簡易檢索 / 詳目顯示

研究生: 陳菀莉
Chen, Wan-Li
論文名稱: 偵測融合基因的新方法評估-以ALK為例
ALK Gene Rearrangement: the Evaluation of a New Strategy for Detecting Fusion Genes
指導教授: 何中良
Ho, Chung-Liang
學位類別: 碩士
Master
系所名稱: 醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 102
中文關鍵詞: ALK融合基因次世代基因定序(NGS)大腸直腸癌
外文關鍵詞: ALK, Fusion gene, Colorectal cancer, 5’-RACE, NGS
相關次數: 點閱:179下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 基因融合對於很多癌症相關疾病而言,是重要的體細胞突變;主要由易位,倒置和刪除引起的。超過80%的已知的融合基因在不常發生的癌症被發現,如白血病,淋巴瘤,骨與軟組織相關的肉瘤。因為融合基因產生的癌症,其相關所導致死亡的佔了其中80%,但卻只有10%融合基因在上皮癌被發現。然而,基因重組導致融合基因在上皮性腫瘤的主要發病機制仍然是值得探討的。如今,許多治療方法,針對融合基因所產生的蛋白激酶活性,或是腫瘤生成過程的相關因子,進行標靶治療並且成功應用在臨床上。這表示融合基因為治療癌症的關鍵戰略。因此,要有成功的治療,在實體腫瘤以高通量篩選方法來檢測融合基因是必要的。
    RACE(快速放大cDNA末端法)是一個檢測融合基因的常用工具,由於融合型比上野生型轉錄的比例較低,因此這種技術的限制是需要大量的DNA測序,為了增加檢驗結果,我們採用次世代基因定序(NGS);比起RACE完後進行clone再定序, NGS可以提供高通量的定序結果。結合RACE和NGS為新的檢測方法,該方法將被用於檢測癌症的融合基因。我們將進行了ALK的融合基因分析,評估NGS可行性。 ALK是一種酪氨酸激酶接受體,第一個ALK融合基因為NPM-ALK在ALCL被發現; 2007年在非小細胞肺癌(NSCLC)中亦發現有2號染色體異常,帶inv(2)(p21p23)轉位,融合基因的產物是EML4-ALK融合蛋白。ALK的轉位已與超過 20個不同的夥伴基因,仍然有一些具有功能的融合夥伴尚未找到,因此增加了常規分子診斷的難度。簡而言之,我們研究的主要目的為偵測到導致腫瘤的融合基因,並且結合標靶治療。我們針對ALK融合基因建立了一個5'-RACE與NGS結合之特別的系統,並進一步使用NGS篩選大量樣品應用在大腸直腸癌的患者,希望可以提供患者有更多治療的機會。

    Gene fusion is an important somatic mutation in cancers and mainly caused by translocation, inversion and deletion. More than 80% of the known fusion genes were found in rarely happened cancers such as leukemia, lymphoma, bone and soft tissue sarcoma. However, only 10% were discovered in epithelial cancers which account for 80% of cancer-related deaths. Whether such translocation fusion oncogene plays a major role in the pathogenesis of epithelial tumors is still open to question. Nowadays, many treatments targeted to fusion genes which encode proteins with kinase activity and are required for tumorgenesis were validated and applied successfully in the clinical setting. It demonstrated that fusion genes are crucial therapeutic strategies for cancers. Therefore, a high-throughput screening method is needed for differentially detecting fusion genes in solid tumors and discovering possible targets for treatments.
    RACE (Rapid amplification of cDNA ends, RACE) is a common tool for detecting the fusion gene. Due to the low fusion / wild-type transcript ratio, the limitation of this technique is the necessity for large amount of DNA sequencing. Hence, in order to increase the screening throughput, we applied NGS (Next generation sequencing) after RACE. NGS can give high throughput than RACE alone. This novel detection method which combined RACE and NGS will be used to detect fusion gene in cancer. We performed ALK (anaplastic lymphoma kinase) fusion gene analysis to evaluate the feasibility of NGS. ALK is a receptor tyrosine kinase and first discovered as a product of gene rearrangement in anaplastic large cell lymphoma (ALCL). In 2007, a recurrent chromosome translocation, inv(2)(p21p23), was founded in non–small cell lung cancer (NSCLC). The fusion product is an EML4-ALK fusion-type protein tyrosine kinase. KIF5B-ALK is another fusion-type of ALK in NSCLC discovered in 2009. In the same year, Eva Lin et al. used the exon array profiling detects EML4-ALK fusion in breast, colorectal, and non-small cell lung cancers. ALK translocations have been known to recombine with more than 10 different partner genes and still have a number of promisingly fusion partners which had not been found yet. This consequently increases the difficulty on routine molecular diagnosis. Accordingly, in the present study, for the purpose of detecting druggable fusion genes in solid tumors, we established a specific 5’-RACE system for ALK gene and combined with NGS and further expect to use NGS to screen large amount samples of colorectal cancer patients at same time.

    目錄 致謝…………………………………...……………………………..……….3 中文摘要………………………………...…………………………..……….4 英文摘要………………………………...……………………….…….…….5 1. 序論…………………………………...………………………………….7 1.1 癌症中的融合基因……………………………….………. ……...….8 1.2 實體腫瘤…………………………….……………..…..….…...……10 1.2.1 在非小細胞肺癌發現的ALK融合基因 1.2.2 在其他實體腫瘤發現的ALK融合基因 1.3 以 ALK 基因轉位為技術開發模型………………………………13 1.3.1 ALK基因和它的功能 1.3.2 ALK基因的變異 1.3.3 ALK融合蛋白 1.3.4 ALK作為在癌症治療的目標 1.4 研 究 染 色 體 轉 位 的 技 術………… ……………..……..20 1.4.1 細胞遺傳技術 1.4.2 聚合酶連鎖反應相關技術 1.5 高通量的DNA定序方法 2. 研究目的…………..…………………………...…………………..……33 3 實驗材料與方法……………………………...…………………………36 3.1 直體構築 3.2 ALK基因相關PCR 3.3 ALK 螢光原位雜交法 3.4 快速放大 cDNA末端法 3.5 次世代定序 3.6 生物資訊分析 4. 結果………………………………………………..….......…..…...…..60 5. 討論…………………………………………………...…............…......67 6. 參考文獻 ................................................................................................71 7. 附錄 ........................................................................................................77 8. 圖、表......................................................................................................86

    1. CALKINS, G.N. Zur Frage der Entstehung maligner Tumoren. Science 40, 857-859 (1914).
    2. Mitelman, F., Johansson, B. & Mertens, F. The impact of translocations and gene fusions on cancer causation. Nature reviews. Cancer 7, 233-245 (2007).
    3. Nambiar, M., Kari, V. & Raghavan, S.C. Chromosomal translocations in cancer. Biochimica et biophysica acta 1786, 139-152 (2008).
    4. Lipson, D., et al. Identification of new ALK and RET gene fusions from colorectal and lung cancer biopsies. Nature medicine 18, 382-384 (2012).
    5. Debelenko, L.V., et al. Renal cell carcinoma with novel VCL-ALK fusion: new representative of ALK-associated tumor spectrum. Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc 24, 430-442 (2011).
    6. Kaye, F.J. Mutation-associated fusion cancer genes in solid tumors. Molecular cancer therapeutics 8, 1399-1408 (2009).
    7. Rudkin, G.T., Hungerford, D.A. & Nowell, P.C. DNA Contents of Chromosome Ph1 and Chromosome 21 in Human Chronic Granulocytic Leukemia. Science 144, 1229-1232 (1964).
    8. Rowley, J.D. A New Consistent Chromosomal Abnormality in Chronic Myelogenous Leukaemia identified by Quinacrine Fluorescence and Giemsa Staining. Nature 243, 290-293 (1973).
    9. Shtivelman, E., Lifshitz, B., Gale, R.P. & Canaani, E. Fused transcript of abl and bcr genes in chronic myelogenous leukaemia. Nature 315, 550-554 (1985).
    10. Druker, B.J., et al. Activity of a Specific Inhibitor of the BCR-ABL Tyrosine Kinase in the Blast Crisis of Chronic Myeloid Leukemia and Acute Lymphoblastic Leukemia with the Philadelphia Chromosome. New England Journal of Medicine 344, 1038-1042 (2001).
    11. Mitelman F, J.B.a.M.F.E. "Mitelman Database of Chromosome Aberrations and Gene Fusions in Cancer (2012). Mitelman F, Johansson B and Mertens F (Eds.), http://cgap.nci.nih.gov/Chromosomes/Mitelman". (2012).
    12. Soda, M., et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448, 561-566 (2007).
    13. Wiedorn, K.H., Goldmann, T., Henne, C., Kuhl, H. & Vollmer, E. EnVision+, a new dextran polymer-based signal enhancement technique for in situ hybridization (ISH). The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society 49, 1067-1071 (2001).
    14. Ochman, H., Gerber, A.S. & Hartl, D.L. Genetic applications of an inverse polymerase chain reaction. Genetics 120, 621-623 (1988).
    15. Lin, E., et al. Exon array profiling detects EML4-ALK fusion in breast, colorectal, and non-small cell lung cancers. Molecular cancer research : MCR 7, 1466-1476 (2009).
    16. Chiarle, R., Voena, C., Ambrogio, C., Piva, R. & Inghirami, G. The anaplastic lymphoma kinase in the pathogenesis of cancer. Nature reviews. Cancer 8, 11-23 (2008).
    17. Benz-Lemoine, E., et al. Malignant histiocytosis: a specific t(2;5)(p23;q35) translocation? Review of the literature. Blood 72, 1045-1047 (1988).
    18. Fischer, P., et al. A Ki-1 (CD30)-positive human cell line (Karpas 299) established from a high-grade non-Hodgkin's lymphoma, showing a 2;5 translocation and rearrangement of the T-cell receptor beta-chain gene. Blood 72, 234-240 (1988).
    19. Mason, D.Y., et al. CD30-positive large cell lymphomas ('Ki-1 lymphoma') are associated with a chromosomal translocation involving 5q35. British journal of haematology 74, 161-168 (1990).
    20. Morris, S.W., et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma. Science 263, 1281-1284 (1994).
    21. Mosse, Y.P., Wood, A. & Maris, J.M. Inhibition of ALK signaling for cancer therapy. Clinical cancer research : an official journal of the American Association for Cancer Research 15, 5609-5614 (2009).
    22. Pulford, K., Morris, S.W. & Turturro, F. Anaplastic lymphoma kinase proteins in growth control and cancer. Journal of cellular physiology 199, 330-358 (2004).
    23. Palmer, R.H., Vernersson, E., Grabbe, C. & Hallberg, B. Anaplastic lymphoma kinase: signalling in development and disease. The Biochemical journal 420, 345-361 (2009).
    24. Iwahara, T., et al. Molecular characterization of ALK, a receptor tyrosine kinase expressed specifically in the nervous system. Oncogene 14, 439-449 (1997).
    25. Souttou, B., Carvalho, N.B., Raulais, D. & Vigny, M. Activation of anaplastic lymphoma kinase receptor tyrosine kinase induces neuronal differentiation through the mitogen-activated protein kinase pathway. The Journal of biological chemistry 276, 9526-9531 (2001).
    26. Motegi, A., Fujimoto, J., Kotani, M., Sakuraba, H. & Yamamoto, T. ALK receptor tyrosine kinase promotes cell growth and neurite outgrowth. Journal of cell science 117, 3319-3329 (2004).
    27. Piccinini, G., et al. A ligand-inducible epidermal growth factor receptor/anaplastic lymphoma kinase chimera promotes mitogenesis and transforming properties in 3T3 cells. The Journal of biological chemistry 277, 22231-22239 (2002).
    28. Bilsland, J.G., et al. Behavioral and neurochemical alterations in mice deficient in anaplastic lymphoma kinase suggest therapeutic potential for psychiatric indications. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 33, 685-700 (2008).
    29. Takeuchi, K., et al. KIF5B-ALK, a novel fusion oncokinase identified by an immunohistochemistry-based diagnostic system for ALK-positive lung cancer. Clinical cancer research : an official journal of the American Association for Cancer Research 15, 3143-3149 (2009).
    30. Camidge, D.R., et al. Optimizing the detection of lung cancer patients harboring anaplastic lymphoma kinase (ALK) gene rearrangements potentially suitable for ALK inhibitor treatment. Clinical cancer research : an official journal of the American Association for Cancer Research 16, 5581-5590 (2010).
    31. Wang, Y.W., et al. Identification of oncogenic point mutations and hyperphosphorylation of anaplastic lymphoma kinase in lung cancer. Neoplasia (New York, N.Y.) 13, 704-715 (2011).
    32. Barreca, A., et al. Anaplastic lymphoma kinase in human cancer. Journal of molecular endocrinology 47, R11-23 (2011).
    33. Bischof, D., Pulford, K., Mason, D.Y. & Morris, S.W. Role of the nucleophosmin (NPM) portion of the non-Hodgkin's lymphoma-associated NPM-anaplastic lymphoma kinase fusion protein in oncogenesis. Molecular and cellular biology 17, 2312-2325 (1997).
    34. Mason, D.Y., et al. Nucleolar localization of the nucleophosmin-anaplastic lymphoma kinase is not required for malignant transformation. Cancer research 58, 1057-1062 (1998).
    35. Deininger, M., Buchdunger, E. & Druker, B.J. The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood 105, 2640-2653 (2005).
    36. Druker, B.J., et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. The New England journal of medicine 355, 2408-2417 (2006).
    37. Liu, Y. & Gray, N.S. Rational design of inhibitors that bind to inactive kinase conformations. Nature chemical biology 2, 358-364 (2006).
    38. Zhang, J., Yang, P.L. & Gray, N.S. Targeting cancer with small molecule kinase inhibitors. Nature reviews. Cancer 9, 28-39 (2009).
    39. Coluccia, A.M., et al. Anaplastic lymphoma kinase and its signalling molecules as novel targets in lymphoma therapy. Expert opinion on therapeutic targets 9, 515-532 (2005).
    40. Zou, H.Y., et al. An orally available small-molecule inhibitor of c-Met, PF-2341066, exhibits cytoreductive antitumor efficacy through antiproliferative and antiangiogenic mechanisms. Cancer research 67, 4408-4417 (2007).
    41. Ardini, E., Magnaghi, P., Orsini, P., Galvani, A. & Menichincheri, M. Anaplastic Lymphoma Kinase: role in specific tumours, and development of small molecule inhibitors for cancer therapy. Cancer letters 299, 81-94 (2010).
    42. McDermott, U., et al. Genomic alterations of anaplastic lymphoma kinase may sensitize tumors to anaplastic lymphoma kinase inhibitors. Cancer research 68, 3389-3395 (2008).
    43. <2010-0507-RAR.1.pdf>.
    44. Grimwade, D. The pathogenesis of acute promyelocytic leukaemia: evaluation of the role of molecular diagnosis and monitoring in the management of the disease. British journal of haematology 106, 591-613 (1999).
    45. Kallioniemi, A., et al. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258, 818-821 (1992).
    46. Liyanage, M., et al. Multicolour spectral karyotyping of mouse chromosomes. Nature genetics 14, 312-315 (1996).
    47. Speicher, M.R., Gwyn Ballard, S. & Ward, D.C. Karyotyping human chromosomes by combinatorial multi-fluor 螢光原位雜交法. Nature genetics 12, 368-375 (1996).
    48. Gray, J.W. & Collins, C. Genome changes and gene expression in human solid tumors. Carcinogenesis 21, 443-452 (2000).
    49. van Dongen, J.J., et al. Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Report of the BIOMED-1 Concerted Action: investigation of minimal residual disease in acute leukemia. Leukemia : official journal of the Leukemia Society of America, Leukemia Research Fund, U.K 13, 1901-1928 (1999).
    50. Gabert, J., et al. Standardization and quality control studies of 'real-time' quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia - a Europe Against Cancer program. Leukemia : official journal of the Leukemia Society of America, Leukemia Research Fund, U.K 17, 2318-2357 (2003).
    51. Domer, P.H., et al. Molecular analysis of 13 cases of MLL/11q23 secondary acute leukemia and identification of topoisomerase II consensus-binding sequences near the chromosomal breakpoint of a secondary leukemia with the t(4;11). Leukemia : official journal of the Leukemia Society of America, Leukemia Research Fund, U.K 9, 1305-1312 (1995).
    52. Sambrook, D.W.R.J. Molecular Cloning: A Laboratory Manual. (2001).
    53. Hanahan, D. Studies on transformation of Escherichia coli with plasmids. Journal of molecular biology 166, 557-580 (1983).
    54. Sasaki, T., Rodig, S.J., Chirieac, L.R. & Janne, P.A. The biology and treatment of EML4-ALK non-small cell lung cancer. Eur J Cancer 46, 1773-1780 (2010).
    55. Takeuchi, K., et al. Multiplex reverse transcription-PCR screening for EML4-ALK fusion transcripts. Clinical cancer research : an official journal of the American Association for Cancer Research 14, 6618-6624 (2008).
    56. Troutt, A.B., McHeyzer-Williams, M.G., Pulendran, B. & Nossal, G.J. Ligation-anchored PCR: a simple amplification technique with single-sided specificity. Proceedings of the National Academy of Sciences of the United States of America 89, 9823-9825 (1992).
    57. Deininger, P.L. Full-length cDNA clones: vector-primed cDNA synthesis. Methods in enzymology 152, 371-389 (1987).
    58. Zhu, Y.Y., Machleder, E.M., Chenchik, A., Li, R. & Siebert, P.D. Reverse transcriptase template switching: a SMART approach for full-length cDNA library construction. BioTechniques 30, 892-897 (2001).
    59. Frohman, M.A. On beyond classic RACE (rapid amplification of cDNA ends). PCR methods and applications 4, S40-58 (1994).

    無法下載圖示 校內:2017-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE