| 研究生: |
黃少鈞 Huang, Shao-Chun |
|---|---|
| 論文名稱: |
對蘭姆波及雷利波之地震超材料設計與分析:三維全域數值模擬 Design and analysis of seismic metamaterials for Lamb waves and Rayleigh waves: three-dimensional numerical simulations |
| 指導教授: |
陳東陽
Chen, Tung-Yang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 地震超材料 、局部共振 、帶隙 、全域模擬 |
| 外文關鍵詞: | seismic metamaterials, local resonance, bandgap, three-dimensional numerical simulations |
| 相關次數: | 點閱:60 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
「地震超材料」是一種新型態的減震技術,與傳統隔減震技術相比,最大的差異在於地震超材料不需與建築物接觸,設置在周圍便能發揮功用。利用其在特定的頻率之下能夠藉由局部共振消能機制來達到減震的效果,近年來有許多學者紛紛研究其相關領域。而以橡膠包裹內含物之型態在地震超材料當中最為常見,本文為考量工程可行性,將內含物從常見之鋼材替換為混凝土,首先介紹局部共振消能機制,為了對應較低頻的地震頻率選擇負等效質量密度作為設計地震超材料的核心概念,接著運用有限元素軟體透過不同的邊界條件分別針對蘭姆波(Lamb wave)及雷利波(Rayleigh wave)設計兩種不同的單元結構,分析頻散圖並討論材料參數變化對於帶隙頻率範圍與帶隙寬度之影響,最後在半全域及全域模擬下建立實尺模型分別從時間域及頻率域討論地震超材料消能的結果,並驗證了帶隙確實能對特定頻率波傳之位移及振幅產生衰減作用。
Seismic metamaterials are a new type of isolation technology for seismic waves. Within certain designed frequency range, seismic waves can be attenuated or controlled. The subject has attracted many researchers to study in this field and explore the physical insights in the last decade. This artificially engineered material utilizes coupling interference effect between propagating waves and local resonances to prevent the propagation of waves at frequencies near resonances. The type of inclusions wrapped in rubber is the most common type of seismic metamaterials. In this thesis, the inclusions are replaced from common steel to concrete for engineering feasibility. Then, we utilize the finite element software COMSOL to design two different unit cells for Lamb wave and Rayleigh wave through different boundary conditions, and analyze the dispersion behavior. Lastly, real-scale models are considered to evaluate the energy dissipation effects of the seismic metamaterials, both from time and frequency domains. We found that the bandgap can indeed attenuate the displacement and amplitude of wave propagation within the designed interval of frequencies.
Aki, K. and Richards, P. G., Quantitative Seismology: Theory and Methods, W. H. Freeman, (1980).
Badreddine Assouar, M. and Oudich, M. Dispersion curves of surface acoustic waves in a two-dimensional phononic crystal. Applied Physics Letters 99: 123505, (2011).
Brûlé, S., Javelaud, E. H., Enoch, S. and Guenneau, S. Experiments on seismic metamaterials: molding surface waves. Phys Rev Lett 112: 133901, (2014).
Brule, S., Javelaud, E. H., Enoch, S. and Guenneau, S. Experiments on Seismic Metamaterials: Molding Surface Waves. Physical Review Letters 112: 5, (2014).
Du, Q. J., Zeng, Y., Huang, G. L. and Yang, H. W. Elastic metamaterial-based seismic shield for both Lamb and surface waves. AIP Advances 7: 13, (2017).
Fang, N., Xi, D. J., Xu, J. Y., Ambati, M., Srituravanich, W., Sun, C. and Zhang, X. Ultrasonic metamaterials with negative modulus. Nature Materials 5: 452-456, (2006).
Gao, L. L., Xia, J. H. and Pan, Y. D. Misidentification caused by leaky surface wave in high-frequency surface wave method. Geophysical Journal International 199: 1452-1462, (2014).
Hajjaj, M. M. and Tu, J. W. Wave attenuation study on a wide-band seismic metasurface using capped pillars. Comptes Rendus Mecanique 350, (2022).
Hakoda, C., Rose, J., Shokouhi, P. and Lissenden, C. Using Floquet periodicity to easily calculate dispersion curves and wave structures of homogeneous waveguides. AIP Conference Proceedings 1949: 020016, (2018).
Hewage, T. A. M., Alderson, K. L., Alderson, A. and Scarpa, F. Double-Negative Mechanical Metamaterials Displaying Simultaneous Negative Stiffness and Negative Poisson's Ratio Properties. Advanced Materials 28: 10323-10332, (2016).
Huang, G. L. and Sun, C. T. Band Gaps in a Multiresonator Acoustic Metamaterial. Journal of Vibration and Acoustics-Transactions of the Asme 132: 6, (2010).
Huang, H. and Sun, C. A study of band-gap phenomena of two locally resonant acoustic metamaterials. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems 224: 83-92, (2010).
Huang, H. H. and Sun, C. T. Locally resonant acoustic metamaterials with 2D anisotropic effective mass density. Philosophical Magazine 91: 981-996, (2011).
Huang, H. H. and Sun, C. T. Wave attenuation mechanism in an acoustic metamaterial with negative effective mass density. New Journal of Physics 11: 15, (2009).
John, S. Strong localization of photons in certain disordered dielectric superlattices. Physical Review Letters 58: 2486-2489, (1987).
Kushwaha, M. S., Halevi, P., Dobrzynski, L. and Djafarirouhani, B. Acoustic band-structure of periodic elastic composites. Physical Review Letters 71: 2022-2025, (1993).
Lee, S. H., Park, C. M., Seo, Y. M., Wang, Z. G. and Kim, C. K. Composite Acoustic Medium with Simultaneously Negative Density and Modulus. Physical Review Letters 104: 4, (2010).
Liao, S. and Sangrey Dwight, A. Use of Piles as Isolation Barriers. Journal of the Geotechnical Engineering Division 104: 1139-1152, (1978).
Liu, H., Li, L., Jia, Q., Jiang, S., Li, P. and Zhang, X. Radial Seismic Metamaterials Based on Layering Theory: Broadband Shielding of Ultra-Low Frequency Seismic Surface Waves. Frontiers in Materials 9: 908058, (2022).
Liu, X. N., Hu, G. K., Huang, G. L. and Sun, C. T. An elastic metamaterial with simultaneously negative mass density and bulk modulus. Applied Physics Letters 98: 3, (2011).
Liu, Z., Zhang, X., Mao, Y., Zhu, Y. Y., Yang, Z., Chan, C. T. and Sheng, P. Locally Resonant Sonic Materials. Science 289: 1734-1736, (2000).
Ma, G. C. and Sheng, P. Acoustic metamaterials: From local resonances to broad horizons. Science Advances 2: 16, (2016).
Meseguer, F., Holgado, M., Caballero, D., Benaches, N., Sanchez-Dehesa, J., Lopez, C. and Llinares, J. Rayleigh-wave attenuation by a semi-infinite two-dimensional elastic-band-gap crystal. Physical Review B 59: 12169-12172, (1999).
Milton, G. W., Briane, M. and Willis, J. R. On cloaking for elasticity and physical equations with a transformation invariant form. New Journal of Physics 8: 20, (2006).
Miniaci, M., Krushynska, A., Bosia, F. and Pugno, N. M. Large scale mechanical metamaterials as seismic shields. New Journal of Physics 18: 14, (2016).
Oliver, J. and Major, M. Leaking modes and the PL phase. Bulletin of the Seismological Society of America 50: 165-180, (1960).
Pendry, J. B. Negative Refraction Makes a Perfect Lens. Physical Review Letters 85: 3966-3969, (2000).
Pendry, J. B., Holden, A. J., Robbins, D. J. and Stewart, W. J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques 47: 2075-2084, (1999).
Pendry, J. B., Holden, A. J., Stewart, W. J. and Youngs, I. Extremely Low Frequency Plasmons in Metallic Mesostructures. Physical Review Letters 76: 4773-4776, (1996).
Richart, F. E., Hall, J. R. and Woods, R. D., Vibrations of Soils and Foundations by F.E. Richart Jr, J.R. Hall Jr, R.D. Woods, Prentice-Hall, (1970).
Schroder, C. T. and Scott, W. R. On the complex conjugate roots of the Rayleigh equation: The leaky surface wave. Journal of the Acoustical Society of America 110: 2867-2877, (2001).
Shelby, R. A., Smith, D. R. and Schultz, S. Experimental Verification of a Negative Index of Refraction. Science 292: 77-79, (2001).
Sigalas, M. M. and Economou, E. N. Elastic and acoustic wave band structure. Journal of Sound Vibration 158: 377-382, (1992).
Smajic, J., Holaus, W., Troeger, A., Burow, S., Brandl, R. and Tenbohlen, S. HF Resonators for Damping of VFTs in GIS. (2011).
Smith, D. R., Padilla, W. J., Vier, D. C., Nemat-Nasser, S. C. and Schultz, S. Composite Medium with Simultaneously Negative Permeability and Permittivity. Physical Review Letters 84: 4184-4187, (2000).
Veselago, V. G. The electrodynamics of substances with simultaneously negative values of ε and μ. Soviet Physics Uspekhi 10: 509-514, (1968).
Wu, Y., Lai, Y. and Zhang, Z. Q. Elastic Metamaterials with Simultaneously Negative Effective Shear Modulus and Mass Density. Physical Review Letters 107: 5, (2011).
Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Physical Review Letters 58: 2059-2062, (1987).
Zhang, K., Luo, J., Hong, F. and Deng, Z. Seismic metamaterials with cross-like and square steel sections for low-frequency wide band gaps. Engineering Structures, 232, 111870. (2021).
吳翊寧,一維黏彈性內質量系統波振幅衰減之行為探討與效益評估,成功大學土木工程學系碩士論文(2021)。
李冠慧,地震超材料設計之減震模擬及效益評估,成功大學土木工程學系碩士論文(2019)。
謝志忠,地震超材料對於震波能量衰減行為的探討,成功大學土木工程學系碩士論文(2020)。
簡廷宇,具帶隙效應之層狀基礎於隔減震之應用,成功大學土木工程學系碩士論文(2018)。