簡易檢索 / 詳目顯示

研究生: 梁文誠
Liang, Wen-Cheng
論文名稱: 鉬鐵爐碴中鉬資源再生之研究
Recovery of Molybdenum from Ferro-molybdenum Slag
指導教授: 陳偉聖
Chen, Wei-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 102
中文關鍵詞: 鉬鐵爐碴燒鹼焙燒水浸漬胺類萃取提煉冶金
外文關鍵詞: Fe-Mo slag, NaOH molten salt roasting, water leaching, amine extraction, extractive metallurgy
相關次數: 點閱:126下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對鉬鐵爐碴中鉬資源再生建立一套回收系統,鉬鐵爐碴中含有1.85wt%的氧化鉬含量,極具有回收再利用之價值,採提煉冶金資源化技術,其內容可分為焙燒預處理、浸漬、純化與分離、金屬化合物採取。
    鉬鐵爐碴是一種由鉬、矽、鐵、鋁、鈣、鎂、鈉和鉀等金屬氧化物組成的氧化碴,經氫氧化鈉鹼焙燒,可將鉬、矽和鋁等氧化物會轉化為易溶於水的鈉鹽類,在鹼礦比4(g/g)、焙燒溫度600℃、焙燒2小時的操作條件下,鉬鐵爐碴中鉬氧化物優先轉化為鉬酸鈉鹽,鉬轉化率達98%;在浸漬階段,以水浸漬可選擇性使鉬溶出率達99.5%以上,並將鐵、鈣、鎂等不溶於水之雜質金屬留於渣相中。
    溶媒萃取法分離鉬與其他雜質金屬,選用胺類萃取劑TOA(trioctylamine)、改質劑TBP(Tributyl phosphate)溶於煤油,在萃取階段以TOA濃度為0.1M、TBP/TOA=3、水油比=5、震盪時間10分鐘、萃取平衡酸鹼度=2.8的操作條件下,鉬有最佳萃取效率達99.5%;反萃取階段,以氨水濃度2M、油水比=2、震盪時間10分鐘,鉬反萃率達99.5%。反萃水相中雜質含量極低,加入硝酸使鉬酸銨沉澱,低溫結晶蒸發得鉬酸銨晶體,再經400℃鍛燒得純度99%以上的三氧化鉬。鉬鐵爐碴鉬資源化之總體回收率約97%。

    Upon the development of industry, the exploitation of molybdenum will be exhausted soon than later. Ferro-molybdenum is an additive in producing HSLA. The procedure of manufacturing Fe-Mo would generated Fe-Mo slag which was consist with 1.85 wt% MoO3. This study described a metallurgical route for recovering Mo from Fe-Mo slag using NaOH molten salt roasting, water leaching, amine solvent extraction and preparation of MoO3 process was investigated. Through NaOH molten salt roasting process, MoO3 was converted to Na-type structure in priority which was leached easily by water and left unconverted impurities in solid phase. Mo (VI) formed cationic, neutral and anionic structures because of different from pH, so it was important to control suitable pH equilibrium to achieve optimal Mo extraction efficiency. Solvent extraction choosing amine extractant TOA and stripping using ammonia could concentrate plenty of Mo to produce Mo metallic compound like ammonium molybdate and molybdenum oxide. Overall, the total Mo recovery efficiency from Fe-Mo slag was about 97%.

    目錄 中文摘要 I Extended Abstract II 誌謝 VIII 目錄 IX 表目錄 XII 圖目錄 XIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 3 第二章 理論基礎與文獻回顧 4 2.1 鉬的基本性質[ 18 ] 4 2.2 含鉬廢棄物資源化現況 7 2.3 鉬鐵爐碴資源化技術 8 2.3.1 焙燒預處理(Roasting pretreatment) 9 2.3.2 浸漬(Leaching) 13 2.3.3 純化與分離(Purification & Separation) 20 2.3.3.1化學沉澱法(Chemical Precipitation) 20 2.3.3.2溶媒萃取法(Solvent Extraction) 21 2.3.4 鉬金屬化合物採取(Mo metallic compound recovery) 35 第三章 實驗方法與步驟 36 3.1 實驗材料 36 3.1.1 實驗樣品-鉬鐵爐碴特性概述 36 3.1.2 實驗樣品製備 39 3.1.3 實驗藥品 43 3.2 研究架構及實驗流程 44 3.2.1 研究架構 44 3.2.2 實驗流程 45 3.2.2.1 鉬鐵爐碴特性分析 45 3.2.2.2 鉬鐵爐碴焙燒前處理 46 3.2.2.3 鉬鐵爐碴浸漬 47 3.2.2.4 鉬純化分離(溶媒萃取法) 49 3.2.2.5 鉬金屬化合物採取 53 3.2.3 儀器介紹 54 第四章 結果與討論 57 4.1 鉬鐵爐碴特性分析 57 4.2 鉬鐵爐碴焙燒前處理之研究探討 65 4.3 鉬鐵爐碴浸漬之研究探討 71 4.3.1 直接酸/鹼浸漬 71 4.3.2 加壓鹼浸漬 72 4.3.3 鹼焙燒水浸漬 73 4.3.4 鉬鐵爐碴浸漬小結 76 4.4 鉬金屬溶媒萃取之研究探討 77 4.4.1萃取結果 77 4.4.2反萃取結果 84 4.4.3 萃取劑回用對鉬萃取及反萃取的影響 87 4.4.4 鉬溶媒萃取分離小結 88 4.5 鉬金屬化合物採取 89 第五章 結論與建議 90 5.1 結論 90 5.2 建議 92 第六章 參考文獻 93

    1. International Molybdenum Association. (2015). Molybdenum Uses, Molybdenum Metal & Alloys. http://www.imoa.info.
    2. Zhen-Zhong, Luo. (2003). Application and development of molybdenum,” China molybdenum industry, 27(2), 7-10.
    3. McLennan, S. (2001). Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry, Geophysics, Geosystems, 2(4), 20. doi: 10.1029/2000gc000109
    4. International Molybdenum Association. (2008). Molybdenum, Molybdenum ore reserves. http://www.imoa.info.
    5. U.S. Geological Survey. (2008-2018). Mineral Commodity Summaries-MOLYBDENUM.
    6. Henckens, M., Driessen, P., & Worrell, E. (2018). Molybdenum resources: Their depletion and safeguarding for future generations. Resources, Conservation And Recycling, 134, 61-69. doi: 10.1016/j.resconrec.2018.03.002
    7. Nakajima, K., Yokoyama, K., Matsuno, Y., & Nagasaka, T. (2007). Substance Flow Analysis of Molybdenum Associated with Iron and Steel Flow in Japanese Economy. ISIJ International, 47(3), 510-515. doi: 10.2355/isijinternational.47.510
    8. S. Zhang, H. Zhang, P.H. Feng,” Present status and prospect of technological process of recovery of molybdenum resources,” Inorganic Chemicals Industry, vol. 43(12), 2011.
    9. Luc Boehme, Dirk Van, Den Hende,” Ferromolybdenum slag as valuable resource material for the production of concrete blocks,” proceedings of the second international slag valorisation symposium, pp.129-143, January 2011.
    https://www.researchgate.net/publication/228485096
    10. Shen, H., & Forssberg, E. (2003). An overview of recovery of metals from slags. Waste Management, 23(10), 933-949. doi: 10.1016/s0956-053x(02)00164-2
    11. Shi, L., Wang, X., Wang, M., Peng, J., & Xiao, C. (2011). Extraction of molybdenum from high-impurity ferromolybdenum by roasting with Na2CO3 and CaO and leaching with water. Hydrometallurgy, 108(3-4), 214-219. doi: 10.1016/j.hydromet.2011.04.009
    12. 中華民國財政部關務署(2016)。進、出口貨物數量、價值查詢, 鉬(molybdenum)。
    13. Zeng, L., & Cheng, C. (2009a). A literature review of the recovery of molybdenum and vanadium from spent hydrodesulphurisation catalysts Part I: Metallurgical processes. Hydrometallurgy, 98(1-2), 1-9. doi: 10.1016/j.hydromet.2009.03.010
    14. Zeng, L., & Yong Cheng, C. (2009b). A literature review of the recovery of molybdenum and vanadium from spent hydrodesulphurisation catalysts Part II: Separation and purification. Hydrometallurgy, 98(1-2), 10-20.doi: 10.1016/j.hydromet.2009.03.012
    15. Mirjana Vemic. Leaching and recovery of molybdenum, nickel and cobalt from metals recycling plants mineral sludges. Environmental Engineering. Universit´e Paris-Est, 2015. English.
    16. Lasheen, T., El-Ahmady, M., Hassib, H., & Helal, A. (2015). Molybdenum Metallurgy Review: Hydrometallurgical Routes to Recovery of Molybdenum from Ores and Mineral Raw Materials. Mineral Processing And Extractive Metallurgy Review, 36(3), 145-173. doi: 10.1080/08827508.2013.868347
    17. Nguyen, T., & Lee, M. (2016). A review on the separation of molybdenum, tungsten, and vanadium from leach liquors of diverse resources by solvent extraction. Geosystem Engineering, 19(5), 247-259. doi: 10.1080/12269328.2016.1186577
    18. 張啟修、趙秦生(2007)。鎢鉬冶金。34-40。
    19. Meija, J., Coplen, T., Berglund, M., Brand, W., De Bièvre, P., & Gröning, M. et al. (2016). Atomic weights of the elements 2013 (IUPAC Technical Report). Pure And Applied Chemistry, 88(3), 265-291. doi: 10.1515/pac-2015-0305
    20. de Laeter, J., Böhlke, J., De Bièvre, P., Hidaka, H., Peiser, H., Rosman, K., & Taylor, P. (2003). Atomic weights of the elements. Review 2000 (IUPAC Technical Report). Pure And Applied Chemistry, 75(6), 683-800. doi: 10.1351/pac200375060683
    21. Olazabal, M., Orive, M., Fernández, L., & Madariaga, J. (1992). SELECTIVE EXTRACTION OF VANADIUM (V) FROM SOLUTIONS CONTAINING MOLYBDENUM (VI) BY AMMONIUM SALTS DISSOLVED IN TOLUENE. Solvent Extraction And Ion Exchange, 10(4), 623-635. doi: 10.1080/07366299208918125
    22. Tkac, P., & Paulenova, A. (2008). Speciation of Molybdenum (VI) In Aqueous and Organic Phases of Selected Extraction Systems. Separation Science And Technology, 43(9-10), 2641-2657. doi: 10.1080/01496390802122261
    23. Fujii, T., Yamana, H., Watanabe, M., & Moriyama, H. (2001). EXTRACTION OF MOLYBDENUM FROM NITRIC ACID BY OCTYL(PHENYL)-N,N-DIISOBUTYLCARBAMOYLMETHYL-PHOSPHINE OXIDE. Solvent Extraction And Ion Exchange, 19(1), 127-141. doi: 10.1081/sei-100001378
    24. International Molybdenum Association. (2013). Molybdenum scrap saves resources. MolyReview.
    25. Kubaschewski, O., Spencer, P., Alcock, C., Kubaschewski, O., Kubaschewski, O., Alcock, C., & Alcock, C. (1993). Materials thermochemistry. Oxford: Pergamon Press.
    26. Chen, D., Zhao, L., Liu, Y., Qi, T., Wang, J., & Wang, L. (2013). A novel process for recovery of iron, titanium, and vanadium from titanomagnetite concentrates: NaOH molten salt roasting and water leaching processes. Journal Of Hazardous Materials, 244-245, 588-595. doi: 10.1016/j.jhazmat.2012.10.052
    27. Biswas, R., Wakihara, M., & Taniguchi, M. (1985). Recovery of vanadium and molybdenum from heavy oil desulphurization waste catalyst. Hydrometallurgy, 14(2), 219-230. doi: 10.1016/0304-386x(85)90034-9
    28. XIAN, P., ZHOU, S., WANG, M., WANG, X., & CHEN, B. (2017). Extraction of molybdenum and nickel from roasted Ni–Mo ore by hydrochloric acid leaching, sulphation roasting and water leaching. Transactions Of Nonferrous Metals Society Of China, 27(1), 220-226. doi: 10.1016/s1003-6326(17)60025-6
    29. Wang, X., Peng, J., Wang, M., Ye, P., & Xiao, Y. (2011). The role of CaO in the extraction of Ni and Mo from carbonaceous shale by calcification roasting, sulphation roasting and water leaching. International Journal Of Mineral Processing, 100(3-4), 130-135. doi: 10.1016/j.minpro.2011.05.012
    30. Yang, Z., Rui-lin, M., Wang-dong, N., & Hui, W. (2010). Selective leaching of base metals from copper smelter slag. Hydrometallurgy, 103(1-4), 25-29.
    31. Wang, M., & Wang, X. (2010). Extraction of molybdenum and nickel from carbonaceous shale by oxidation roasting, sulphation roasting and water leaching. Hydrometallurgy, 102(1-4), 50-54. doi: 10.1016/j.hydromet.2010.02.001
    32. Kim, H., Park, K., & Mishra, D. (2009b). Influence of sulfuric acid baking on leaching of spent Ni–Mo/Al2O3 hydro-processing catalyst. Hydrometallurgy, 98(1-2), 192-195. doi: 10.1016/j.hydromet.2009.04.002
    33. Kim, H., Park, K., & Mishra, D. (2009a). Sulfuric acid baking and leaching of spent Co-Mo/Al2O3 catalyst. Journal Of Hazardous Materials, 166(2-3), 1540-1544. doi: 10.1016/j.jhazmat.2008.11.051
    34. Aleksandrov, P., Medvedev, A., Milovanov, M., Imideev, V., Kotova, S., & Moskovskikh, D. (2017). Molybdenum recovery from molybdenite concentrates by low-temperature roasting with sodium chloride. International Journal Of Mineral Processing, 161, 13-20. doi: 10.1016/j.minpro.2017.02.007
    35. Parkinson, G., Ishio, S. (1987). Recyclers try new ways to process spent catalysts. Chemical Engineering, 94, 25–31.
    36. Kar, B., Datta, P., & Misra, V. (2004). Spent catalyst: secondary source for molybdenum recovery. Hydrometallurgy, 72(1-2), 87-92. doi: 10.1016/s0304-386x(03)00122-1
    37. Chen, Y., Feng, Q., Shao, Y., Zhang, G., Ou, L., & Lu, Y. (2006). Investigations on the extraction of molybdenum and vanadium from ammonia leaching residue of spent catalyst. International Journal Of Mineral Processing, 79(1), 42-48. doi: 10.1016/j.minpro.2005.11.009
    38. Barik, S., Park, K., Parhi, P., Park, J., & Nam, C. (2012). Extraction of metal values from waste spent petroleum catalyst using acidic solutions. Separation And Purification Technology, 101, 85-90. doi: 10.1016/j.seppur.2012.09.020
    39. Espiari, S., Rashchi, F., & Sadrnezhaad, S. (2006). Hydrometallurgical treatment of tailings with high zinc content. Hydrometallurgy, 82(1-2), 54-62. doi: 10.1016/j.hydromet.2006.01.005
    40. Liu, W., Xu, H., Yang, X., & Shi, X. (2011). Extraction of molybdenum from low-grade Ni–Mo ore in sodium hypochlorite solution under mechanical activation. Minerals Engineering, 24(14), 1580-1585.
    doi: 10.1016/j.mineng.2011.08.010
    41. Pourbaix, M. (1974). Atlas of electrochemical equilibria in aqueous solutions. Houston: NACE International.
    42. Naoto TAKENO,“ Atlas of Eh-pH diagrams Intercomparison of thermodynamic databases,” Geological Survey of Japan Open File Report, No. 419, 2005.
    43. R., F., J., M., Salinas-Rodrguez, E., Martnez-Luevanos, A., E., T., & Dvalos-Snchez, A. (2012). Oxidative Hydrometallurgy of Sulphide Minerals. Recent Researches In Metallurgical Engineering - From Extraction To Forming. doi: 10.5772/36107
    44. Safari, V., Arzpeyma, G., Rashchi, F., & Mostoufi, N. (2009). A shrinking particle—shrinking core model for leaching of a zinc ore containing silica. International Journal of Mineral Processing, 93(1), 79-83. doi: 10.1016/j.minpro.2009.06.003
    45. MIRVALIEV, R., & INOUE, K. (2001). Pressure Oxidative Leaching of Molybdenite in Alkaline Media. Shigen-To-Sozai, 117(1), 72-76.
    doi: 10.2473/shigentosozai.117.72
    46. Sebenik, R.F., Lavalle, P.P., Laferty, J.M., May, W.A., 1985. Recovery of metal values from spent hydrodesulphurisation catalysts. US Pat. No. 4495157.
    47. Zhao, Z., Guo, M., & Zhang, M. (2015). Extraction of molybdenum and vanadium from the spent diesel exhaust catalyst by ammonia leaching method. Journal Of Hazardous Materials, 286, 402-409. doi: 10.1016/j.jhazmat.2014.12.063
    48. Wang, M., Wei, C., Fan, G., Li, M., Deng, Z., & Wang, S. (2015). Selective extraction of Mo from a Ni–Mo ore using pressure alkaline leaching. Hydrometallurgy, 153, 6-11. doi: 10.1016/j.hydromet.2015.01.008
    49. PARK, K., MOHAPATRA, D., & REDDY, B. (2006a). Selective recovery of molybdenum from spent HDS catalyst using oxidative soda ash leach/carbon adsorption method. Journal Of Hazardous Materials, 138(2), 311-316.
    doi: 10.1016/j.jhazmat.2006.05.115
    50. Zhao, Z., Li, J., Cao, C., Huo, G., Zhang, G., & Li, H. (2010). Recovery and purification of molybdenum from Ni–Mo ore by direct air oxidation in alkaline solution. Hydrometallurgy, 103(1-4), 68-73. doi: 10.1016/j.hydromet.2010.02.018
    51. Mohapatra, D., & Park, K. (2007). Selective recovery of Mo, Co and Al from spent Co/Mo/γ -Al2O3 catalyst: Effect of calcination temperature. Journal Of Environmental Science And Health, Part A, 42(4), 507-515.
    doi: 10.1080/10934520601188409
    52. Park, K., Mohapatra, D., Nam, C., & Kim, H. (2008). A noble Process to Recover Metal Values from Spent Hydrodesulphurization Catalyst. Geosystem Engineering, 11(1), 7-12. doi: 10.1080/12269328.2008.10541278
    53. Barik, S., Park, K., Parhi, P., & Park, J. (2012). Direct leaching of molybdenum and cobalt from spent hydrodesulphurization catalyst with sulphuric acid. Hydrometallurgy, 111-112, 46-51. doi: 10.1016/j.hydromet.2011.10.001
    54. Ruiz, V., Meux, E., Schneider, M., & Georgeaud, V. (2011). Hydrometallurgical Treatment for Valuable Metals Recovery from Spent CoMo/Al2O3Catalyst. 2. Oxidative Leaching of an Unroasted Catalyst Using H2O2. Industrial & Engineering Chemistry Research, 50(9), 5307-5315. doi: 10.1021/ie102428r
    55. Cao, Z., Zhong, H., Qiu, Z., Liu, G., & Zhang, W. (2009). A novel technology for molybdenum extraction from molybdenite concentrate. Hydrometallurgy, 99(1-2), 2-6. doi: 10.1016/j.hydromet.2009.05.001
    56. Khoshnevisan, A., Yoozbashizadeh, H., Mozammel, M., & Sadrnezhaad, S. (2012). Kinetics of pressure oxidative leaching of molybdenite concentrate by nitric acid. Hydrometallurgy, 111-112, 52-57. doi: 10.1016/j.hydromet.2011.10.002
    57. Eriksson, G. (1979). An algorithm for the computation of aqueous multi-component, multiphase equilibria. Analytica Chimica Acta, 112(4), 375-383. doi: 10.1016/s0003-2670(01)85035-2
    58. Cibati, A., Cheng, K., Morris, C., Ginige, M., Sahinkaya, E., Pagnanelli, F., & Kaksonen, A. (2013). Selective precipitation of metals from synthetic spent refinery catalyst leach liquor with biogenic H2S produced in a lactate-fed anaerobic baffled reactor. Hydrometallurgy, 139, 154-161. doi: 10.1016/j.hydromet.2013.01.022
    59. Pourbaix, M., 1974. Atlas of Electrochermical equilibria in aqueous solutions. National Association of Corrosion Engineers, Houston, Texas.
    60. 蔡明叡(2009)。從氯鉑酸廢液萃取鉑(IV)之研究。國立臺北科技大學化學工程研究所碩士論文,台北市。 取自https://hdl.handle.net/11296/phsc6x
    61. D.R. Lide, CRC Handbook of Chemistry and Physics, 87th ed., CRC Press, Florida, 2006.
    62. Ning, P., Cao, H., & Zhang, Y. (2009). Selective extraction and deep removal of tungsten from sodium molybdate solution by primary amine N1923. Separation And Purification Technology, 70(1), 27-33. doi: 10.1016/j.seppur.2009.08.006
    63. 張文盈(2011)。以鹼性萃取劑萃取鉬(VI)之研究。國立臺北科技大學化學工程研究所碩士論文,台北市。 取自https://hdl.handle.net/11296/4ky2bv
    64. Ghadiri, M., Ashrafizadeh, S., & Taghizadeh, M. (2014). Study of molybdenum extraction by trioctylamine and tributylphosphate and stripping by ammonium solutions. Hydrometallurgy, 144-145, 151-155.
    doi: 10.1016/j.hydromet.2014.02.009
    65. Valenzuela, F., Andrade, J., Sapag, J., Tapia, C., & Basualto, C. (1995). The solvent extraction separation of molybdenum and copper from acid leach residual solution of Chilean molybdenite concentrate. Minerals Engineering, 8(8), 893-904.
    doi: 10.1016/0892-6875(95)00051-q
    66. Saberyan, K., Ghannadi Maragheh, M., Ashtari, P., & Keshavarz Alamdari, S. (2003). Liquid–liquid extraction of molybdenum(VI) from acidic media with Cyanex-301. Minerals Engineering, 16(4), 391-393. doi: 10.1016/s0892-6875(03)00044-x
    67. Wu, J., Wei, C., Li, X., Wang, S., Wang, M., & Li, C. (2012). Selective extraction of Mo using Cyanex-272 and tributyl phosphate from low grade Ni–Mo ore leach liquor. Separation And Purification Technology, 99, 120-126.
    doi: 10.1016/j.seppur.2012.08.007
    68. Zhang, P., Inoue, K., & Tsuyama, H. (1995). Recovery of metal values from spent hydrodesulfurization catalysts by liquid-liquid extraction. Energy & Fuels, 9(2), 231-239. doi: 10.1021/ef00050a005
    69. Padhan, E., & Sarangi, K. (2014). Separation of molybdenum and cobalt from spent catalyst using Cyanex 272 and Cyanex 301. International Journal Of Mineral Processing, 127, 52-61. doi: 10.1016/j.minpro.2014.01.003
    70. Xiao, C., Zeng, L., Xiao, L., & Zhang, G. (2017). Solvent Extraction of Molybdenum (VI) from Hydrochloric Acid Leach Solutions Using P507. Part I: Extraction and Mechanism. Solvent Extraction And Ion Exchange, 35(2), 130-144. doi: 10.1080/07366299.2017.1308154
    71. Zeid, M., Masry, B., Kassem, A., Noweir, H., Saad, E., & Daoud, J. (2018). Extraction of molybdenum (VI) from nitric acid medium and its recovery from Gattar granite ore using CYANEX 923 in kerosene. Hydrometallurgy, 176, 139-146. doi: 10.1016/j.hydromet.2018.01.013
    72. Gerhardt, N., Palant, A., Petrova, V., & Tagirov, R. (2001). Solvent extraction of molybdenum (VI), tungsten (VI) and rhenium (VII) by diisododecylamine from leach liquors. Hydrometallurgy, 60(1), 1-5. doi: 10.1016/s0304-386x(00)00123-7
    73. Parhi, P., Park, K., Kim, H., & Park, J. (2011). Recovery of molybdenum from the sea nodule leach liquor by solvent extraction using Alamine 304-I. Hydrometallurgy, 105(3-4), 195-200. doi: 10.1016/j.hydromet.2010.09.004
    74. Zhan-fang, C., Hong, Z., & Zhao-hui, Q. (2009). Solvent extraction of rhenium from molybdenum in alkaline solution. Hydrometallurgy, 97(3-4), 153-157.
    75. Zhao, Z., Yang, L., Huo, G., Chen, X., & Huang, H. (2011). Solvent extraction of molybdenum blue from alkaline leaching solution of the Ni–Mo ore. International Journal Of Refractory Metals And Hard Materials, 29(2), 232-236.
    doi: 10.1016/j.ijrmhm.2010.10.011
    76. Park, K., Reddy, B., Mohapatra, D., & Nam, C. (2006). Hydrometallurgical processing and recovery of molybdenum trioxide from spent catalyst. International Journal Of Mineral Processing, 80(2-4), 261-265. doi: 10.1016/j.minpro.2006.05.002
    77. B.P Bhardwaj,” The Complete Book on Ferroalloys,” Niir Project Consultancy Services,” ch 2, pp.8, 2014.
    78. George W. Clark, Douglas H. Dainty,” Thermite smelting of ferromolybdenum,” US4047942A, Sep 29, 1976.
    79. Bibudhendra Sarkar,” Heavy Metals In The Environment,” CRC Press, 2002, ch 4, pp.445.
    80. 中華民國行政院環保署環檢所-事業廢棄物採樣方法(NIEA R118.04B)
    81. Jeswiet, J., & Szekeres, A. (2016). Energy Consumption in Mining Comminution. Procedia CIRP, 48, 140-145. doi: 10.1016/j.procir.2016.03.250
    82. Li, Z., Fu, Y., Yang, C., Yu, W., Liu, L., Qu, J., & Zhao, W. (2018). Mineral liberation analysis on coal components separated using typical comminution methods. Minerals Engineering, 126, 74-81. doi: 10.1016/j.mineng.2018.06.028
    83. 雷大同。成大資源處理講義。
    84. 中華民國行政院環保署環檢所-廢棄物之氫離子濃度指數(pH值)測定方法-電極法(NIEA R208.04C)
    85. 中華民國行政院環保署環檢所-事業廢棄物萃出液中重金屬檢測方法-酸消化法(NIEA R306.13C)
    86. 中華民國行政院環保署環檢所-土壤中重金屬檢測方法-王水消化法(NIEA S321.64B)

    下載圖示 校內:2021-01-01公開
    校外:2021-01-01公開
    QR CODE