| 研究生: |
李嘉晉 Li, Jia-Jin |
|---|---|
| 論文名稱: |
微波合成Sr2Si5N8與SrSi2N2O2螢光粉及其螢光效能研究 Microwave Synthesis of Sr2Si5N8 and SrSi2N2O2 Phosphors and their Photoluminescent Properties |
| 指導教授: |
鍾賢龍
Chung, Shyan-Lung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 螢光粉 、微波合成法 、SrSi2O2N2 、Sr2Si5N8 |
| 外文關鍵詞: | Phosphor, microwave sintering method, SrSi2O2N2, Sr2Si5N8 |
| 相關次數: | 點閱:81 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
白光LED具有高功率、省電、壽命長、環保特性佳等優點而成為節能技術中的重要項目。而螢光材料是一種光轉換材料,在吸收激發光之後釋放不同波長的可見光,是構成LED的關鍵材料之一。目前大多白光LED使用之氧化物螢光粉熱穩定性差,發光效率不足。具有高發光效率、熱穩定性佳以及可使用藍光或紫外光激發之螢光材料成為重要之研究議題,近來文獻研究顯示氮氧化物及氮化物螢光粉即具有這些優點,然而文獻報導之氮氧化物與氮化物螢光粉合成方法皆須在嚴苛的條件下進行,如高溫、高壓或長時間下反應且設備昂貴,以致生產成本高,進而限制了此類螢光粉在LED照明之實際應用。本論文研究乃引用本實驗室過去建立之微波技術及以鈣為鹼土金屬的氮氧化物及氮化物螢光粉的研究基礎,探討以鍶為鹼土金屬之氮氧化物及氮化物螢光粉之微波合成製程及發光特性。實驗過程中,發現在不同溫度(即不同微波功率)條件下所生成的產物晶相不相同,主要為SrSi2O2N2及Sr2Si5N8兩種晶相,吾人發現在相對低溫下(1250-1500℃)進行微波合成實驗得到SrSi2O2N2主體晶格,而隨著溫度的提升,在相對高溫下(1500-1600℃)將會得到Sr2Si5N8主體晶格。在低溫下合成之SrSi2O2N2:Eu2+螢光粉,在460nm藍光激發下,發射峰落在535nm附近,改變添加劑種類及其含量可有效提升發光強度及改變其發光波長,最佳條件下所合成者與市售粉體YAG及NTR-135(Ca2Si5N8:Eu2+)比較,其螢光強度分別為市售粉體之1.89倍及1.04倍。在高溫下合成之Sr2Si5N8:Eu2+主體晶格螢光粉,其發射峰在藍光激發下為610nm,本論文並探討反應物組成、持溫時間及溫度對產物生成及發光效能之影響。
White light-emitting diodes are believed to become important research project due to its advantages such as low power consumption, high efficiency, long lifetime, and environment friendliness. Phosphors are photons conversion material and essential materials for the fabrication of the LED. Most of current oxide phosphors used for white LED has some problems such as low thermal stability and low efficiency. It is necessary to develop a phosphor material which has high luminescence intensity, thermal stability and can be excited by UV or blue light. The recent literatures indicated that oxynitride phosphor and nitride phosphor had these excellent advantages. However, the synthesis methods of commercial phosphor powder and literature all use high temperature, high pressure, long soaking time, and expensive equipment. Because of the high cost of production, the application of phosphor for LED is limited. Based on microwave method (MW) and the knowledge of oxynitride and nitride phosphor, previous research in our laboratory used Calsium, as alkaline-earth metal to produce phosphor. This thesis discusses the oxynitride phosphor and nitride phosphor using Strontium as alkaline earth metal by using MW method. Different crystalline product was found under different conditions, mainly contain Sr2Si5N8, that is produced in higher temperature(1500-1600℃), and SrSi2O2N2, that is produced in lower temperature(1250-1500℃). This thesis focuses on the effect under different temperature control, the amount of additives, and soaking time. The optimal condition SrSi2O2N2 product has compared to the commercial phosphor powder YAG and NTR-135, and the luminescence intensity is 189% and 104% respectively. The SrSi2O2N2 product have a broad emission peak at 534nm that observed upon 460nm excitation, and with changing content of additives can effectively enhance the luminescence intensity and change its emission wavelength into longer wavelength. This thesis also mention that Sr2Si5N8 host lattice synthesis condition and discuss the effect of different soaking time and reaction temperature. The Sr2Si5N8 products have a broad emission peak at 610nm that observed upon 460nm excitation.
1. Salkind, A.J., & Israel, P. Thomas Alva Edison - battery and device innovation inresponse to application's needs. in 23rd International Power Sources Symposium. Amsterdam, NETHERLANDS: Elsevier Science Bv. (2003).
2. Jacobson, M.Z. Review of solutions to global warming, air pollution, and energy security. Energy & Environmental Science, 2(2): p. 148-173. (2009).
3. 劉如熹、紀喨勝,”紫外光發光二極體用螢光分介紹”。全華科技圖書股份有限公司,(2003)。
4. Dorenbos, P. Energy of the first 4f7→4f65d transition of Eu2+ in inorganic compounds, Journal of Luminescence, 104(4), 239-260. (2003).
5. Lee, W. C., Tu, C. L., Weng, C. Y., & Chung, S. L. A novel process for combustion synthesis of AlN powder. Journal of materials research, 10(03), 774-778. (1995).
6. Lee, W.-C.,& Chung, S.-L. Combustion synthesis of Si3N4 powder. Journal ofMaterials Research, 12(3), 805-811. (1997).
7. Hwang, C.-C., & Chung, S.-L. Combustion synthesis of boron nitride powder.Journal of Materials Research, 13(3), 680-686.(1998).
8. Lin, C.-N., & Chung, S.-L. Combustion synthesis method for synthesis of aluminum nitride powder using aluminum containers (II). Journal of Materials Research,19(10), 3037-3045. (2004).
9. Chung, S.-L., Chang, C.-W., & Cadete Santos Aires, F.J. Reaction mechanism in combustion synthesis of -Si3N4 powder using NaN3. Journal of Materials Research, 23(10), 2720-2726. (2008).
10. Chung, S.-L., Huang, S.-C., Chou, W.-C., & Tangguh, W. W. Phosphors based on nitridosilicates: synthesis methods and luminescent properties. Current Opinion in Chemical Engineering, 3, 62-67. (2014).
11.Chung, S.-L., Chou, W.-C., & Heo, J. Combustion Synthesis of Ca2Si5N8: Eu2+Phosphors and their Luminescent properties. Journal of the American Ceramic Society, 96(7), 2086-2092. (2013).
12.劉如熹、劉宇恆,”發光二極體用氧氮螢光粉介紹”, 全華科技圖書股份有限公司, (2006)。
13. 王卉宜,“氮化物紅色螢光粉體之合成製程開發 ”,碩士論文,國立成功大學化學工程學系,台南市,台灣,民國97 年 (2008 年)。
14. Blasse, G., & Grabmaier, B. C. “Luminescence Material”, Springer, Berlin (1994).
15. Yen, W.M., S. Shionoya, & Yamamoto, H. Phosphor handbook. 2nd ed, New York: CRC Press Taylor & Francis Group. (2006).
16. 劉彥群,“白光LED 用之高效能氮氧化物螢光粉(Ca-alpha-SiAlON)之合成
製程開發 ”,碩士論文,國立成功大學化學工程學系,台南市,台灣,民
國98 年(2009 年)。
17. Kuboniwa, S., Kawai, H., & Hoshina, T. Cathodoluminescence
saturation and decay characteristics of ZnS: Cu, Al phosphor. Japanese Journal
of Applied Physics, 19(9), 1647. (1980).
18. 蔡宗益,“氮化鋁粉體在高導熱電子與光電基板應用之微波燒結研究”,
碩士論文,國立成功大學化學工程學系,台南市,台灣,民國98 年(2009 年)
19. Kitai, A. (Ed.). Luminescent materials and applications (Vol. 25). John Wiley & Sons. (2008).
20. Bogner, G., Botty, I. G., Braune, B., Hintzen, H. T., Van Krevel, J. W., & Waitl, G. U.S. Patent No. 6,649,946. Washington, DC: U.S. Patent and Trademark Office. (1999).
21. Li Y Q, van Steen J E J, van Krevel J W H, Botty G,Delsing A C A, Disalvo F J, With G de, & Hintzen H T. J. Luminescence properties of red-emitting M2Si5N8:Eu2+(M = Ca, Sr, Ba) LED conversion phosphors. Alloys Compd., 417: 273.(2006).
22. Höppe, H. A., Lutz, H., Morys, P., Schnick, W., & Seilmeier, A. "Luminescence in Eu2+-doped Ba2Si5N8: fluorescence, thermoluminescence, and upconversion." Journal of Physics and Chemistry of Solids 61.12.2001-2006. (2000) .
23 Oeckler, O., Stadler, F., Rosenthal, T., & Schnick, W. Real structure of SrSi2O2N2. Solid state sciences, 9(2), 205-212. (2007).
24. Li, Y. Q., Delsing, A. C. A., De With, G., & Hintzen, H. T. Luminescence properties of Eu2+-activated alkaline-earth silicon-oxynitride MSi2O2-δN2+ 2/3δ (M= Ca, Sr, Ba): a promising class of novel LED conversion phosphors. Chemistry of materials, 17(12), 3242-3248. (2005).
25. Bachmann, V., Jüstel, T., Meijerink, A., Ronda, C., & Schmidt, P. J. Luminescence properties of SrSi2O2N2 doped with divalent rare earth ions. Journal of luminescence, 121(2), 441-449. (2006).
26. Song, X., He, H., Fu, R., Wang, D., Zhao, X., & Pan, Z. Photoluminescent properties of SrSi2O2N2: Eu2+ phosphor: concentration related quenching and red shift behaviour. Journal of Physics D: Applied Physics, 42(6), 065409. (2009).
27. Yang, X., Song, H., Yang, L., & Xu, X. Reaction Mechanism of SrSi2O2N2:Eu2+ Phosphor Prepared by a Direct Silicon Nitridation Method. Journal of the American Ceramic Society, 94(1), 164-171. (2011).
28. Li, Y. Q., van Steen, J. E. J., van Krevel, J. W. H., Botty, G., Delsing, A. C. A., DiSalvo, F. J., . . . Hintzen, H. T. Luminescence properties of red-emitting M2Si5N8:Eu2+ (M=Ca, Sr, Ba) LED conversion phosphors. Journal of Alloys and Compounds, 417(1-2), 273-279. (2006).
29. Teng, X., Zhuang, W., Hu, Y., & Huang, X. Luminescence properties of nitride red phosphor for LED. Journal of Rare Earths, 26(5), 652-655. (2008).
30. Horikawa, T., Piao, X. Q., Fujitani, M., Hanzawa, H., & Machida, K. Preparation of Sr2Si5N8:Eu2+phosphors using various novel reducing agents and their luminescent properties. IOP Conference Series: Materials Science and Engineering, 1, 012024. (2009).
31. Piao, X., Machida, K.-i., Horikawa, T., & Yun, B. Acetate reduction synthesis of Sr2Si5N8:Eu2+ phosphor and its luminescence properties. Journal of Luminescence, 130(1), 8-12. (2010).
32. Luong, V. D., Zhang, W., & Lee, H.-R. Preparation of Sr2Si5N8:Eu2+ for white light-emitting diodes by multi-step heat treatment. Journal of Alloys and Compounds, 509(27), 7525-7528. (2011).
33. Xie, R.-J. and, Hirosaki,N. Silicon-based oxynitride and nitride phosphors for white LEDs-A review. Science and Technology of Advanced Materials. 8(7-8): p.588-600. (2007).
34. Yi, H. C., & Moore, J. J. Self-propagating high-temperature (combustion) synthesis (SHS) of powder-compacted materials. Journal of materials Science, 25(2), 1159-1168. (1990).
35. Subrahmanyam, J., & Vijayakumar, M. Self-propagating high-temperature synthesis. Journal of materials science, 27(23), 6249-6273. (1992).
36. Thostenson, E. T., & Chou, T. W. Microwave processing: fundamentals and applications. Composites Part A: Applied Science and Manufacturing, 30(9), 1055-1071. (1999).
37. 劉岐山,“微波能應用”, 電子工業出版社,(1990)。
38. 張存續,”材料與微波之頻率響應與反應特性”,工業材料雜誌216期,(2004)。
39. 汪建民, “陶瓷技術手冊”, 中華民國科技發展協進會,(1994)。
40. Zhang, Y., Liu, X., Lei, B., Wang, H., & Sun, Q. Effect of C3N6H6 on Luminescent Properties of SrSi2N2O2: Eu2+ Yellow Phosphors Prepared by Microwave Reaction Method. Energy Procedia, 16, 391-396. (2012).
41. Xie, R. J., Hirosaki, N., Suehiro, T., Xu, F. F., & Mitomo, M. A simple, efficient synthetic route to Sr2Si5N8: Eu2+-based red phosphors for white light-emitting diodes. Chemistry of materials, 18(23), 5578-5583. (2006).
42. Poort, S. H. M., Janssen, W., & Blasse, G. Optical properties of Eu2+-activated orthosilicates and orthophosphates. Journal of Alloys and Compounds, 260(1), 93-97. (1997).
43. Zhu, W. H., Wang, P. L., Sun, W. Y., & Yan, D. S. Phase relationships in the Sr-Si-ON system. Journal of materials science letters, 13(8), 560-562. (1994).
44. Liu, L., Xie, R. J., Zhang, C., & Hirosaki, N. Role of Fluxes in Optimizing the Optical Properties of Sr0. 95Si2O2N2: 0.05 Eu2+ Green-Emitting Phosphor.Materials, 6(7), 2862-2872. (2013).
45. Song, Y. H., Park, W. J., & Yoon, D. H. Photoluminescence properties of Sr1-xSi2O2N2: Eu2+ x as green to yellow-emitting phosphor for blue pumped white LEDs. The Journal of physics and chemistry of solids, 71(4), 473-475. (2010).
46. Bae, J. S., & Park, S. K. Oxygen partial-pressure-dependent photoluminescence characteristics of Sr2SiO4: Eu 3+ thin-film phosphors. (2011).
校內:2017-08-01公開