| 研究生: |
周忠毅 Chou, Chung-Yi |
|---|---|
| 論文名稱: |
電遷移效應對共晶錫鋅銲錫線材機械性質之影響 The Effect of Electromigration on the Mechanical Performance of Eutectic Tin-Zinc Solder Wire |
| 指導教授: |
林光隆
Lin, Kuang-Lung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 共晶錫鋅 、時效 、電遷移 |
| 外文關鍵詞: | aging, electromigration |
| 相關次數: | 點閱:99 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究觀察共晶錫鋅銲錫線材分別經電遷移試驗、時效處理後其顯微結構且探討其拉伸試驗結果,並觀察破斷面型態與其橫截面微觀組織,而後比較硬度測試結果。
微觀組織顯示,未經均質化處理的試片,電遷移試驗和時效處理後其顯微結構差異並不明顯。經均質化處理後的試片,通電30天後,錫基地上出現大量顆粒狀的富鋅相;經均質化處理後再時效30天的試片其顯微結構沒有觀察到類似的現象。拉伸試驗結果顯示,經均質化處理的試片其平均抗拉強度值約為45 MPa,抗拉強度隨通電時間的增加呈現線性下降的趨勢;經過均質化處理的試片其抗拉強度值隨時效熱處理時間增加而下降且最後維持定值。此外所有試片拉伸位移值之標準差均偏高,可能是富鋅相分佈不均勻所致。根據破斷形貌的觀察結果,未經任何處理、經均質化後再通電30天的試片皆屬於延性破壞且裂縫沿著富鋅相和β-Sn之間發生。
硬度測試數據顯示,在第15天之前,經均質化處理再通電的試片和經均質化處理再時效的試片其硬度值幾乎相同。但當時間超過15天,經過均質化處理再通電的試片其硬度值有明顯下降的趨勢;而經過均質化再時效處理的試片其硬度值則幾乎不變。
The research observed the microstructures of eutectic Sn-9Zn solder wires after electromigration test and heat treatment separately, investigated the result of tensile test, observed the morphology of fracture surface and its cross-sectioned microstructure, and finally compared the result of hardness test.
The observation of microstructure indicated electrons had little impact on the microstructure of sample without homogenization. But, a lot of Zinc-rich particles within the microstructure of sample with homogenization appeared in the Sn-matrix when the current stressing time was to 30 days. However, the same phenomenon did not appear in the aging case. The result of tensile test showed the average ultimate tensile stress of the samples with homogenization was about 45.5 MP. It decreased linearly with current stressing time. But the average ultimate tensile stress of the samples with homogenization decreased with aging time. Furthermore, standard deviation of tensile displacement of all the samples was extremely high. It might come from the non-uniform dispersion of Zn-rich phase. According to the observation of fracture morphology, as-prepared samples exhibited a ductile mode and samples with homogenization after current stressing for 30 days samples did, too. Moreover, cracks occurred at the boundary between the Zn-rich phase and β-Sn.
The result of hardness test indicated, before 15days, for samples with homogenization after electromigration test and heat treatment separately, these hardness values were nearly identical. But after 15 days, for current stressing case, there was an obvious decline for hardness value. However, for aging case, the value remained almost constant.
1. N. C. Lee, “Getting Ready for Lead-Free Solders”, Soldering & Surface Mount Technology, Vol. 9, 1997, pp. 65~69.
2. A. W. Gibson, S. Choi, T. R. Bieler, and K. N. Subramanian, “Environmental Concerns and Materials Issues in Manufractured Solder Joints”, Proceeding of the 1997 International Symposium on Electronics and the Environmental, 1997, pp. 245~251.
3. A. Z. Miric, and A. Grusd, “Lead-Free Alloys”, Soldering and Surface Mount Technology, Vol. 10, 1998, pp. 19~25.
4. H. Ma, and J. C. Suhling, “A Review of Mechanical Properties of Lead-Free Solders for Electronic Packaging”, Journal of Materials Science, Vol. 44, 2009, pp. 1141~1158.
5. T. B. Massalski, Binary Alloy Phase Diagrams, ASM, Metal Park, Ohio,USA, Vol. 2, 1986, p. 2086.
6. T. B. Massalski, Binary Alloy Phase Diagrams, ASM, Metal Park, Ohio,USA, Vol. 2, 1986, p. 1848.
7. K. Suganuma, and K. S. Kim, “Sn-9Zn Low Temperature Solder”,Journal of Materials Science-Materials in Electronics, Vol. 18, 2006, pp. 121~127.
8. Y. S. Kim, K. S. Kim, C. W. Won, and K. Suganuma, “Effect of Composition and Cooling Rate on Microstructure and Tensile Properties of Sn–Zn–Bi Alloys”, Journal of Alloys and Compound, Vol. 352, 2003, pp. 237~245.
9. T. B. Massalski, Binary Alloy Phase Diagrams, ASM, Metal Park, Ohio,USA, Vol. 1, 1986, p. 540.
10. S. K. Kang, “Lead-Free Solders for Electronic Packaging”, Journal of Electronic Materials, Vol. 23, No.8, 1994, pp. 701~707.
11. T. B. Massalski, Binary Alloy Phase Diagrams, ASM, Metal Park, Ohio, USA, Vol. 2, 1986, p. 2018.
12. T. B. Massalski, Binary Alloy Phase Diagrams, ASM, Metal Park, Ohio, USA, Vol. 2, 1986, p. 71.
13. T. B. Massalski, Binary Alloy Phase Diagrams, ASM, Metal Park, Ohio, USA, Vol. 2, 1986, p. 1401.
14. J. P. Daghfal, and J. K. Shang, “Current-Induced Phase Partitioning in Eutectic Indium-Tin Pb-free Solder Interconnect”, Journal of Electronic Materials, Vol. 36, No. 10, 2007, pp. 1372~1377.
15. P. Shewmon, Diffusion in Solids, The Minerals, Metals and Materials Society, 1989, p. 224.
16. H. B. Huntington, Diffusion in Solid : Recent Development, A. S. Nowick, and J. J. Burton, Academic Press, New York, 1975, pp. 303~52.
17. H. Wever, Electro- and Thermo-Transport in Metals and Alloys, R. E. Hummel, and H. B. Huntington, Chapter. 3. p. 37.
18. I. Ames, F. M. d’Heurle, and R. E. Hotstmann, “Reduction of Electromigration in Aluminum Films by Copper Doping”, IBM Journal of Research and Development, Vol. 14, Issue 4, 1970.
19. A. Gangulee, and F. M. d’Heurle, “Thin Solid Films”, Vol. 227, Issue 16, 1973.
20. A. Lee, C. E. Ho, and K. N. Subramanian, ”Electromigration Induced Microstructure and Morphological Changes in Eutectic SnPb Solder Joint”, Journal of Materials Research, Vol. 22, No. 11, 2007, pp. 3265~3272.
21. C. E. Ho, A. Lee, and K. N. Subramanian, “Design of Solder Joints for Fundamental Studies on the Effects of Electromigration”, Journal of Materials Science-Materials in Electronics, Vol. 30, 2007, pp. 569~574.
22. C. H. Chen, and C. C. Huang, “Atomic Migration in Eutectic SnBi Solder Alloys due to Current Stressing”, Journal of Materials Research, Vol. 23, No. 4, 2008, pp. 1051~1056.
23. F. Ren, J. W. Nah, K. N. Tu, B. Xiong, L. Xu, and J. H. L. Pang, “Electromigration Induced Ductile-to-Brittle Transition in Lead-Free Solder Joint”, Journal of Applied Physics Letter, Vol. 89, 2006, pp. 141914.
24. M. H. R. Jen, L. C. Liu, and Y. S. Lai, “ Electromigration Test on Void Formation and Failure Mechanism of FCBGA Lead-Free Solder Joints”, IEEE Transactions on Components and Packaging Technologies, Vol. 32, 2009, pp. 79~88.
25. J. H. Lee, G. T. Lim, Y. B. Park, S. T. Yang, M. S. Suh, Q. H. Chung, and K. Y. Byun, “Electromigration Characteristics of Flip Chip Sn-3.5Ag Solder Bumps under Highly Accelerated Conditions”, Journal of the Korean Physical Society, Vol. 54, 2009, pp. 1784~1792.
26. T. Miyazaki, and T. Omata, “Electromigration degradation Mechanism for Pb-Free Flip-Chip Micro Solder Bumps”, Microelectronics Reliability”, Vol. 46, 2006, pp. 1898~1903.
27. A. Kumar, Y. Yang, and C. C. Wong, “Effect of Electromigration on the Mechanical Performance of Sn-3.5Ag Solder Joints with Ni and Ni-P Metallizations”, Journal of Electronic Materials, Vol. 38, No. 1, 2009, pp. 78~87.
28. M. He, Z. Chen, and G. J. Qi, ”Mechanical Strength of Thermally Aged Sn-3.5Ag/Ni-P Solder Joints”, Metallurgical and Materials Transactions Series A - Physical Metallurgy and Materials Science, Vol. 36A, 2005, pp. 65~75.
29. Z. Chen, M. He, and A. Kumar,” Effect of Interfacial Reaction on the Tensile Strength of Sn-3.5Ag/Ni-P and Sn-37Pb/Ni-P Solder Joints”, Journal of Electronic Materials, Vol. 36, 2007, pp. 17~25.
30. J. Shen, Y. C. Liu, Y. J. Han, H. X. Gao, C. Wei, and Y. Q, Yang, ”Effect of Cooling Rate on Microstructure and Microhardness of Lead-Free Sn-3.5%Ag Solders”, Transactions of Nonferrous Metals Society of China, Vol. 16, 2006, pp. 59~64.
31. X. Deng, N. Chawla, K. K. Chawla, and M. Koopman, ”Deformation Behavior of (Cu, Ag)-Sn Intermetallics by Nanoindentation”, Acta Materialia, Vol. 52, 2004, pp. 4291~4303.
32. B. D. Cullity, Elements of X-ray Diffraction, Third Edition , Prentice Hall, 2001, p. 625.
33. L. R. Garcia, L. C. Peixoto, W. R. Osorio, and A. Garcia, “Globular-to-Needle Zn-rich Phase Transition During Transient Solidification of a Eutectic Sn-9%Zn Solder Alloy”, Material Letters, Vol. 63, 2009, pp. 1314~1346.
34. D. A. Porter, and K. E. Easterling, Phase Transformations in Metals and Alloys, Second Edition, Taylor & Francis, 2004, pp. 314~317.
35. D. A. Porter, and K. E. Easterling, Phase Transformations in Metals and Alloys, Second Edition, Taylor & Francis, 2004, pp. 71~75.
36. T. H. Courtney, Mechanical Behavior of Materials, Second Edition, McGraw-Hill, 2000, pp. 196~198.
37. R. C. Sundahl, Electronic Packaging Materials ScienceⅧ, Materials
Research Society, 1995, p. 163.
38. F. Vnuk, M. Sahoo, D. Baragar, and R.W. Smith, “Mechanical Properties of the Sn-Zn Eutectic Alloys”, Journal of Materials Science, Vol. 15, 1980, pp. 2573~2583.
39. Robert E. Reed-Hill, and R. Abbaschian, Physical Metallurgy Principles, Third Edition, Pws Publishing Company, Boston, 1972, pp. 739~746.
40. R. W. K. Honeycombe, The Plastic Deformation of Metals, Second Edition, Edward Arnold, 1984, pp. 453~454.
41. R. A. Islam, B.Y. Wu, M. O. Alam, Y. C. Chan, and W. Jillek, “Investigations on Microhardness of Sn-Zn Based Lead-Free Solder Alloys as Replacement of Sn-Pb Solder”, Journal of Alloys and Compound, Vol. 392, 2005, pp. 149~158.