome. Nature Genetics 29, 301-305
    34. Aksentijevich, I., Nowak, M., Mallah, M., Chae, J. J., Watford, W. T., Hofmann, S. R., Stein, L., Russo, R., Goldsmith, D., Dent, P., Rosenberg, H. F., Austin, F., Remmers, E. F., Balow, J. E., Jr., Rosenzweig, S., Komarow, H., Shoham, N. G., Wood, G., Jones, J., Mangra, N., Carrero, H., Adams, B. S., Moore, T. L., Schikler, K., Hoffman, H., Lovell, D. J., Lipnick, R., Barron, K., O'Shea, J. J., Kastner, D. L., and Goldbach-Mansky, R. (2002) De novo CIAS1 mutations, cytokine activation, and evidence for genetic heterogeneity in patients with neonatal-onset multisystem inflammatory disease (NOMID): a new member of the expanding family of pyrin-associated autoinflammatory diseases. Arthritis Rheum 46, 3340-3348
    35. Aganna, E., Martinon, F., Hawkins, P. N., Ross, J. B., Swan, D. C., Booth, D. R., Lachmann, H. J., Bybee, A., Gaudet, R., Woo, P., Feighery, C., Cotter, F. E., Thome, M., Hitman, G. A., Tschopp, J., and McDermott, M. F. (2002) Association of mutations in the NALP3/CIAS1/PYPAF1 gene with a broad phenotype including recurrent fever, cold sensitivity, sensorineural deafness, and AA amyloidosis. Arthritis and rheumatism 46, 2445-2452
    36. Kayagaki, N., Warming, S., Lamkanfi, M., Walle, L. V., Louie, S., Dong, J., Newton, K., Qu, Y., Liu, J., and Heldens, S. (2011) Non-canonical inflammasome activation targets caspase-11. Nature 479, 117-121
    37. Rathinam, V. A., Vanaja, S. K., Waggoner, L., Sokolovska, A., Becker, C., Stuart, L. M., Leong, J. M., and Fitzgerald, K. A. (2012) TRIF licenses caspase-11-dependent NLRP3 inflammasome activation by gram-negative bacteria. Cell 150, 606-619
    38. Kayagaki, N., Wong, M. T., Stowe, I. B., Ramani, S. R., Gonzalez, L. C., Akashi-Takamura, S., Miyake, K., Zhang, J., Lee, W. P., Muszyński, A., Forsberg, L. S., Carlson, R. W., and Dixit, V. M. (2013) Noncanonical Inflammasome Activation by Intracellular LPS Independent of TLR4. Science 341, 1246-1249
    39. Hagar, J. A., Powell, D. A., Aachoui, Y., Ernst, R. K., and Miao, E. A. (2013) Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. Science 341, 1250-1253
    40. Stowe, I., Lee, B., and Kayagaki, N. (2015) Caspase-11: arming the guards against bacterial infection. Immunological reviews 265, 75-84
    41. Shi, J., Zhao, Y., Wang, Y., Gao, W., Ding, J., Li, P., Hu, L., and Shao, F. (2014) Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 514, 187-192
    42. Rühl, S., and Broz, P. (2015) Caspase-11 activates a canonical NLRP3 inflammasome by promoting K(+) efflux. Eur J Immunol 45, 2927-2936
    43. Hiscott, J. (2007) Convergence of the NF-κB and IRF pathways in the regulation of the innate antiviral response. Cytokine & growth factor reviews 18, 483-490
    44. Basel-Vanagaite, L., Attia, R., Yahav, M., Ferland, R. J., Anteki, L., Walsh, C. A., Olender, T., Straussberg, R., Magal, N., Taub, E., Drasinover, V., Alkelai, A., Bercovich, D., Rechavi, G., Simon, A. J., and Shohat, M. (2006) The CC2D1A, a member of a new gene family with C2 domains, is involved in autosomal recessive non-syndromic mental retardation. J Med Genet 43, 203-210
    45. Rogaeva, A., Galaraga, K., and Albert, P. R. (2007) The Freud-1/CC2D1A family: transcriptional regulators implicated in mental retardation. J Neurosci Res 85, 2833-2838
    46. Nakamura, A., Naito, M., Tsuruo, T., and Fujita, N. (2008) Freud-1/Aki1, a novel PDK1-interacting protein, functions as a scaffold to activate the PDK1/Akt pathway in epidermal growth factor signaling. Mol Cell Biol 28, 5996-6009
    47. Chang, C.-H., Lai, L.-C., Cheng, H.-C., Chen, K.-R., Syue, Y.-Z., Lu, H.-C., Lin, W.-Y., Chen, S.-H., Huang, H.-S., Shiau, A.-L., Lei, H.-Y., Qin, J., and Ling, P. (2011) TBK1-associated protein in endolysosomes (TAPE) is an innate immune regulator modulating the TLR3 and TLR4 signaling pathways. The Journal of biological chemistry 286, 7043-7051
    48. Chen, K. R., Chang, C. H., Huang, C. Y., Lin, C. Y., Lin, W. Y., Lo, Y. C., Yang, C. Y., Hsing, E. W., Chen, L. F., Shih, S. R., Shiau, A. L., Lei, H. Y., Tan, T. H., and Ling, P. (2012) TBK1-associated protein in endolysosomes (TAPE)/CC2D1A is a key regulator linking RIG-I-like receptors to antiviral immunity. J Biol Chem 287, 32216-32221
    49. Ou, X. M., Lemonde, S., Jafar-Nejad, H., Bown, C. D., Goto, A., Rogaeva, A., and Albert, P. R. (2003) Freud-1: A neuronal calcium-regulated repressor of the 5-HT1A receptor gene. J Neurosci 23, 7415-7425
    50. Rogaeva, A., and Albert, P. R. (2007) The mental retardation gene CC2D1A/Freud-1 encodes a long isoform that binds conserved DNA elements to repress gene transcription. Eur J Neurosci 26, 965-974
    51. Yang, C. Y., Yu, T. H., Wen, W. L., Ling, P., and Hsu, K. S. (2019) Conditional Deletion of CC2D1A Reduces Hippocampal Synaptic Plasticity and Impairs Cognitive Function through Rac1 Hyperactivation. J Neurosci 39, 4959-4975
    52. Burkhard, P., Stetefeld, J., and Strelkov, S. V. (2001) Coiled coils: a highly versatile protein folding motif. Trends in cell biology 11, 82-88
    53. Lemmon, M. A. (2008) Membrane recognition by phospholipid-binding domains. Nature reviews. Molecular cell biology 9, 99-111
    54. Kao, C. C. (2015) Emerging roles of TAPE innate immune adaptor in inflammasome regulation and Gram-negative bacterial infection. Master, National Cheng Kung University
    55. He, Y., Zeng, M. Y., Yang, D., Motro, B., and Núñez, G. (2016) NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux. Nature 530, 354-357
    56. de Souza, E. E., Meirelles, G. V., Godoy, B. B., Perez, A. M., Smetana, J. H., Doxsey, S. J., McComb, M. E., Costello, C. E., Whelan, S. A., and Kobarg, J. (2014) Characterization of the human NEK7 interactome suggests catalytic and regulatory properties distinct from those of NEK6. J Proteome Res 13, 4074-4090
    57. Chen, K. R. (2016) Biochemical and functional study of antiviral innate immunity against RNA virus infection. Doctor, National Cheng Kung University
    58. Zhong, Z., Umemura, A., Sanchez-Lopez, E., Liang, S., Shalapour, S., Wong, J., He, F., Boassa, D., Perkins, G., and Ali, S. R. (2016) NF-κB restricts inflammasome activation via elimination of damaged mitochondria. Cell 164, 896-910
    59. Gonçalves, R., and Mosser, D. M. (2015) The isolation and characterization of murine macrophages. Current protocols in immunology 111, 14.11. 11-14.11. 16
    60. Shi, H., Wang, Y., Li, X., Zhan, X., Tang, M., Fina, M., Su, L., Pratt, D., Bu, C. H., Hildebrand, S., Lyon, S., Scott, L., Quan, J., Sun, Q., Russell, J., Arnett, S., Jurek, P., Chen, D., Kravchenko, V. V., Mathison, J. C., Moresco, E. M., Monson, N. L., Ulevitch, R. J., and Beutler, B. (2016) NLRP3 activation and mitosis are mutually exclusive events coordinated by NEK7, a new inflammasome component. Nature immunology 17, 250-258
    61. Martinon, F., Burns, K., and Tschopp, J. (2002) The Inflammasome: A Molecular Platform Triggering Activation of Inflammatory Caspases and Processing of proIL-β. Molecular cell 10, 417-426
    62. Wang, K., Sun, Q., Zhong, X., Zeng, M., Zeng, H., Shi, X., Li, Z., Wang, Y., Zhao, Q., Shao, F., and Ding, J. (2020) Structural Mechanism for GSDMD Targeting by Autoprocessed Caspases in Pyroptosis. Cell 180, 941-955.e920
    63. Rühl, S., Shkarina, K., Demarco, B., Heilig, R., Santos, J. C., and Broz, P. (2018) ESCRT-dependent membrane repair negatively regulates pyroptosis downstream of GSDMD activation. Science 362, 956-960
    64. Martinelli, N., Hartlieb, B., Usami, Y., Sabin, C., Dordor, A., Miguet, N., Avilov, S. V., Ribeiro Jr, E. A., Göttlinger, H., and Weissenhorn, W. (2012) CC2D1A is a regulator of ESCRT-III CHMP4B. Journal of molecular biology 419, 75-88

    無法下載圖示 校內:2025-08-19公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE