| 研究生: |
楊仕欣 Hsin, Shin |
|---|---|
| 論文名稱: |
鐵路列車多停站網路超額訂位之座位配置模式 Multi-Leg Seat Allocation Problem with Overbooking in Railway Industry |
| 指導教授: |
鄭永祥
CHENG, Yung-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 交通管理科學系 Department of Transportation and Communication Management Science |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 超額訂位 、收益管理 、非線性超額訂位賠償策略 、最適訂位限制 、座位配置 、鐵路運輸 |
| 外文關鍵詞: | Yield management, Railway Transportation, Compensation strategy, Seat Bumping, Seat Allocation, Overbooking |
| 相關次數: | 點閱:182 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究之目的在於建構一適合鐵路列車超額訂位之座位配置管理模式,其中考量列車乘客到站之隨機性下,使用不同超額訂位賠償策略之收益分析。透過數學規劃建立一個考量鐵路列車營運特性(如:可供佔位、多起迄站、需服務偏遠地區之乘客與乘客經常當天購票之行為等),並導入超額訂位策略之座位配置管理模式。由於乘客訂位逾時未取票或是持票未報到搭車之情況、及發生座位超賣時的成本函數等,都是影響超額訂位限額的因素,因此其模式主要考量在於乘客未到站之不確定性的情況下,以不同超額訂位賠償策略分配最適開放訂位限制及適當地超賣座位以最大化之列車收益。此外,本研究也考量超額訂位後,發生座位衝突時對於多班列車之收益影響。最後本研究嘗試以即時分析模式規劃最適開放訂位限額。研究結果顯示:超額訂位策略確實能降低空位行駛,並提高列車收益,約整日收益之5-7%。而若是將超額訂位策略應用於主要需求之長程區間較能發揮超額訂位之效益。此外,非線性超額訂位賠償策略能限制超賣車票,避免損失過多無形成本。其中營運者可自由設定座位衝突之損益平衡點,調整可容納座位衝突旅客人數之多寡。至於即時分析模式僅適用於無導入超額訂位策略之模式。
The research aims to use mathematical programming to establish a railway seat allocation model with different overbooking compensation strategies, under random passengers’ show-ups. The model focuses on using different overbooking compensation strategies to allocate optimal booking limit and to maximize the revenue. Besides, the research analyze the effects of passenger’s seat bumping to the operation of next trains, and attempt to build a real-time analyses allocation model. The research model uses GAMS to solve the model with the solver CoinBonmin. The outcome of analyzes shows that overbooking strategies actually decrease the number of empty seat, and increase the total revenue of trains about 5-7%. And the implement the strategies on long distance sections with main demands enhance the benefits of overbooking. However, non-linear compensation strategy limits the model to oversell too many tickets, and keep off losing the compensation cost. The operation could set up the breaking even between seat bumping and overbooking. Finally, the real-time analyses allocation model is only suitable for non-overbooking model.
1. Abe, Itaru., (2007),“Revenue Management in the Railway Industry in Japan and Portugal :a Stakeholder Approach,” Master of Science in Technology and Policy, Massachusetts Institute of Technology
2. Alstrup,J., Andersson, S. E., Boas, S., Madse, O. B. G., and Vidal, R. V. V., (1989), “Booking Control Increases Profit at Scandinavian Airlines”, Interface,
Vol . 19, No. 4, pp.10-19.
3. Belobaba, P. P., (1987), “Airline Yield Management an Overview of Seat Inventory Control,” Transportation Science, Vol. 21, No. 2, pp. 63-73.
4. Ben, V., (1995), “Origin and Destination Yield Management”, Handbook of Airline Economics.
5. Bertsimas, D. and de Boer, S. (2005) ‘Simulation-based booking limits for airline revenue management’,Operations Research, Vol. 53, No.1, pp.90–106.
6. Bertsimas, D. and Popescu, I. (2003) ‘Revenue management in a dynamic network environment’,Transportation Science, Vol. 37, No.3, pp.257–277.
7. Bharill, Rohit and Rangaraj, Narayan, (2008), “Revenue management in railway operations: A study of the Rajdhani Express, Indian Railways,”Transportation Research Part A: Policy and Practice, Vol. 42, No. 9, pp. 1195-1207
8. Bitran, G. and Caldentey, R. (2003) “An overview of pricing models for revenue management”, Manufacturing and Service Operations Management, Vol. 5, No. 3, pp.203–230.
9. Bodily, S. E. and Pfeifer, P. E., (1992), “Overbooking Decision Rules,” Omega, Vol. 20, No. 1, pp.129-133.
10. Bodily, S. E. and Weatherford, L. R., (1992), “A Taxonomy and Research Overview of Perishable-Asset Revenue Management” Yield Management, Overbooking, and Pricing, Operation Research, Vol. 40, No. 5, pp.831-844.
11. Botimer, T. C., (1996), “Efficiency consideration in airline pricing and yield management,” Transportation Research Part-A, Vol. 30, No. 4, pp. 307-317.
12. Burmelle, S. L. and McGill, J. I., (1993), “Airline Seat Allocation with Multiple Nested Fare Classes”, Operations. Research, Vol. 41, No.1, pp. 127-137
13. Chiang, W-C., Chen, J.C.H. and Xu, X. (2007) “An overview of research on revenue management: current No.s and future research”, Int. J. Revenue Management, Vol. 1, No. 1, pp. 97-128
14. Ciancimino, A., Inzerillo, G., Lucidi, S. and Palagi, L., (1999), “A Mathematical Programming Approach for the Solution of the Railway Yield Management Problem,” Transportation Science, Vol. 33, No. 2, pp. 168-181
15. Cross, R. (1997), “Revenue management: hard-core tactics for market domination”, New York: Broadway Books.
16. Curry, B.E., (1990), “Optimal airline seat allocation with fare classes nested by origins and destinations,” Transportation Science, Vol. 24, No. 3, pp.193-204.
17. Davis, P., (1994), “Airline ties profitability yield to management,” SIAM News Vol. 27 No. 5.
18. de Boer, S.V., Freling, R. and Piersma, N. (2002) ‘Mathematical programming for network revenue management revisited’, European Journal of Operational Research, Vol. 137, No.1, pp.72–92
19. El-Haber, Sharbel and El-Taha, Muhammand, (2004), “Dynamic Two-leg airline Seat Inventory Control with Overbooking, Cancellations and no-shows,”
Journal of Revenue and Pricing Management, Vol.3, No.2, pp. 143-170.
20. Elliott, T.L. (2003) “Maximizing revenue production while cutting costs: an airline industry mandate”, Journal of Revenue and Pricing Management, Vol. 1, No. 4, pp.355–368.
21. Elmaghraby, W. and Keskinocak, P. (2003) “Dynamic pricing in the presence of inventory considerations: research overview, current practices, and future directions”, Management Science, Vol. 49, No. 10, pp.1287–1309.
22. Feng, Y. and Xiao, B. (2001) ‘A dynamic airline seat inventory control model and its optimal policy’, Operations Research, Vol. 49, No.6, pp.938–949.
23. Fleischmann, M., Hall, J.M. and Pyke, D.F. (2004) “Smart Pricing”, MIT Sloan Management Review, Vol. 45, No.2, pp.9–13.
24. Gosavi, A., Bandla, N. and Das, T.K. (2002) “A reinforcement of learning approach to a single leg airline revenue management problem with multiple fare classes and overbooking”, IIE Transactions, Vol. 34, No.9, pp.729–742.
25. HARTI-BOURI Maria, SOULIER Alain (1999) , Le centre opérations TGV, Revue générale des chemins de fer, Paris, Vol . 1999, No. 10, pp. 5-8.
26. Kanafani, A., (1983), “Transportation Demand Analysis”, McGraw-Hill Book Company.
27. Karaesmen, I. and van Ryzin, G. (2004) ‘Overbooking with substitutable inventory classes”, Operations Research, Vol. 52, No.1, pp.83–104
28. Kimes, (1989), “Yield management: a tool for capacity constrained service firm,” Journal of Operations Management, Vol . 8, No. 4, pp.348-363.
29. Kraft, E.R., Srikar, B.N. and Phillips, R.L. (2000) ‘Revenue management in railroad applications’, Transportation Quarterly, Vol. 54, No.1, pp.157–176.
30. Leder, K. Z., Spagniole, S. E., Wild, S. M., (2002) “Probabilistically Optimized Airline Overbooking Strategies, or “Anyone Willing To Take a Later Flight?!”,
The UMAP Journal, Vol. 23, No.3, pp. 317-338.
31. Lee, T. C., and Hersh, M., (1993) “A model for dynamic airline seat inventory control with multiple seat bookings,” Transportation Science, Vol. 27, No. 3, pp.
252-265
32. Lindenmeier , Jörg and Tscheulin, Dieter K., (2008), “The effects of inventory control and denied boarding on customer satisfaction: The case of capacity-based airline revenue management,” Tourism Management, Vol. 29, No.1, pp. 32–43
33. Littlewood, K, (1972), “Forecasting and control of passenger bookings,”AFIFORS SYMP., PROC, pp. 95-117
34. Manugistics, Inc. “GNER: Implementing the UK's First-Ever Rail Optimization Solution.”, manugistics.
http://www.manugistics.com/documents/collateral/GNER.pdf
35. Möller, A., Römisch, W. and Weber, K. (2004) ‘A new approach to O&D revenue management based on scenario trees’, Journal of Revenue & Pricing Management, Vol. 3, No. 3, pp.265–276.
36. Morrision, S. A., and Winston, C., (1995), “The Evolution of Airline Industry”, The Brookings Institution, Washington D.C.
37. Nejib , Ben-Khedher, Kintanar, Josephine, Queille, Cecile, and Stripling, William,(1998), “Schedule Optimization at SNCF: From Conception to Day of Departure.” Interfaces, Vol. 28, No. 1, pp. 6-23.
38. Neuling, R., Riedel, S. and Kalka, K-U. (2004) ‘New approaches to origin and destination and no-show forecasting: excavating the passenger name records treasure’, Journal of Revenue and Pricing Management, Vol. 3, No. 1, pp.62–72.
39. Pölt, S. (2004) ‘How to aggregate origin and destination availability’, Journal of Revenue and Pricing Management, Vol. 3, No.2, pp.191–199.
40. Ringbom, S. and Shy, O. (2002) ‘The ‘adjustable-curtain’ strategy: overbooking of multi-class service’, Journal of Economics, Vol. 77, No.1, pp.73–90.
41. Rozite, Kristine, Nechval, A. Nicholas and Vasermanis, K. Edgars, (2005), “Optimal Airline Seat Inventory Control for Multi-leg Flights,” Transport and Telecommunication, Vol.6, No.1. pp. 114-121
42. Schwartz, Z. and Cohen, E. (2004) ‘Hotel revenue-management forecasting: evidence of expert judgment bias”, Cornell Hotel and Restaurant Administration Quarterly, Vol. 45, No. 1, pp.85–98.
43. Siddappa, Sheela, Rosenberger, Jay M. and Chen, C. P. (2008) “Optimising airline overbooking using a hybrid gradient approach and statistical modelling”, Journal of Revenue and Pricing Management, Vol. 7, No. 2, pp. 207–218.
44. Smith, C., Leimkuhler, J.F., Darrow, R.M., (1992), “Yield management at American Airlines”, Interfaces, Vol. 22, No.1, pp.8-31.
45. Sulistio, Anthony, Kyong, Hoon Kim, and Buyya, Rajkumar, (2008), “Managing Cancellations and No-shows of Reservations with Overbooking to Increase Resource Revenue” Eighth IEEE International Symposium on Cluster
Computing and the Grid, pp. 267-276
46. Talluri, K.T. (2001) ‘Airline revenue management with passenger routing control: a new model with solution approaches’, Int. J. Services Technology and Management, Vol. 2, No.2, pp.102–115
47. van Ryzin, G.J. and McGill, J. (2000) ‘Revenue management without forecasting or optimization: an adaptive algorithm for determining airline seat protection levels’, Management Science, Vol. 46, No. 6, pp.760–775.
48. Wangenheim, F. V. and Bayón, Tomás,(2007),”Behavioral Consequences of Overbooking Service Capacity,” Journal of Marketing, Vol. 71, No.4, pp. 36–47.
49. Weatherford, L.R. and Pölt, S. (2002) “Better unconstraining of airline demand data in revenue anagement systems for improved forecast accuracy and greater revenues”, Journal of Revenue and Pricing Management, Vol. 1, No.3, pp.234–254.
50. Wong, J. T., (1990), “Airline network seat allocation,” PhD. Dissertation, Northwestern University.
51. Yoshinori Suzuki, (2002), “An Empirical Analysis of the Optimal Overbooking Policies for Us Major Airlines” Transportation Research Part E. Vol.38, No. 2, pp. 135-149.
52. Yoshinori Suzuki, (2004), “The net benefit of airline overbooking,”Transportation Research Part E, Vol.42, No.1, pp.1-19.
53. You,(2008), “An efficient computational approach for railway booking problems,” European Journal of Operational Research, Vol.185, No.2, pp.811–824.
54. Zhang, D. and Copper, W.L. (2005) ‘Revenue management in parallel flights with customer choice behavior’, Operations Research, Vol. 53, No. 3, pp.415–434.
55. 交通部統計處,2007 年9 月,民眾使用高速鐵路狀況調查摘要分析。
56. 林昭輝,「臺鐵售票曲線之型態分析」,成功大學交通管理科學研究所,2004年。
57. 張有恆、蘇建榮、陳昭宏,「航空公司超額訂位模式之研究」,運輸計畫季刊,1998 年,第27 卷第 2 期第 245-278 頁。
58. 陳昭宏、張有恆,「航空公司動態營收管理策略模式之研究」,運輸計畫季刊,1999 年,第28 卷第 4 期第 593-608 頁。
59. 臺灣高速鐵路股份有限公司,http://www.thsrc.com.tw/
60. 鄭永祥、余宗軒、楊仕欣,「建構鐵路超額訂位收益模式--以臺灣高鐵為例」,運輸計畫季刊,2008 年,第37 卷第 4 期第 431-463 頁。