| 研究生: |
李瑋宸 Lee, Wei-Chen |
|---|---|
| 論文名稱: |
增加散熱鰭片
對多晶矽太陽能模組性能之實驗與數值分析 Experimental and Numerical Analysis of the Performance of Multi-crystalline Silicon Photovoltaic Module by Adding Cooling Fins |
| 指導教授: |
溫昌達
Wen, Chang-Da |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 113 |
| 中文關鍵詞: | 多晶矽太陽能模組 、標準工作電池溫度 、標準測試條件 、散熱鰭片 、熱傳導係數 、表面放射率 、轉換效率 、相對輸出功率 、強制對流 |
| 外文關鍵詞: | Crystal silicon PV module, Normal operating cell temperature,, Emissivity, Standard test condition, cooling fins, Conductivity, Conversion efficiency, Relative power, Force convection |
| 相關次數: | 點閱:151 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
根據先前研究,多晶系太陽能模組之運作溫度平均每高於參考溫度 (25℃) 一度,其光電轉換效率將下降約0.4-0.5%,故本研究旨在利用於多晶矽太陽能模組之背板添加散熱鰭片及改變背層封裝層(Ethylene Vinyl Acetate, EVA)之材料,用以降低太陽能模組之實際運作溫度,進而提升其輸出功率。
本研究以數值模擬及實驗之方式,在低輻照度(300W)、標準操作電池溫度(Nominal Operating Cell Temperature, NOCT)與標準測試條件(Standard Test Condition, STC)三種照度下,得到太陽能模組於添加鰭片後之基板中心溫度與各層溫度、輸出功率、電流與電壓、相對輸出功率與轉換效率,並研究改變鰭片顏色之熱輻射功效及添加風扇之強制對流影響。
本研究之主要控制變因為背層封裝層之材料、背板之熱傳導係數、鰭片之表面放射率與數目,透過研究可發現太陽能模組之溫度與輸出功率隨照度增加而上升,但轉換效率卻隨模組運行溫度上升而下降。背層EVA改變材料能增加進入電池之光量,而背板之高熱傳導係數能將集中於電池之溫度擴散至邊緣以降低電池溫度,在此研究中增加四片直線型鰭片有較佳之結果,而在高放射率的情況下鰭片能藉由較佳輻射散熱而增益效能,因此透過上述幾種變因可針對模組運行溫度進行改善,以提高其相對輸出功率及性能表現。
最後,為了探討強制對流與輻射散熱之效應,本研究將含高放射率鰭片之最佳模組與含不同放射率鰭片並利用風扇吹拂之兩模組測試比較,結果發現在強制對流下輻射散熱之影響幾近可忽略。
In the light of former studies, the elevation of the PV temperature declines solar to electrical energy conversion efficiency by 0.4 - 0.5 (%.K-1) for crystal silicon PV when it rises above the characteristic power conversion temperature of 25℃. Therefore, this research decreases the operating temperature of module to improve its performance by changing materials of ethylene vinyl acetate and adding the cooling fins.
Numerical and experimental methods are used to get the temperature of central base sheet and each layer, output power, current, voltage, conversion efficiency, relative power, the effect of fin’s radiation and the influence of force convection under (1) low irradiance; (2) nominal operating cell temperature (NOCT); (3) standard test condition (STC) and (4) the solar module with cooling fins.
In the research, the main control factors are the material of rear EVA, the conductivity of module of back sheet, the emissivity and the numbers of fin. The results show that the module’s temperature and output power increases when the irradiance elevates, but the conversion efficiency of module decreases oppositely. The change of EVA can increase the incident light of cell. With the high conductivity of back sheet, the concentrative heat of cell originally can be spread into the frame. Better results are found with four straight fins in this research, and the high emissivity of fin can elevate radiative heat of fin. Therefore, the above improvements can elevate the relative power and performance of the module.
Finally, in order to understand the effect of forced convection and radiation, the performance of the best module with high emissivity cooling fins and the modules with different emissivity cooling fins blown by fan are compared in this study. The results show that the effect of radiation can be almost ignored if the forced convection is taken into consideration.
1 Monegon Report No. M102, “Selecting Solar Photovotaic Power Systems (Seminar Text),” Vol. I, Monegon, Ltd., Gaithersburg, Maryland, 1980.
2. 畢家興,「以珊瑚蛋白及光譜轉換分子改善太陽能電池效率之研究」,台灣2007年國際科學展覽會,頁34-35,2007。
3. J. G. Ingersoll, “Simplified Calculation of Solar Cell Temperatures in Terrestrial Photovoltaic Arrays,” Journal of Solar Energy Engineering, Vol. 108, pp. 95-101, May, 1986.
4. D. W. Cunningham, D. Amin, J. Miller, A.M. Nguyen, A. Parr, J. H. Wohlgemuth, Z. Xia, “Key Aspects of Module Design That Influence Energy Generation,” 24th European Photovoltaic Solar Energy Conference, pp.3217-3221, September, 2009.
5. M. J. Huang, “The Effect of Using Two PCMs on the Thermal Regulation Performance of BIPV Systems,” Solar Energy Materials & Solar Cells, Vol.95, pp. 957-963, 2010.
6. 施植明譯、Andrea Compagno著,「智慧型玻璃立面」,台北市:田園城市文化事業,1998。
7. W-G. Wang, T-S. Yang, “Effect of Fin Slope on the Overall Thermal Conductance of Heat Sinks in Forced Convection,” Journal of Chinese Society of Mechanical Engineers, Vol.24, No.5, pp. 489-498, 2003
8. CEI/ICE, “Crystalline Silicon Terrestrial Photovoltaic (PV) Modules: Design Qualification and Type Approval,” CEI/IEC 61215, 6th ed., pp. 49-52, 2005.
9. 張建榮、徐向東、劉文燕,「混凝土表面太陽輻射吸收係數測試研究」,建築科學,第22卷第1期,頁42-45,2006。
10. E. Skoplaki, J.A. Palyvos, “On the Temperature Dependence of Photovoltaic Module Electrical Performance: A Review of Efficiency/power Correlations,” Solar Energy 83, pp. 614-624, 2009.
11. S. Krauter, P. Grunow, “Wafer, Cell and Module Quality Requirements,” Photovoltaics International Journal, pp. 59-65, August, 2008.
12. N. Phuengkun, P. P. Yutthana Tirawanichakul, ”Studying Effect of Photovoltaic/Thermal Fin System,” IE Network Conference, pp. 546-548, 2008.
13. J.K. Tonui, Y. Tripanagnostopoulos, “Air-cooled PV/T Solar Collectors with Low Cost Performance Improvements,” Vol.81, pp. 498-511, 2007.
14. M. E. Meral, F. Dicner, “A Review of the Factors Affecting Operation and Efficiency of Photovoltaic Based Electricity Generation Systems,” Renewable and Sustainable Energy Reviews 15, pp. 2176-2184, 2011.
15. Keith R. McIntosh, James N. Cotsell, Jeff S. Cumpston, Ann W. Norris, Nick E. Powell, and Barry M. Ketola, “An Optical Comparison of Silicone and Eva Encapsulants for Conventional Silicon PV Modules: A Ray-tracing Study,” Dow Corning Corporation, IEEE Photovoltaic Speialists Conference (PVSC), Vol. 34, pp. 544-549, November, 2009.
16. C-C. Lin, C-H. Chou, M-H. Liu, T-M. Lee, “Innovative Photovoltaic Module with 8.87 % More Power Output Using Discrete Substrate and Phase Change Material,” 26th European Photovoltaic Solar Energy Conference and Exhibition, pp. 3137-3139, 2011.
17. S. Krauter, A. Preiss, “Comparison of Module Temperature Measurement Methods,” IEEE Photovoltaic Speialists Conference (PVSC), Vol. 34, pp. 333-338, 2010.
18. G.N. Tiwari, R.K. Mishra, S.C. Solanki, “Photovoltaic Modules and Their Applications: A Review on Thermal Modelling,” Applied Energy, Vol. 88 pp.2287-2304, 2011.
19. PVCOOL Ltd., “PVCOOL-SP95,” 2011.
20. I-H. Fang, ”Experimental and Numerical Analysis of the Performance of Multi-crystalline Silicon Photovoltaic Module by Changing Materials of Ethylene Vinyl Acetate and Back Sheet,” Master Thesis, Department of Mechanical Engineering, National Cheng Kung University, Taiwan, 2012
21 A. B. Cohen, and W.M. Rohsenow, J. Heat Transfer, Vol. 106, pp. 116,1984.