| 研究生: |
石逸謙 Shih, Yi-Chen |
|---|---|
| 論文名稱: |
以拉曼光譜分析化學氣相沉積法製備石墨烯之熱傳導係數並探討層數及缺陷的影響 Using Raman Spectroscopy to Analyze the Thermal Conductivity of Graphene Prepared by Chemical Vapor Deposition and Investigating the Effects of Layer Number and Defects |
| 指導教授: |
溫昌達
Wen, Chang-Da |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 石墨烯 、化學氣相沉積 、薄膜 、熱傳導係數 、實驗量測 |
| 外文關鍵詞: | Graphene, chemical vapor deposition, thin film, thermal conductivity, experimental measurement |
| 相關次數: | 點閱:62 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
石墨烯是由碳原子呈現六角蜂巢形狀的平面結構,而碳原子與碳原子相互間之間的長度為0.142 nm,石墨烯的厚度即為碳原子的厚度0.345 nm,因其優秀的性質被廣泛地運用在各整領域上,而本研究將針對石墨烯的熱傳導係數進行量測。
本研究將會使用拉曼光譜儀進行實驗量測,由於石墨烯的拉曼光譜圖會在位置1580 cm^−1會形成一個波峰,稱之為G peak,且此波峰的位置變化與雷射功率呈現線性關係,因此可以利用此特性來推算石墨烯的熱傳導係數,並針對影響熱傳導係數的原因進行探討。
本研究利用化學氣相沉積法進行石墨烯的製備,此制備方法容易獲得高品質的石墨烯且厚度可以達到1到2層,經過實驗的量測單層石墨烯的熱傳導係數為2800~3200(W/mK),而雙層石墨烯熱傳導係數為1600~2100(W/mK),由此結果可以發現當石墨烯的層數越多時,其熱傳導係數會降低,且當層數越多其熱傳導係數會越接近高定向熱解石墨(HOPG),高定向熱解石墨的碳原子堆疊方式具有規則與周期性,因此當石墨烯層數越多時,其熱傳導係數會越接近,由此結果可以知道層與層之間也會造成熱傳導係數的影響,當原子間的排列越混亂且無規則性熱傳導係數會降低。
Graphene, a two-dimensional structure composed of carbon atoms arranged in a hexagonal honeycomb lattice and hybridized in an sp² orbital, possesses numerous outstanding properties such as high mechanical strength, high electron mobility, high thermal conductivity, and high transparency. Therefore, graphene finds wide applications in various fields, including aerospace industry, biotechnology, integrated circuits, and clean filtration technologies, among others. Thin film processing is widely used in semiconductor, optoelectronics, microelectromechanical systems (MEMS), and other fields.
In this research, Raman spectroscopy is employed to measure the thermal conductivity of graphene. This spectroscopic method relies on the Raman scattering phenomenon, which occurs when incident light interacts with sample molecules, resulting in a frequency shift of the scattered light compared to the incident light. Different materials exhibit distinctive vibrational information, making Raman spectroscopy a valuable tool for characterizing material structures. By analyzing the Raman spectra, a G peak is observed at a position of 1580 cm-1, and the position of this peak exhibits a linear relationship with laser power. This characteristic can be utilized to estimate the thermal conductivity of graphene, and the number of graphene layers can also be determined from the Raman spectra.
Experimental measurements indicate that the thermal conductivity of monolayer graphene is in the range of 2800 to 3200 (W/mK), while bilayer graphene exhibits a thermal conductivity of 1600 to 2100 (W/mK). From these results, it is observed that as the number of graphene layers increases, the thermal conductivity decreases. Moreover, as the number of layers increases, the thermal conductivity approaches that of HOPG. HOPG has a regular and periodic arrangement of carbon atoms, and therefore, as the number of graphene layers increases, the thermal conductivity approaches a similar value due to the regular stacking of carbon atoms. This indicates that the arrangement of atoms between layers also influences thermal conductivity, and a more disordered and irregular arrangement leads to a decrease in thermal conductivity.
1. Cahill, D.G., Heat transport in dielectric thin films and at solid-solid interfaces. Microscale Thermophysical Engineering, 1997. 1(2): p. 85-109.
2. Nandanapalli, K.R., D. Mudusu, and S. Lee, Functionalization of graphene layers and advancements in device applications. Carbon, 2019. 152: p. 954-985.
3. Novoselov, K.S., A.K. Geim, S.V. Morozov, D.-e. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Electric field effect in atomically thin carbon films. science, 2004. 306(5696): p. 666-669.D
4. Neto, A.C., F. Guinea, N.M. Peres, K.S. Novoselov, and A.K. Geim, The electronic properties of graphene. Reviews of modern physics, 2009. 81(1)
5. Callister, W.D. and D.G. Rethwisch, Materials science and engineering: an introduction. Vol. 7. 2007: John wiley & sons New York.
6. Thrower, P., Study of defects in graphite by transmission electron microscopy. 1969.
7. Mortazavi, B. and S. Ahzi, Thermal conductivity and tensile response of defective graphene: A molecular dynamics study. Carbon, 2013. 63: p. 460-470.
8. Li, X., G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, and H. Dai, Highly conducting graphene sheets and Langmuir–Blodgett films. Nature nanotechnology, 2008. 3(9): p. 538-542.
9. Xiao, K., H. Wu, H. Lv, X. Wu, and H. Qian, The study of the effects of cooling conditions on high quality graphene growth by the APCVD method. Nanoscale, 2013. 5(12): p. 5524-5529.
10. Munoz, R. and C. Gómez‐Aleixandre, Review of CVD synthesis of graphene. Chemical Vapor Deposition, 2013. 19(10-11-12): p. 297-322.
11. Yu, Q., J. Lian, S. Siriponglert, H. Li, Y.P. Chen, and S.-S. Pei, Graphene segregated on Ni surfaces and transferred to insulators. Applied physics letters, 2008. 93(11)
12. Li, X., W. Cai, L. Colombo, and R.S. Ruoff, Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano letters, 2009. 9(12): p. 4268-4272.
13. Yamamoto, T. and K. Watanabe, Nonequilibrium Green’s function approach to phonon transport in defective carbon nanotubes. Physical review letters, 2006. 96(25)
14. Ren, C., Z. Xu, W. Zhang, Y. Li, Z. Zhu, and P. Huai, Theoretical study of heat conduction in carbon nanotube hetero-junctions. Physics Letters A, 2010. 374(17-18): p. 1860-1865.
15. Zhang, X. and Z. Sun, Effects of vacancy structural defects on the thermal conductivity of silicon thin films. Journal of Semiconductors, 2011. 32(5)
16. Ghosh, S., W. Bao, D.L. Nika, S. Subrina, E.P. Pokatilov, C.N. Lau, and A.A. Balandin, Dimensional crossover of thermal transport in few-layer graphene. Nature materials, 2010. 9(7): p. 555-558.
17. Malard, L.M., M.A. Pimenta, G. Dresselhaus, and M.S. Dresselhaus, Raman spectroscopy in graphene. Physics reports, 2009. 473(5-6): p. 51-87.
18. Dresselhaus, M., G. Dresselhaus, and M. Hofmann, Raman spectroscopy as a probe of graphene and carbon nanotubes. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2008. 366(1863): p. 231-236.
19. Reich, S. and C. Thomsen, Raman spectroscopy of graphite. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 2004. 362(1824): p. 2271-2288.
20. Lee, J., K.S. Novoselov, and H.S. Shin, Interaction between metal and graphene: dependence on the layer number of graphene. ACS nano, 2011. 5(1): p. 608-612.
21. Balandin, A.A., S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C.N. Lau, Superior thermal conductivity of single-layer graphene. Nano letters, 2008. 8(3): p. 902-907.
22. Ziman, J.M., Electrons and phonons: the theory of transport phenomena in solids. 2001: Oxford university press.
23. Kittel, C., Introduction to Solid State Physics, 6th edn., translated by Y. Uno, N. Tsuya, A. Morita and J. Yamashita,(Maruzen, Tokyo, 1986) pp, 1986: p. 124-129.
24. Barut, A., E= hω. Physics letters. A, 1990. 143(8): p. 349-352.
25. Tzou, D.Y., Macro-to microscale heat transfer: the lagging behavior. 2014: John Wiley & Sons.
26. Tokura, Y., Correlated electrons: science to technology. JSAP international, 2000. 2
27. Kittel, C., Semiconductor Band Gaps. Introduction to Solid State Physics, 6th Ed., New York: John Wiley, 1986
28. Klemens, P., Thermal conductivity and lattice vibrational modes, in Solid state physics. 1958, Elsevier. p. 1-98.
29. Balandin, A. and K.L. Wang, Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well. Physical Review B, 1998. 58(3)
30. Murthy, J. and S. Mathur, An improved computational procedure for sub-micron heat conduction. J. Heat Transfer, 2003. 125(5): p. 904-910.
31. Zou, J. and A. Balandin, Phonon heat conduction in a semiconductor nanowire. Journal of Applied Physics, 2001. 89(5): p. 2932-2938.
32. Zhu, Y.F., J.S. Lian, and Q. Jiang, Re-examination of Casimir limit for phonon traveling in semiconductor nanostructures. Applied Physics Letters, 2008. 92(11)
33. Callister, W. and D. Rethwisch, Materials science and engineering, vol. 5 New York. NY: John Wiley & Sons.[Google Scholar], 2011.
34. Nika, D.L. and A.A. Balandin, Two-dimensional phonon transport in graphene. Journal of Physics: Condensed Matter, 2012. 24(23)
35. Jorio, A. and L.G. Cançado, Raman spectroscopy of twisted bilayer graphene. Solid State Communications, 2013. 175: p. 3-12.
36. Lindsay, L., D. Broido, and N. Mingo, Flexural phonons and thermal transport in graphene. Physical Review B, 2010. 82(11)
37. Calizo, I., A. Balandin, W. Bao, F. Miao, and C. Lau, Temperature dependence of the Raman spectra of graphene and graphene multilayers. Nano letters, 2007. 7(9): p. 2645-2649.
38. Bassil, A., P. Puech, L. Tubery, W. Bacsa, and E. Flahaut, Controlled laser heating of carbon nanotubes. Applied physics letters, 2006. 88(17)
39. Huang, F., K.T. Yue, P. Tan, S.-L. Zhang, Z. Shi, X. Zhou, and Z. Gu, Temperature dependence of the Raman spectra of carbon nanotubes. Journal of applied physics, 1998. 84(7): p. 4022-4024.
40. Tan, P., Y. Deng, Q. Zhao, and W. Cheng, The intrinsic temperature effect of the Raman spectra of graphite. Applied physics letters, 1999. 74(13): p. 1818-1820.
41. Ghosh, D., I. Calizo, D. Teweldebrhan, E.P. Pokatilov, D.L. Nika, A.A. Balandin, W. Bao, F. Miao, and C.N. Lau, Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits. Applied Physics Letters, 2008. 92(15)
42. Munoz, E., J. Lu, and B.I. Yakobson, Ballistic thermal conductance of graphene ribbons. Nano letters, 2010. 10(5): p. 1652-1656.
43. Mortazavi, B., B., A. Rajabpour, S. Ahzi, Y. Rémond, and S.M.V. Allaei, Nitrogen doping and curvature effects on thermal conductivity of graphene: A non-equilibrium molecular dynamics study. Solid state communications, 2012. 152(4): p. 261-264.
44. Cooper, D.R., B. D’Anjou, N. Ghattamaneni, B. Harack, M. Hilke, A. Horth, N. Majlis, M. Massicotte, L. Vandsburger, and E. Whiteway, Experimental review of graphene. International Scholarly Research Notices, 2012. 2012.
45. Zhang, H., G. Lee, and K. Cho, Thermal transport in graphene and effects of vacancy defects. Physical Review B, 2011. 84(11)
校內:2028-07-25公開