簡易檢索 / 詳目顯示

研究生: 許和堅
Hsu, Ho-Chien
論文名稱: 磷化烷酸組成之自組裝單層膜改質二氧化鈦奈米管陣列製備與應用之研究
Preparation and Applications of The SAM (Phosphonic Acid Alkyl Compound) - Modified TiO2 Nanotubes Array
指導教授: 林睿哲
Lin, Jui-Che
李澤民
Lee, Tzer-Min
學位類別: 碩士
Master
系所名稱: 醫學院 - 口腔醫學研究所
Institute of Oral Medicine
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 77
中文關鍵詞: 骨肉瘤細胞自組裝單層膜二氧化鈦奈米管
外文關鍵詞: TiO2 nanotubes, self-assembly monolayers, HOS
相關次數: 點閱:74下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鈦金屬及其合金已廣泛應用在生醫材料上,藉由其良好的生物相容性,當鈦金屬與空氣或體液接觸時,其高活性會促使表面形成一厚度為數奈米的氧化層,當骨母細胞貼附於氧化層上,會與氧化層產生活性鍵結,並進行增生與分化之途徑,此過程亦稱為骨整合 (osseointegration)。研究指出,在平滑的鈦金屬表面,骨母細胞生長將受限於其低表面積,故學者利用表面改質方式增加細胞親和性。本研究中,利用自組裝單層膜改質二氧化鈦奈米管陣列表面,藉由調控奈米管之成管條件與自組裝單層膜的不同的末端官能基的影響,觀察人類骨肉瘤細胞株 (HOS, human osteosarcoma cell lines)的生長行為,期望能調控細胞的生長與反應。
    實驗中,於二氧化鈦奈米管的生成,主要的關鍵在於HF與F-的濃度。HF的解離性不佳,在陽極氧化過程,若是無法提供足夠的F-離子,奈米管結構將無法顯現。解決的方法有二,一是藉由額外添加可增進HF解離的藥品,如NaOH等等,一是改善反應器的導電能力,如加大陰極電極,都可以促進反應的發生。於自組裝單層膜上,利用浸泡的方式長成,由接觸角試驗得知,有利用氧電漿處理的表面,其接觸角較沒有經過氧電漿處理而直接進行接枝的表面來得大,表示氧電漿有促進自組裝單層膜於表面改質的能力。於細胞實驗中,可以發現短時間的細胞形態,除平坦表面的細胞生長速度較慢外,其他有奈米管的表面,對於細胞的黏附都有增強的效果,是否是奈米管對細胞生長的效果較自組裝單層膜對細胞的影響顯著而造成的現象,將可以用細胞增生實驗與細胞份化實驗得知。

    Titanium and its alloys are widely used in biomaterials because of their good biocompatibility. When titanium was contact with the air or fluids, the high activities of Ti would drive the surface to forming a several nm thickness oxide layer. Osteoblast cells would lead to the pathway of proliferation and differentiation by adhered to the oxide layer, forming active bindings. The process is also called osseointegration. It had found that the flat Ti surface limited osteoblast cells to growth because of the low surface area. To prove the problem, surface modification is used to increase cell adaptation. The aim of the study is to use the self- assembly monolayers (SAMs) modified TiO2 nanotubes array surface to observed the HOS growth behaviors by modulated the nanotube-forming factors and the different functional end group SAM.
    The key factor of the TiO2 nanotube formation is the concentration of HF and F . The acid dissociation constant of HF is not high enough to forming the TiO2 nanotubes in the anodic oxidation process with lower [F-]. To increase the [F-], NaOH, which can dissociate HF, and boarding Pt cathode electrode, are both the good ideas. The SAMs were formed by immersion. By contact angle test, the use of RF O2 plasma treatment has the ability to enhance the grafting of SAMs with higher contact angle. In the in vitro test, surface with nanotubes was good for cell to adhesion except the flat surface. To understand cell growth behavior by the surface of TiO2 nanotubes with SAM, cell proliferation and differentiation test could accurately proved.

    表目錄 III 圖目錄 IV 摘要 1 Abstract 2 第一章 緒論 3 1-1 前言 3 1-1-1 生物惰性材料 (bioinert materials) 3 1-1-2 生物可忍受性材料 (biotolerant materials) 3 1-1-3 生物活性材料 (bioactive materials) 4 1-1-4 生物可降解性材料 (bioresorbable materials) 4 1-2 鈦金屬及其合金的發展 4 1-3 人工牙根之應用 5 1-3-1 骨引導性 (osteoconduction) 5 1-3-2 骨誘導性 (osteoinduction) 6 1-3-3 骨整合性 (osseointegration) 6 1-4 人工牙根表面改質之發展 6 1-4-1 陽極氧化 (anodic oxidation) 6 1-4-2 自組裝單層膜 (self-assembly monolayer, SAM) 7 1-4-3 體外試驗 (in vitro test) 8 1-5 研究目的 8 第二章 理論基礎及文獻回顧 9 2-1 研究動機 9 2-2 二氧化鈦奈米管表面結構之應用 9 第三章 實驗材料與研究方法 11 3-1 實驗材料 11 3-1-1 實驗藥品 11 3-1-2 實驗儀器 12 3-2 二氧化鈦奈米管陣列試片的製備 14 3-2-1 試片前處理 14 3-2-2 二氧化鈦奈米管陣列生成 14 3-2-3 二氧化鈦奈米管陣列型態觀測 15 3-3 自組裝單層膜改質之二氧化鈦奈米管陣列之試片製備 15 3-3-1 自組裝單層膜溶液配製 15 3-3-2 RF氧氣電漿處理 15 3-3-3 自組裝單層膜於二氧化鈦奈米管陣列表面生成 16 3-3-4 自組裝單層膜於二氧化鈦奈米管陣列表面觀測 16 3-4 體外細胞培養實驗 18 3-4-1 細胞種類 18 3-4-2 細胞培養 18 3-4-3 細胞形態觀察 (cell morphology: SEM observation) 19 3-4-4 細胞增生量測 (cell proliferation: Alamar-blue○R test) 19 3-4-5 細胞分化量測 (cell differentiation: ALP assay) 20 3-4-6 統計分析 21 第四章 結果與討論 22 4-1 二氧化鈦奈米管陣列 22 4-2 自組裝單層膜 24 4-2-1 接觸角試驗 25 4-2-2 ESCA分析 25 4-3 細胞培養 26 4-3-1 細胞形態觀察 (SEM) 27 第五章 結論 29 參考文獻 31

    1. Hench LL. Bioceramics: from concept to Clinic: J. Am. Ceram. Soc., 1991: 1487-1510.
    2. Heimke G. Osseo-integrated implants, Boca Raton Fla.: CRC Press, 1990.
    3. Miller RM, Taylor DE, Ringrose BS. Biotolerant and haemodynamic effects of copolymerization with acrylic acid on Dacron arterial prostheses. Ann R Coll Surg Engl 1986 Mar;68(2):85-88
    4. Cai XZ, Yan SG, Ying ZM, Xu YQ, Lu RK. Biomechanical strength of bone cement impregnated with diphosphonate. Zhonghua Wai Ke Za Zhi 2009 Mar 15;47(6):465-468.
    5. Brammer KS, Oh S, Gallagher JO, Jin S. Enhanced cellular mobility guided by TiO2 nanotube surfaces. Nano lett 2008 Mar;8(3):786-793
    6. Park KH, Heo SJ, Koak JY, Kim SK, Lee JB, Kim SH, et al. Osseointegration of anodized titanium implants under different current voltages: a rabbit study. J Oral Rehabil 2007 Jul;34(7):517-527
    7. Zhu L, Ye X, Tang G, Zhao N, Gong Y, Zhao Y, et al. Biomimetic coating of compound titania and hydroxyapatite on titanium. J Biomed Mater Res A 2007 Dec 15;83(4):1165-1175
    8. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K. Formation of Titanium Oxide Nanotube. Langmuir 1998;14(12):3160-3163
    9. Liu X, Chu PK, Ding C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Materials Science and Engineering: R: Reports 2004;47(3-4):49-121
    10. Roessler S, Zimmermann R, Scharnweber D, Werner C, Worch H. Characterization of oxide layers on Ti6Al4V and titanium by streaming potential and streaming current measurements. Colloids and Surfaces B: Biointerfaces 2002;26(4):387-395
    11. Senyah N, Hildebrand G, Liefeith K. Comparison between RGD-peptide-modified titanium and borosilicate surfaces. Anal Bioanal Chem 2005 Nov;383(5):758-762
    12. Balasundaram G, Yao C, Webster TJ. TiO2 nanotubes functionalized with regions of bone morphogenetic protein-2 increases osteoblast adhesion. J Biomed Mater Res A 2008 Feb;84(2):447-453
    13. Bauer S, Park J, Mark K, Schmuki P. Improved attachment of mesenchymal stem cells on super-hydrophobic TiO(2) nanotubes. Acta Biomater 2008 Sep;4(5):1576-1582
    14. Bose S, Roy M, Das K, Bandyopadhyay A. Surface modification of titanium for load-bearing applications. J Mater Sci Mater Med 2008 Mar 25
    15. Brammer KS, Oh S, Gallagher JO, Jin S. Enhanced cellular mobility guided by TiO2 nanotube surfaces. Nano lett 2008 Mar;8(3):786-793
    16. Lim YW, Kwon SY, Sun DH, Kim HE, Kim YS. Enhanced Cell Integration to Titanium Alloy by Surface Treatment with Microarc Oxidation: A Pilot Study. Clin Orthop Relat Res 2009 May 12
    17. Yang C, Meng L, Tian Y, Huang T, Li Y. Cytotoxicity study of a novel implant material modified by microarc oxidation. J Huazhong Univ Sci Technolog Med Sci 2006;26(6):720-722
    18. Liu F, Song Y, Wang F, Shimizu T, Igarashi K, Zhao L. Formation characterization of hydroxyapatite on titanium by microarc oxidation and hydrothermal treatment. J Biosci Bioeng 2005 Jul;100(1):100-104
    19. Li LH, Kim HW, Lee SH, Kong YM, Kim HE. Biocompatibility of titanium implants modified by microarc oxidation and hydroxyapatite coating. J Biomed Mater Res A 2005 Apr 1;73(1):48-54
    20. Huang P, Zhang Y, Xu K, Han Y. Surface modification of titanium implant by microarc oxidation and hydrothermal treatment. J Biomed Mater Res B Appl Biomater 2004 Aug 15;70(2):187-190
    21. Shankar K, Bandara J, Paulose M, Wietasch H, Varghese OK, Mor GK, et al. Highly efficient solar cells using TiO(2) nanotube arrays sensitized with a donor-antenna dye. Nano lett 2008 Jun;8(6):1654-1659
    22. Shankar K, Mor GK, Prakasam HE, Varghese OK, Grimes CA. Self-assembled hybrid polymer-TiO2 nanotube array heterojunction solar cells. Langmuir 2007 Nov 20;23(24):12445-12449
    23. Quan X, Ruan X, Zhao H, Chen S, Zhao Y. Photoelectrocatalytic degradation of pentachlorophenol in aqueous solution using a TiO2 nanotube film electrode. Environ Pollut 2007 May;147(2):409-414
    24. Toworfe GK, Bhattacharyya S, Composto RJ, Adams CS, Shapiro IM, Ducheyne P. Effect of functional end groups of silane self-assembled monolayer surfaces on apatite formation, fibronectin adsorption and osteoblast cell function. J Tissue Eng Regen Med 2009 Jan;3(1):26-36.
    25. Toworfe GK, Composto RJ, Shapiro IM, Ducheyne P. Nucleation and growth of calcium phosphate on amine-, carboxyl- and hydroxyl-silane self-assembled monolayers. Biomaterials 2006 Feb;27(4):631-642.
    26. Truskey GA, Proulx TL. Relationship between 3T3 cell spreading and the strength of adhesion on glass and silane surfaces. Biomaterials 1993;14(4):243-254
    27. Battaglini N, Repain V, Lang P, Horowitz G, Rousset S. Self-assembly of an octanethiol monolayer on a gold-stepped surface. Langmuir 2008 Mar 4;24(5):2042-2050
    28. Ferris DM, Moodie GD, Dimond PM, Gioranni CWD, Ehrlich MG, Valentini RF. RGD-coated titanium implants stimulate increased bone formation in vivo. Biomaterials 1999 Dec;20(23-24):2323-2331
    29. Maksymovych P, Sorescu DC, Yates JT, Jr. Gold-adatom-mediated bonding in self-assembled short-chain alkanethiolate species on the Au(111) surface. Phys Rev Lett 2006 Oct 6;97(14):146103
    30. Bauer S, Park J, Mark K, Schmuki P. Improved attachment of mesenchymal stem cells on super-hydrophobic TiO(2) nanotubes. Acta Biomater 2008 Sep;4(5):1576-1582
    31. Hanson EL, Schwartz J, Nickel B, Koch N, Danisman MF. Bonding self-assembled, compact organophosphonate monolayers to the native oxide surface of silicon. J Am Chem Soc 2003 Dec 24;125(51):16074-16080
    32. Adden N, Gamble LJ, Castner DG, Hoffmann A, Gross G, Menzel H. Phosphonic acid monolayers for binding of bioactive molecules to titanium surfaces. Langmuir 2006 Sep 12;22(19):8197-8204
    33. Danahy MP, Avaltroni MJ, Midwood KS, Schwarzbauer JE, Schwartz J. Self-assembled monolayers of alpha,omega-diphosphonic acids on Ti enable complete or spatially controlled surface derivatization. Langmuir 2004 Jun 22;20(13):5333-5337
    34. Singh RP, Way JD, Dec SF. Silane modified inorganic membranes: Effects of silane surface structure. Journal of Membrane Science 2005;259(1-2):34-46
    35. Zhang Z, Yuan Y, Liang L, Fang Y, Cheng Y, Ding H, et al. Sonophotoelectrocatalytic degradation of azo dye on TiO2 nanotube electrode. Ultrason Sonochem 2008 Apr;15(4):370-375
    36. Bauer S, Park J, Mark K, Schmuki P. Improved attachment of mesenchymal stem cells on super-hydrophobic TiO(2) nanotubes. Acta Biomater 2008 Sep;4(5):1576-1582
    37. Andersson AS, Brink J, Lidberg U, Sutherland DS. Influence of systematically varied nanoscale topography on the morphology of epithelial cells. IEEE Trans Nanobioscience 2003 Jun;2(2):49-57.
    38. Albrektsson T, Brånemark PI, Hansson H-A, Kasemo B, Larsson K, Lundström I, et al. The interface zone of inorganic implantsIn vivo: Titanium implants in bone. Annals of Biomedical Engineering 1983;11(1):1-27.
    39. Brammer KS, Oh S, Gallagher JO, Jin S. Enhanced cellular mobility guided by TiO2 nanotube surfaces. Nano lett 2008 Mar;8(3):786-793
    40. Liu X, Chu PK, Ding C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Materials Science and Engineering: R: Reports 2004;47(3-4):49-121
    41. Hoyer P. Formation of a Titanium Dioxide Nanotube Array. Langmuir 1996;12(6):1411-1413.
    42. Hiroaki Imai YT, Kazuhiko Shimizu, Manabu Matsuda and Hiroshi Hirashima. Direct preparation of anatase TiO2 nanotubes in porous alumina membranes. Journal of Materials Chemistry 1999;9(12):2971-2972.
    43. T. Kasuga MH, A. Hoson, T. Sekino, K. Niihara,. Titania Nanotubes Prepared by Chemical Processing. Advanced Materials 1999;11(15):1307-1311.
    44. Zhang H, Zhao H, Zhang S, Quan X. Photoelectrochemical manifestation of photoelectron transport properties of vertically aligned nanotubular TiO2 photoanodes. Chemphyschem 2008 Jan 11;9(1):117-123
    45. Yao C, Slamovich EB, Webster TJ. Enhanced osteoblast functions on anodized titanium with nanotube-like structures. J Biomed Mater Res A 2008 Apr;85(1):157-166.
    46. Oh S, Daraio C, Chen LH, Pisanic TR, Finones RR, Jin S. Significantly accelerated osteoblast cell growth on aligned TiO2 nanotubes. J Biomed Mater Res A 2006 Jul;78(1):97-103.
    47. Girginov A, Tzvetkoff TZ, Bojinov M. Electrodeposition of refractory metals (Ti, Zr, Nb, Ta) from molten salt electrolytes. Journal of Applied Electrochemistry 1995;25(11):993-1003.
    48. Toworfe GK, Composto RJ, Shapiro IM, Ducheyne P. Nucleation and growth of calcium phosphate on amine-, carboxyl- and hydroxyl-silane self-assembled monolayers. Biomaterials 2006 Feb;27(4):631-642
    49. Image J, http://rsbweb.nih.gov/ij/
    50. Lim YJ, Oshida Y. Initial contact angle measurements on variously treated dental/medical titanium materials. Biomed Mater Eng 2001;11(4):325-341
    51. BCRC, strain administration system, BCRC number: 30608, human osteosarcoma, http://strain.bcrc.firdi.org.tw/BSAS/controller?event=SEARCH&bcrc_no=60308&type_id=4&keyword=osteosarcoma
    52. Qingyun Cai MP, Oomman K. Varghese, Craig A. Grimes The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation. Journal of Materials Research 2005;20(1):230-236
    53. Yoshiki Oshida, Bioscience and bioengineering of titanium materials, Elsevier, The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK Radarweg 29, PO Box 211, 1000 AE Amsterdam, The Netherlands (2007).
    54. Péter Péchy, et al, Preparation of phosphonated polypyridyl ligands to anchor transition-metal complexes on oxide surfaces: application for the conversion of light to electricity with nanocrystalline TiO2 films. J. Chem. Soc., Chem. Commun., 1995, 65 - 66

    下載圖示 校內:2019-09-11公開
    校外:2019-09-11公開
    QR CODE