| 研究生: |
黃峻傑 Huang, Chun-Chieh |
|---|---|
| 論文名稱: |
60-GHz COMS毫米波射頻接收機前端電路之設計與製作 Design for 60-GHz CMOS Millimeter-Wave RF Receiver Front-End |
| 指導教授: |
莊惠如
Chuang, Huey-Ru |
| 共同指導教授: |
黃尊禧
Huang, Tzuen-Hsi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 60-GHz 、互補式金氧半導體 、低雜訊放大器 、接收機 、壓控振盪器 |
| 外文關鍵詞: | 60-GHz, CMOS, low noise amplifier, receiver, voltage control oscillator |
| 相關次數: | 點閱:101 下載:14 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出V-band CMOS毫米波(millimeter-wave)接收機前端子電路的設計,包括:應用於V-band毫米波之低雜訊放大器(low-noise amplifier)、V-band低雜訊放大器及混頻器整合電路和60-GHz寬頻切換式電感壓控振盪器(voltage controlled oscillator)。以上除了60-GHz寬頻切換式電感壓控振盪器僅完成模擬階段,其餘電路設計皆有模擬與量測數據。
論文分為四個部分。第一部分為介紹毫米波系統相關背景和應用,以及提出60-GHz Millimeter-Wave 與MB-OFDM UWB 共存系統的規劃;第二部分為應用於V-band毫米波之低雜訊放大器的電路設計和量測結果,使用製程為TSMC 0.13-µm 1P8M RF CMOS製程。此部份主要內容為用來提升放大器增益的閘極電感增益提升(gate-inductor gain peaking)技術。閘極電感增益提升技術對於低功率消耗的條件下提升毫米波低雜訊放大器的增益是一有效的方法。量測結果顯示,在53 GHz時,小訊號增益為21 dB,雜訊指數為7.6 dB,3-dB 頻寬為51.3 ~ 55.8 GHz,輸入1-dB增益壓縮點為 -25 dBm,輸入之三階交錯點(input third-order interception point, IIP3)為 -16 dBm,供應電壓VDD為1.5 V,整體消耗功率為15.1 mW,且FOM為0.95。
第三部分為整合低雜訊放大器和V-band雙平衡式吉伯特混頻器(double balanced Gilbert-cell mixer),以實現60-GHz MMW與UWB共存系統之接收機前端電路,使用製程為TSMC 0.13-µm 1P8M RF CMOS製程。在此,低雜訊放大器的結構係採用相同於第二部份的放大器結構,混頻器的架構則是雙平衡式吉伯特型式。低雜訊放大器和混頻器的部分,皆有個別的量測數據。最後整合的接收機電路則僅有部分量測數據,目前還在量測的階段。
第四部分為提出一個具有創新切換式電感的60-GHz寬頻壓控振盪器,使用TSMC 90-nm 1P9M RF CMOS製程環境來設計。對於被動元件共振腔的設計,我們提出創新的切換式電感架構,可部分代替可變電容(varactor)元件調變頻率的功能。利用此切換式電感就能獲得寬頻的調變振盪頻率範圍,且兼具低相位雜訊(phase noise)之特性表現。量測結果顯示,供應電壓VDD為1.2 V,核心電路的消耗功率為16 mW,主要振盪頻率為 60 GHz,相位雜訊在10 MHz偏移頻率下為-116 dBc/Hz,調變振盪頻率範圍約為10 GHz (約為17%),FOM (figure of merit)為-180 dBc/Hz,FOMT (figure of merit with tuning range)為-185 dBc/Hz。
This thesis presents the V-band CMOS millimeter-wave (MMW) receiver RF front-end function block designs, including a V-band CMOS low noise amplifier (LNA) for millimeter-wave application, an integration of V-band LNA and mixer, and a design of 60-GHz wideband switched-inductor voltage controlled oscillator (VCO). Except of the VCO, the LNA and receiver front-end circuit both have been simulated and measured.
This thesis can be divided into four parts. In the first part, we introduce the backgrounds and applications for MMW system and the structure plan of 60-GHz MMW and MB-OFDM UWB co-existence system. The second part of this thesis presents the design and measurement results of an MMW LNA. The LNA was fabricated in TSMC 0.13-µm 1P8M RF CMOS process. The main content is gate-inductor gain peaking technique for increasing LNA gain. The gate-inductor gain peaking for LNA design, which is an effective way to achieve the high gain performance with low power consumption. The measurement data show that the LNA can achieve a peak gain of 21 dB and a noise figure (NF) of 7.6 dB at 53 GHz, a 3-dB frequency bandwidth ranging from 51.3 to 55.8 GHz, an input 1-dB compression point (P1dB) of -25 dBm at 53 GHz, and an input third-order intercept point (IIP3) of -16 dBm. Also, the LNA consumes only 15.1 mW at a supply voltage of 1.5 V. The calculated figure-of-merit (FOM) is 0.95.
The third part of the thesis, we present an integration of LNA and mixer for 60-GHz MMW and MB-OFDM UWB co-existence system receiver. The topology of the LNA is similar to that proposed in the second part. The topology of the mixer is Gilbert-cell type. The measurement data for LAN and mixer are shown individually. The measurement of the whole integration circuit is still under going.
In the fourth part, we present the design of a 60-GHz wideband switch-inductor voltage control oscillator, which was fabricated in TSMC 90-nm 1P9M RF CMOS process. For the passive elements, the switched inductor for VCO design which is an effective way to achieve the wideband tuning range performance with low phase noise. The VCO consumes only 16 mW at a supply voltage of 1.2 V, whose designed oscillation frequency is of 60 GHz and which achieves a phase noise of -116 dB at 10 MHz offset, and a tuning range of 17 %. The calculated FOM is -180 dBc/Hz and FOMT is -185 dBc/Hz, respectively.
[1] E. Grass, et al, “Implementation Aspects of Gbit/s Communication System for 60 -GHz Band,” Wireless World Research Forum.
[2] T. P. Wang and H. Wang, “A broadband 42–63 GHz Amplifier Using 0.13 μm CMOS Technology,” in IEEE MTT-S International Microwave Symposium Digest, Honolulu, HI, pp. 1779–1782, Jun. 2007.
[3] C. H. Doan, S. Emami, A. M. Niknejad, and R. W. Brodersen, “Millimeter-Wave CMOS Design,” IEEE Journal of Solid-State Circuits, Vol. 40, No. 1, pp. 144–155, Jan. 2005.
[4] C.-M. Lo, C.-S. Lin, and H. Wang, “A Miniature V band 3-stage Cascade LNA in 0.13 μm CMOS,” in IEEE International Solid-State Circuits Conf. Digest Techniques Papers, pp. 402–403, Feb. 2006.
[5] E. Winberg, J. Askne, and G. Skoog, “A Continuously Tuned 53-59 GHz Radiometer for Measurement of Atmospheric Temperature Profiles,” in 14th European Microwave Conference, pp.243-247, 1984.
[6] F. Alimenti, et al., “System-on-chip Microwave Radiometer for Thermal Remote Sensing and Its Application to the Forest Fire Detection,” in IEEE International Conf. on Electronics, Circuits and Systems, pp.1265-1268, 2008.
[7] T. Mo, “A Study of the Microwave Sounding Unit on the NOAA-12 Satellite,” IEEE Transactions Geoscience and Remote Sensing, Vol. 33, No. 5, pp.1141-1152, Sep. 1995.
[8] Y. H. Yu, Y. S. Yang, and Y. J. E. Chen, “A Compact Wideband CMOS Low Noise Amplifier With Gain Flatness Enhancement,” IEEE Journal of Solid-State Circuits, Vol. 45, No. 3, pp. 502-508, Jan. 2010.
[9] A. Sayag, et al., “A 25 GHz 3.3 dB NF Low Noise Amplifier Based Upon Slow Wave Transmission Lines and the 0.18 μm CMOS Technology,” in IEEE Radio Frequency Integrated Circuit Symposium Digest, pp. 373–376, Jun. 2008.
[10]S. Pellerano, Y. Palaskas, and K. Soumyanath, “A 64 GHz 6.5 dB NF 15.5 dB Gain LNA in 90 nm CMOS,” in Eur. Solid-State Circuit Conf. (ESSCIRC), pp. 352–355, Sep. 2007.
[11] C. Weyers, P. Mayr, J. W. Kunze, and U. Langmann, “A 22.3 dB Voltage Gain 6.1 dB NF 60 GHz LNA in 65 nm CMOS With Differential Output,” in IEEE International Solid-State Circuits Conf., Digest Tech. Papers, pp. 192-193, Feb. 2008.
[12] B.-J. Huang, et al., “Design and Analysis for a 60 GHz Low-Noise Amplifier With RF ESD Protection,” IEEE Transactions Microwave Theory and Techniques, Vol. 57, No. 2, pp. 298-305, Feb. 2009.
[13] B. Razavi, “A 60-GHz CMOS Receiver Front-End,” IEEE Journal of Solid-State Circuits, Vol.41, No.1, pp.17-22, Jan. 2006.
[14] D. Huang, R. Wong, Q. Gu, N.-Y. Wang, T. W. Ku, C. Chien and M.-C. F. Chang, “A 60 GHz CMOS Differential Receiver Front-End Using On-Chip Transformer for 1.2 Volt Operation with Enhanced Gain and Linearity,” Symposium on VLSI Circuits Digest, PP.144-145 2006.
[15] Y. Sun, F. Herzel, L. Wang, J. Borngraber, W. Winkler, and R. Kraemer, “An Integrated 60 GHz Receiver Front-End in SiGeC BiCMOS,” in IEEE Silicon Monolithic Integrated Circuits in RF Systems Digest, 2006.
[16] F. Zhang, E. Skafidas, and W. Shieh, “A 60GHz Double-Balanced Gilbert Cell Down-Conversion Mixer on 130-nm CMOS,” in IEEE Radio Frequency Integrated Circuits Symposium, pp.141-144, June 2007.
[17] B. Razavi, “A 60-GHz CMOS Receiver Front-End,” IEEE Journal of Solid-State Circuits, Vol.41, No.1, pp.17-22, Jan. 2006.
[18] C.-S. Lin, P.-S. Wu, Student, H.-Y. Chang, and H. Wang, ”A 9–50-GHz Gilbert-Cell Down-Conversion Mixer in 0.13-um CMOS Technology,” IEEE Microwave and Wireless Components Letters, Vol.16 , No.5 , MAY 2006.
[19] J.-H. Tsai, P.S. Wu, C.-S. Lin, T.-W. Huang, J. G. J. Chern, and W.-C. Huang, “A 25–75 GHz Broadband Gilbert-Cell Mixer Using 90-nm CMOS Technology,” IEEE Microwave and Wireless Components Letters, Vol. 17, No. 4, April 2007.
[20] S. Emami, C. H.Doan, A. M. Niknejad, and R. W. Brodersen, “A 60-GHz Down-Converting CMOS Single-Gate Mixer,” in IEEE Radio Frequency Integrated Circuits Symposium, pp.163-166, June 2005.
[21] S. Emami, C. H.Doan, A. M. Niknejad, and R. W. Brodersen, “A Highly Integrated 60GHz CMOS Front-End Receiver,” in IEEE International Solid-State Circuits Conference, pp.190-191, Feb. 2007.
[22] Y.-J. E. Chen, K.-H. Wang, T.-N. Luo, and S.-Y. Bai, D. Heo, “Investigation of CMOS Technology for 60-GHz Applications,” in IEEE SoutheastCon, pp.92-95, 2005.
[23] I. C. H. Lai, Y. Kambayashi, and M. Fujishima, “60-GHz CMOS Down-Conversion Mixer with Slow-Wave Matching Transmission Lines,” IEEE Asia Solid-State Circuits Conference, pp.195-198, Nov. 2006.
[24] I. Kallfass, H. Massler, A. Leuther, A. Tessmann, and M. Schlechtweg, “A 210 GHz Daul-Gate FET Mixer MMIC With >2dB Conversion Gain, High LO-to-RF Isolation, and Low LO-Drive Requirements,” IEEE Microwave and Wireless Components Letters, Vol.18, No.8, pp.557-559, August 2008.
[25] C. Tsironis, R. Meierer, R. Stahlmann, “Dual-Gate MESFET Mixers,” IEEE Transactions on Microwave Theory and Techniques, Vol. MTT-32, No.3, pp.248-255, March 1984.
[26] H. Ashoka , and R. S. Tucker, “Modes of Operation in Dual-gate MESFET Mixers,” Electronics Letters, Vol.19 No.11, pp.428-429 May 1983.
[27] S. A Maas, “Microwave Mixers,” chapter 9, Artech House, Second Edition, 1983.
[28] S.-Che Tseng, C. Meng, C.-H. Chang, C.-K. Wu, and G.-W. Huang, “Monolithic Broadband Gilbert Micromixer With an Integrated Marchand Balun Using Standard Silicon IC Process,” IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 12, pp.4362-4371, December 2006.
[29] G. Felic* and E. Skafidas, “An Integrated Transformer Balun for 60 GHz Silicon RF IC Design,” IEEE International Symposium on Signals systems and electronics, pp.541-542, Aug. 2007.
[30] J.-S. Sun and G.-Y. Chen, S.-Y. Huang and C.-J. Huang, “The Wideband Marchand Balun Transition Design,” IEEE International Symposium on Antennas Propagation & EM Theory, pp.1-4, Oct. 2006.
[31] D. Ham and W. Andress, “A circular standing wave oscillator,” in IEEE International Solid-State Circuits Conf. Digest Tech. Papers, pp. 380, Feb. 2004.
[32] C. P. Yue and S. S. Wong, “On-Chip Spiral Inductors with Patterned Ground Shields for Si-Based RF IC’s,” IEEE Journal of Solid-State Circuits, Vol. 33, No. 5, pp. 743–752, May 1998.
[33] H. Wu and A. Hajimiri, “Silicon-based Distributed Voltage-Controlled Oscillators,” IEEE Journal of Solid-State Circuits, Vol. 36, No. 3, pp. 493–501, Mar. 2001.
[34] J. Wood, T. C. Edwards, and S. Lipa, “Rotary Traveling-Wave Oscillator Arrays: A new clock technology,” IEEE Journal of Solid-State Circuits, Vol. 36, No. 11, pp. 1654–1655, Nov. 2001.
[35] F. O’Mahony, C. P. Yue, M. Horowitz, and S.Wong, “10 GHz Clock Distribution Using Coupled Standing-Wave Oscillators,” IEEE Journal of Solid-State Circuits, Vol. 38, No. 11, pp. 1813–1820, Nov. 2003.
[36] D. Huang, W. Hant, N.-Y. Wang, T. W. Ku, Q. Gu, R. Wong, M.-C. F. Chang, “A 60GHz CMOS VCO Using On-Chip Resonator with Embedded Artificial Dielectric for Size, Loss, and Noise Reduction,” in IEEE International Solid-State Circuits Conf., Feb 2006.
[37] W. F. Andress and D. Ham, “Standing Wave Oscillator Utilizing Wave-Adaptive Tapered Transmission Lines,” IEEE Journal of Solid-State Circuits, Vol. 40, No. 3, pp. 638-651, March 2005.
[38] X. H. Wang, B. Z. Wang, H. Zhang, K. J. Chen, “A Tunable Bandstop Resonator Based on a Compact Slotted Ground Structure,” IEEE Transactions Microwave Theory and Techiques. Set. 2007.
[39] F. Ellinger, T. Morf, G. Buren, “60GHz VCO with Wideband Tuning Range Fabricated on VLSI SOI CMOS Technology,” in IEEE MTT-S International Microwave Symposium Digest Papers, pp. 1329-1332, Jun., 2004.
[40] C. Cao, K. K. O, “Millimeter-Wave Voltage-Controlled Oscillators in 0.13um CMOS Technology,” IEEE Journal of Solid-State Circuits, Vol. 41, pp. 1297- 1304, Jun., 2006.
[41] C. Cao, K. K. O, “A 90-GHz Voltage-Controlled Oscillator with a 2.2GHz Tuning Range in a 130nm CMOS Technology,” Symposium on VLSI Circuits Digest, pp. 242-243. Jun., 2005.
[42] C. Cao, K. K. O, “Millimeter-Wave Voltage-Controlled Oscillators in 0.13um CMOS Technology,” IEEE Journal of Solid-State Circuits, Vol. 41, pp. 1297- 1304, Jun., 2006.
[43] L.M. Franca et al., “64GHz and 100GHz VCOs in 90nm CMOS Using Optimum Pumping Method,” in IEEE International Solid-State Circuits Conf. Digest Tech. Papers, Vol. 1, pp. 444-538, Feb., 2004.
[44] F. Ellinger, T. Morf, G. Buren, “60GHz VCO with Wideband Tuning Range Fabricated on VLSI SOI CMOS Technology,” IEEE MTT-S International Microwave Symposium Digest Papers, pp. 1329-1332, Jun. 2004.
[45] D. D. Kim et al., “A 70 GHz Manufacturable Complementary LC-VCO with 6.14GHz Tuning Range in 65nm SOI CMOS,” IEEE International Solid-State Circuits Conf. Digest Tech. Papers, pp. 300-301, Feb. 2007.