簡易檢索 / 詳目顯示

研究生: 林徽鳴
Lin, Huei-Ming
論文名稱: 利用變性梯度凝膠電泳與末端螢光標定限制酵素片段長度多型性分析法監測微生物社會之分子指紋變化
Monitoring molecular fingerprinting of microbial community dynamics by denaturing gradient gel electrophoresis(DGGE) and terminal-restriction fragment length polymorphism (T-RFLP)
指導教授: 曾怡禎
Tseng, I-cheng
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 97
中文關鍵詞: 變性梯度凝膠電泳(DGGE)末端螢光標定限制片段多型性分析法(T-RFLP)落葉分解16S rDNA選殖技術微生物社會
外文關鍵詞: DGGE, T-RFLP, microbial community, litter decomposition
相關次數: 點閱:101下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   土壤微生物在森林生態系的生物社會中扮演著重要的的角色,多數的微生物皆與自然環境的的養分循環息息相關。雖然絕大部分的微生物分類皆已被定義,但多數自然環境中的微生物仍屬未知。主要原因在於環境中的微生物物種僅有少數可利用現今的的培養方法加以培養與純化。在本研究中,利用16S rDNA選殖技術、變性梯度凝膠電泳(DGGE)與末端螢光標定限制片段多型性分析法(T-RFLP)等多種分子生物技術,建立南仁山當地土壤與落葉微生物社會結構資料庫與分子指紋。

      本研究利用細菌廣泛性的引子擴增南仁山土壤中微生物之16S rDNA片段,以建立南仁山落葉袋底層土壤與黃杞落葉分解微生物的分子資料庫,並討論其親緣關係。結果顯示,南仁山落葉袋底層土壤以屬於Acidobacteria相關的菌群為優勢,佔總菌群的62.8%。而菌群之16S DNA親緣關係顯示,皆與嗜酸性的菌群相關。

      在落葉分解的菌群中,有51.4%的菌群屬於Gammaproteobacteria,顯然落葉分解與落葉袋底層土壤的菌群有不同的微生物結構。屬於Gammaproteobacteria的菌群,其16S rDNA親緣關係顯示,菌群中微生物多為固氮作用相關菌群。將所建立之落葉袋底層土壤與落葉分解菌群之資料庫作為分子標誌,用以監測落葉分解與落葉袋土壤底層土壤之分子指紋圖譜的季節性變化。denaturing gradient gel electrophoresis (DGGE)指紋圖譜顯示,無論迎風區與背風區之落葉袋底層與其四周土壤中之微生物社會結構,均產生季節性變化,可能與東北季風有關。黃杞落葉分解DGGE指紋圖譜的變化較不顯著,但優勢菌群依然以Gammaproteobacteria為主。

      本研究亦以terminal-restriction fragment length polymorphism (T-RFLP)的指紋圖譜監測南仁山土壤與落葉微生物社會。先行以落葉袋下土壤以及黃杞落葉樣本所建立之16S rDNA基因資料庫進行電腦限制切點模擬分析,再實際以限制酵素HhaI進行實驗。結果顯示,落葉袋底層土壤微生物社會中之菌群共可區別為八群的terminal restriction fragments (T-RFs),同時亦顯示優勢的菌群為Acidobacteria,在樣本中約佔15.7%。而黃杞落葉樣本之微生物社會中之菌群可區分為五群的T-RFs,優勢菌群為Betaproteobacteria,在樣本中約佔38%。本研究亦分析南仁山土壤微生物以及黃杞落葉上的微生物社會之變化,並以培養方法分離纖維素分解菌,探討分離菌株之16S rDNA的親緣關係,在本文中均有詳加討論。

     Soil bacteria are essential components of the biotic community in natural forests and they are largely responsible for ecosystem function, and participate in the elements circulation. Although the main diversity of life has been proven to be microbial, the vast majority of soil bacteria still remain unknown for less than 1% of environmental microorganisms can be cultured. In this study, cloning method, denaturing gradient gel electrophoresis (DGGE) and terminal-restriction fragment length polymorphism (T-RFLP) techniques were used to compare the prevalent microbial populations in soil and on litterfall of Nan-Jen Shan samples.

     Phylogenetic analysis based on PCR-amplified 16S rDNA revealed an effective tool to establish the microbiota development in soil and litterfall. The results from clone library showed that Acidobacteria were the dominants in soil samples (62.8%) and Gammaproteobacteria were the dominants in litterfall samples (51.4%). DGGE patterns also revealed that the microbial community of soil and litterfall were not the same. Seasonal changes in the structure of microbial community were significant in DGGE analysis. However, the DGGE patterns of dominant bacteria did not change in DGGE analysis no matter in soil and litterfall samples.

     Terminal-restriction fragment length polymorphism (T-RFLP) analysis is also used in this study for rapid comparison of the complex bacterial communities. By T-RFLP analysis of soil and litterfall samples, we got eight groups Terminal-restriction fragments (T-RFs) in soil samples and five groups T-RFs in litterfall samples. T-RFLP analysis also revealed that Acidobacteria were the dominant bacteria in soil and were not affected by season. However, the results of T-RFLP showed that Betaproteobacteria are the dominant in litterfall. Otherwise, the dominant bacteria were changing with season on litterfall.

     Cultivation-approached method was also applied in isolation of cellulose degrading bacteria. Five strains were isolated from soil samples, all of them can use α-cellulose as carbon source. It showed that the soil bacteria in Nan-Jen Shan might play an important role in litter decomposition mechanism.

    中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 表目錄 VI 圖目錄 VII 第一章 前言 1 1-1研究緣起 1 1-2研究目的 1 1-3研究架構 2 第二章 文獻回顧 3 2-1森林中的落葉分解 3 2-2分子生物方法應用於微生物生態的研究 3 2-2-1聚合酵素鏈鎖反應 4 2-2-2變性梯度凝膠電泳在微生物生態研究的應用 5 2-2-3末端螢光標定限制酵素片段長度多型性分析法在微生物生態研究的應用 6 2-2-4其他的分子檢測技術 7 2-2-5 DNA 萃取技術與PCR反應的改良 8 第三章 材料與方法 10 3-1樣區與樣本 10 3-2優厚培養與分離 10 3-3樣本DNA萃取 13 3-3-1 土壤DNA萃取 13 3-3-2落葉DNA萃取 13 3-3-3純菌DNA萃取 13 3-4分析方法 13 3-4-1 DNA萃取方法 13 3-4-2聚合酵素鏈鎖反應 15 3-4-3瓊脂膠體電泳 16 3-4-4 16S rDNA 分子選殖 18 3-4-5變性梯度凝膠電泳 18 3-4-6變性梯度凝膠電泳上之DNA片段萃取 21 3-4-7限制酵素片段長度多型性分析法 21 3-4-8末端螢光標定限制酵素片段長度多型性分析法 21 3-4-9定序 22 3-4-10 親源關係分析 22 3-5主要儀器 22 第四章 實驗結果 24 4-1 DNA萃取與環境中之PCR反應抑制物 24 4-1-1土壤DNA萃取方法比較 28 4-2分子生物技術分析菌群結構 28 4-2-1落葉袋底部之表層土壤樣本之選殖分析 28 4-2-2落葉袋底部之表層土壤樣本選殖資料庫親緣關係分析 28 4-2-3落葉樣本之選殖分析 36 4-2-4落葉樣本選殖資料庫親緣演化分析 36 4-3微生物社會變動之監測 46 4-3-1落葉袋底部土壤樣本微生物社會變動之監測 46 4-3-2落葉袋四周土壤樣本微生物社會變動之監測 50 4-3-3落葉分解微生物社會變動之監測 54 4-4利用末端螢光標定限制酵素片段長度多型性分析法分析南仁山微生物菌群結構 61 4-4-1南仁山微生物菌群結構分析 61 4-4-2利用T-RFLP監測菌群季節性變動 69 4-4-3優勢物種的檢測 75 4-5纖維素分解菌的純菌分離 76 4-5-1厭氧纖維素分解菌之純菌分離 76 4-5-2耗氧纖維素分解菌之純菌分離 77 4-5-3厭氧發酵產氫菌株分離 77 4-5-4分離菌株親緣關係分析 79 第五章 討論 82 第六章 結論與建議 85 6-1結論 85 6-2建議 86 第七章 參考文獻 87 自述 97 Table 3-1 α-cellulose medium 12 Table 3-2 TYG medium 12 Table 3-3 Solution M 12 Table 3-4 3-4 Primers used in this study 17 Table 3-5 PCR conditions of different primer pairs 17 Table 3-6 Procedure of cloning. 19 Table 3-7 Procedure of DGGE analysis. 20 Table 4-1 The comparison of DNA extraction methods. 25 Table 4-2 Phylogenetic affiliations of the 16S rDNA clone library of the soil sample beneath litterfall. 30 Table 4-3 Phylogenetic affiliations of the 16S rDNA clone library of the litterfall sample. 39 Table 4-4 The comparison of soil beneath litterfall and litterfall clone library. 45 Table 4-5 (A) Analysis of species richness in the soil sample beneath litterfall by DGGE method. 47 Table 4-5 (B) Analysis of species richness in the soil sample by DGGE method. 51 Table 4-6 (A) Analysis of species richness in litterfall sample by DGGE method. 57 Table 4-6 (B) Analysis of species richness in litterfall sample by DGGE method. 59 Table 4-7 Simulation cutting site in clone library of soil sample beneath litterfall by HhaI. 62 Table 4-8 Simulation cutting site in clone library of litterfall by HhaI. 64 Table 4-9 The T-RFLP result of soil sample beneath litterfall cut by HhaI. 65 Table 4-10 Comparison of soil sample beneath litterfall and simulation cutting site of clone library by HhaI. 66 Table 4-11 The T-RFLP results of litterfall sample cut by HhaI. 67 Table 4-12 Comparison of litterfall sample and simulation cutting site of clone library by HhaI. 68 Table 4-13 Comparison of RFLP selection clones and soil beneath litterfall clone library. 75 Fig.1-1 Schematic representation of the steps for the study of Nan-Jen Shan bacterial community by cultivation-dependent and -independent approaches. 2 Fig.3-1 Sample site of Nan-Jen Shan 11 Fig.4-1 Electrophoresis profile of different DNA extraction methods. 26 Fig.4-2 Electrophoresis profile of 11F-1512R PCR product by different DNA extraction methods. 27 Fig.4-3 The relationship of the number of clones and operational taxonomic unit (OTU) from the 16S rDNA clone library of the soil sample beneath litterfall. (screened by DGGE) 32 Fig.4-4 DGGE profile of the 16S rDNA clone library of soil sample beneath litterfall. 33 Fig.4-5 The illustration of DGGE fingerprinting of the bacterial 16S rDNA clone library from soil sample beneath litterfall. 34 Fig.4-6 Phylogenetic dendrogram of bacterial 16S rDNA sequence from the soil sample beneath litterfall. 35 Fig.4-7 The relationship of the number of clones and operational taxonomic unit (OTU) from the bacterial 16S rDNA clone library of the litterfall sample. (screened by DGGE) 41 Fig.4-8 DGGE profile of the 16S rDNA clone library of litterfall sample.42 Fig.4-9 The illustration of DGGE fingerprinting of the bacterial 16S rDNA clone library from litterfall sample. 43 Fig.4-10 Phylogenetic dendrogram of 16S rDNA bacterial sequence from the litterfall sample. 44 Fig.4-11 (A) DEEG profiles of 16S rDNA gene fragments for PCR from seasonal soil samples beneath litterfall. 48 Fig.4-11(B) The illustration of DGGE fingerprinting of different seasonal soil samples beneath litterfall. 49 Fig.4-12 (A) DEEG profiles of 16S rDNA gene fragments for PCR from seasonal soil samples. 52 Fig.4-12(B) The illustration of DGGE fingerprinting of different seasonal soil samples. 53 Fig.4-13(A) DEEG profiles of 16S rDNA gene fragments for PCR from seasonal litterfall samples. 56 Fig.4-13(B) The illustration of DGGE fingerprinting of different seasonal litterfall samples. 58 Fig.4-13(C) The illustration of DGGE fingerprinting of different seasonal litterfall samples. 60 Fig.4-14 T-RFLP electropherograms of PCR-amplified 16S rDNA gene from soil sample beneath litterfall. (sample were digested with restriction enzyme HhaI) 65 Fig.4-15 T-RFLP electropherograms of PCR-amplified 16S rDNA gene from litterfall sample. (sample were digested with restriction enzyme HhaI) 67 Fig.4-16 Representive T-RFLP profile of bacteria community from different seasonal soil samples. 72 Fig.4-17 Representive T-RFLP profile of bacteria community from different seasonal soil samples beneath litterfall. 73 Fig.4-18 Representive T-RFLP profile of bacteria community from different seasonal litterfall samples. 74 Fig.4-19 Restriction fragment length polymorphism (RFLP) banding patterns of soil sample beneath litterfall analyzed by DGGE. (digested by endonuclease HhaI and MspI) 76 Fig.4-20 DEEG profile representing the bacteria community of MPN cultivation. 78 Fig.4-21 Phylogenetic tree of 16S rDNA of isolated strain. 80 Fig.4-22 Growth of isolated strain ISO 05 onα-cellulose agar plate. 81 Fig.4-23 Growth of isolated strain ISO GB01 on TYG agar plate. 81

    廖俊博。2002。南仁山古湖底泥甲烷氧化菌社會結構之研究。國立成功大學生物學
    研究所碩士論文。

    Aceolaza, P. G., and J. F. G. Lancho. 1999. Leaf decomposition and nutrient release in montane forests of northwestern Argentina. J. Trop. For. Sci. 11(3):619-30.

    Altschul, S. F., W. Gish, W. Miller, E. Myers, and D. J. Lipman. 1990. Basic local alignment serach tool. J. mol. biol. 215: 403-410.

    Amann, R. I., W. Ludwig, and K. H. Schliefer. 1995. Phylogenetic identication and in situ detection of individual microbial cells without cultivation. Microbiol. rev. Mar. 143-169.

    Avrahami, S., W. Liesack, and R. Conrad. 2003. Effects of temperature and fertilizer on activity and community structure of soil ammonia oxidizers. Environ. Microbiol. 5: 691– 705.

    Bano, N. and J. T. Hollibaugh. 2002. Phylogenetic composition of bacterioplankton assemblages from the Artic Ocean. Appl. Environ. Microbiol. 68, 505–518.

    Bayer, E. A., J. P. Belaich, Y. Shoham, and R. Lamed. 2004 The cellulosomes: multienzyme machines for degradation of plant cellwall polysaccharides. Annu. Rev. Microbiol. 58:521–554.

    Bayer, E. A., Y. Shoham, J. Tormo, and R. Lamed. 1996. The cellulosome: a cell surface organelle for the adhesion to and degradation of cellulose, In M. Fletcher (ed.), Bacterial adhesion molecular and ecological diversity. 155-182.

    Berg, B. and G. Ekbohm. 1983. Nitrogen immobilization in decomposing needle litter at variable carbon: nitrogen ratios. Ecology 64 (1):63-7.

    Berg, B. and H. Staaf. 1981. Leaching, accumulation and release of nitrogen in decomposing forest litter. Ecol. Bull. 33:163-78.

    Berg, B. and H. Staaf. 1987. Release of nutrients from decomposing white birch leaves and scots pine needle litter. Pedobiologia. 30:55-63.

    Bloem, J. and A.M. Breure, 2003. Microbial indicators. Bioindicators and Biomonitors. 259-282.

    Braid, M. D., Daniels, L. M. and C. L. Kitts. 2003. Removal of PCR inhibitors from soil DNA by chemical flocculation. J. microbiol. methods. 52: 389-393.

    Brosius, J., T. J. Dull, D. D. Sleeter, and H. F. Noller. 1981. Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. J. mol. biol. 148: 107-127.

    Brusseau, G. A., H. C. Tsien, R. S. Hanson, and L. P. Wackett. 1990

    Optimization of trichloroethylene oxidation by methanotrophs and use of a colorimetric assay to detect soluble methane monooxygenase activity. Biodegradation. 1:19-29.

    Casamayor, E. O., H. Schafer, L. Baneras, C. P. Alio and G. Muyzer. 2000.

    Identification of and spatio-temporal differences between microbial assmblages from two neighbouring sulfurous lakes: comparison by microscopy and denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 66:499-508.

    Chen, C. C., Teng, L. J., and T. C. Chang. 2004. Identification of clinically relevant viridans group streptococci by sequence analysis of the 16S-23S ribosomal DNA spacer region. J. clin. microbiol. 42. 2651-2657.

    Chen, G., H. Zhu. and Y. Zhang, 2003. Soil microbial activities and carbon and nitrogen fixation. Res. Microbiol. 154(6):393-398.

    Chin K. J., T. Lukow and R. Conrad. 1999. Effect of temperature on structure and function of the methanogenic archaeal community in an anoxic rice field soil. Appl. Environ. Microbiol. 65(6):2341-2349.

    Chynoweth, D. P., and P. Pullammanappallil. 1996. Anaerobic digestion of municipal solid waste. Microbiology of solid waste. 71-113.

    Cocolin, L., M Manzano, C. Cantoni, and G. Comi. 2001. Denaturing gradient gel electrophoresis analysis of the 16S rRNA gene V1 region to monitor dynamic changes in the bacterial population during fermentation of Italian sausages. Appl. Environ. Microbiol. 67: 5113–5121.

    Cocolin, L., K. Rantsiou, L. Iacumin, R. Urso, C. Cantoni, and G. Comi. 2004. Study of the ecology of fresh sausages and characterization of populations of lactic acid bacteria by molecular methods. Appl. Environ. Microbiol. 70: 1883– 1894.

    Collins, M. D., P. A. Lawson, A. Willems, J. J. Cordoba, J. Fernandez -Garayzabal, P. Garcia, J. Cai, H. Hippe, and J. A. E. Farrow. 1994. The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int. J. Syst. Bacteriol. 44:812-826.

    Creus, C. M., M. Graziano, E. M. Casanovas M. A. Pereyra, M. Simontacchi, S. Puntarulo, C. A. Barassi and L. Lamattina. 2005. Nitric oxide is involved in the Azospirillum brasilense-induced lateral root formation in tomato. Planta 221: 297–303.

    Davis, K. E., S. J. Joseph, and P.H. Janssen. 2005. Effects of growth medium, inoculum size, and incubation time on culturability and isolation of soil bacteria. Appl. Environ. Microbiol. 71 (2), 826-834.

    Delgado, J. A. and R. F. Follett. 2002.Carbon and nutrient cycles, J. Soil. Water. Conserv. 57:455–464.

    Desvaux, M., E. Guedon, and H. Petitdemange. 2000. Cellulose catabolism by Clostridium cellulolyticum growing in batch culture on defined medium. Appl. Envir. Microbiol. 66: 2461-2470.

    Dunbar, J., L. O. Ticknor, and C. R. Kuske. 2000. Assessment of the microbial diversity in four southwest US soils by 16S rRNA gene T-RFLP, Appl. Environ. Microbiol. 66:2943–2950.

    Edmonds, R. L. 1984. Long-term decomposition and nutrient dynamics in Pacific silverfir needles in western Washington. Can. J. For. Res. 14:395-400.

    Fedi, S., V. Tremaroli, D. Scala, J. R. P. Jimenez, F. Fava, L. Young and, D. Zannoni. 2005. T-RFLP analysis of bacterial communities in cyclodextrin-amended bioreactors developed for biodegradation of polychlorinated biphenyls. Research in Microbiology 156:201–210.

    Ferris, M. J., G. Muyzer, and D. M. Ward. 1996. Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populaitons inhabiting a hot spring microbial mat community. Appl. Environ. Microbiol. 62: 340-346.

    Fisher, S. G., and L. S. Lerman. 1983. DNA fragments differing by single base pair substitutions are separated in denaturing gradient gels: correspondence with melting theory. Proc. Natl. Acad. Sci. U. S. A. 80, 1579– 1583.

    Frackman, S., G. Kobs, D. Simpson, and Doug Promega Corporation. 1998. Betaine and DMSO: enhancing agents for PCR. Promega Notes Number 65: 27.

    Goregues, C. M., V. D. Michotey, and P. C. Bonin. 2005. Molecular, biochemical, and physiological approaches forunderstanding the ecology of denitrification. Microb. Ecol. Feb 24; [Epub ahead of print].

    Hahn, D., R. I. Amann, W. Ludwig, A. D. L. Akkermans, and K. H. Schleifer. 1992. Detection of microorganisms in soil after in situ hybridization with rRNA-targeted, fluorescently labelled oligonucleotides. J. Gen. Microbiol. 138, 879–887.

    Hagn, W., K. Pritsch, W. Ludwig, and M. Schloter. 2003. Theoretical and practical approaches to evaluate suitable primer sets for the analysis of soil fungal communities. Acta. Biotrcheol. 23:373-381.

    Hedlund, B. P., Gosink J. J. and J. T. Staley. 1997. Verrucomicrobia div. nov., a new division of the Bacteria containing three new species of Prosthecobacter. Antonie van Leeuwenhoek 72: 29–38.

    Heuer, H., M. Drsek, P. Baker, K. Smalla, and E. M. H. Wellington. 1997.

    Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl. Environ. Microbiol. 63: 3233-3241.

    Higuchi, R. 1989. Simple and rapid preparation of samples for PCR, p.31-38. In H. A. Erlich (ed.), PCR technology: principles and applications for DNA amplification.

    Horz, H. P., J. H. Rotthauwe, T. Lukow, and W. Liesack. 2000. Identification of major subgroups of ammonia-oxidizing bacteria in environmental samples by T-RFLP analysis of amoA PCR products. J. Microbiol. Methods. 39(3):197-204.

    Hugh, R. and E. Leifson. .1953. The taxonomic significance of fermentative versus oxidative metabolism of carbohydrate by various Gram-negative bacteria. J. bacteriol. 66:24-26.

    Innis, M. A., and D. H. Gelfand. 1990. Optimization of PCRs. In: PCR protocols: A guide in methods and applications. 3-12.

    Jama, B. A. and P. K. R. Nair. 1996. Decomposition-and nitrogen-mineralization patterns of Leucaena leucocephala and Cassia siamea mulch under tropical semiarid conditions in Kenya. Plant. Soil. 179:275-85.

    Johansen, J. E., N. Kroer, and L. Molbak. 2003. A yellow-pigmented gamma-proteobacterium isolated from the rhizosphere of Barley (Hordeum vulgare L.). Unpublished.

    Johnsen, K., C. S. Jacobsen, V. Torsvik and J. Sorensen. 2001. Preticide effects on bacterial diverisity in agricultural soil: a review, Bio. Fertil. Soils 33:443-453.

    Junca, H.,and D.H. Pieper. 2004. Functional gene diversity analysis in BTEX contaminated soils by means of PCR-SSCP DNA fingerprinting: comparative diversity assessment against bacterial isolates and PCR-DNA clone libraries. Environ. Microbiol. 6; 95–110.

    Kampfer, P., A. Neef, M. S. Salonen, and H. J. Busse. 2002. Chelatobacter heintzii (Auling et al. 1993) is a later subjective synonym of Aminobacter aminovorans (Urakami et al. 1992). Int. J. Syst. Evol. Microbiol. 52:835-839.

    Kang, R. J., D. J. Shi, W. Cong, Z. L. Cai. and F. Ouyang. 2005. Regulation of CO2 on heterocyst differentiation and nitrate uptake in the cyanobacterium Anabaena sp. PCC 7120. J. Appl. Microbiol. 98:693–698.

    Kim, C., T. L. Sharik, and M. F. Jurgensen. 1996. Canopy cover effects on mass loss, and nitrogen and phosphorus dynamics from decomposing litter in oak and pine stands in northern Lower Michigan. For. Ecol. Manage. 80:13-20.

    King, S., B. R. McCord, and R. G. Rieflerb. 2005. Capillary electrophoresis single-strand conformation polymorphism analysis for monitoring soil bacteria. J. microbiol. methods. 60 ;83– 92.

    Kitts, C. L. 2001. Terminal restriction fragment patterns: a tool for comparing microbial communities and assessing community dynamics. Microbiol. 2 (1):17-25.
    Kostantinidis, K. T., N. Isaacs, J. Fett, S. Simpson, D. T. Long, and T. L. Marsh. 2003. Microbial diversity and resistance to copper in metal-contaminated lake sediment, Microb. Ecol. 45 :191–202.

    Kowalchuk, G. A., J. R. Stephen, W. de Boer, J. I. Prosser, T. M. Embley and J. W. Woldendorp. 1997. Analysis of ammonia-oxidizing bacteria in the B Subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and Sequencing of the PCR-amplified 16S ribosomal DNA fragment, Appl. Environ. Microbial. 63:1489-1497.

    Kourkine, I. V., C. N. Hestekin, and A. E. Barron. 2002. Technical challenges in applying capillary electrophoresis-single strand conformation polymorphism for routine genetic analysis. Electrophoresis 23, 1375–1385.

    Krave, A. S., Lin B., Braster M., Laverman, A. M. van Straalen, N. M. Wilfred, F. M. Rling and H. W. van Verseveld. 2002. Stratification and seasonal stability of diverse bacterial communities in a Pinus merkusii (pine) forest soil in central Java, Indonesia. Environmental Microbiology 4(6), 361–373.

    Kreader, C. L. 1996. Relief of amplification inhibition in PCR with bovine serum albumin or T4 gene 32 protein. Appl. Environ. Microbiol. 62:1102-1106.
    Kuhner, C. H., C. Matthies, G. Acker, M. Schmittroth, A. S. GoBner and H. L. Drake. 2000. Clostridium akagii sp. nov. and Clostridium acidisoli sp. nov.: acid-tolerant, N2-fixing clostridia isolated from acidic forest soil and litter. Int. J. Syst. Evol. Microbiol. 50:873–881.

    Kuske, C. R., L. O. Ticknor, M. E. Miller, J. M. Dunbar, J. A. Davis, S. M. Barns, and J. Belnap. 2002. Comparison of Soil Bacterial Communities in rhizospheres of three plant species and the interspaces in an arid grassland. Appl. Environ. Microbiol. 68: 1854-1863.

    Laguerre, G., M. Allard, F. Revoy, and N. Amarger. 1994. Rapid identification of Rhixobia by restriction fragment length polymorphism analysis of PCR-amplified 16S rRNA genes. Appl. Environ. Microbiol. 60: 56-63.

    Lee, D., Y. Zo, and S. Kim. 1996. Nonradioactive method to study genetic profiles of natural bacterial communities by PCR-singlestrand- conformation polymorphism. Appl. Environ. Microbiol. 62, 3112– 3120.

    Lee, J. H. and R. M. Brown, Jr. 1997. A comparative structural characterization of two cellobiohydrolases from Trichoderma reesei: A high resolution electron microscopy study. J. Biotechnology. In Press

    Lee, R. L., P. J. Weimer, W. H. van Zyl, and I. S. Pretorius. 2002. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. mol. biol. rev., Sept 506–577.

    Lee, S. F., C. W. Forsberg, and L. N. Gibbins. 1985. Cellulolytic activity of Clostridium acetobutylicum. Appl. Environ. Microbiol. 50:220-228.

    Leigh, M. B., P. Prouzova, M. Mackova, T. Macek, D. P. Nagle, and J. S. Fletcher. 2005. Diversity and degradative abilities of culturable PCB-degrading bacteria associated with plant roots at a contaminated site. Unpublished
    Leschine, S. B. 1995. Cellulose degradation in anaerobic environments. Annu. Rev. Microbiol. 49:399-426.

    Liesackt, W. and E. Stackebrandt. 1992. Occurrence of novel groups of the domain bacteria as revealed by analysis of genetic material isolated from an Australian terrestrial environment. J. bacteriol. 174:15, 5072-5078.

    Liu, W. T., T. L. Marsh, H. Cheng, and L. J. Forney. 1997. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl. Environ. Microbiol. 63(11):4516-4522.

    Liu, W. T., C. L. Huang, J. Y. Hu, L. Song, S. L. Ong, and W. J. Ng. 2002. Denaturing gradient gel electrophoresis polymorphism for rapid 16S rDNA clone screening and microbial diversity Study. Journal of Bioscience and Bioengineering 93: 101-103.

    Lukow, T., P. F. Dunfield, and W. Liesack. 2000. Use of the T-RFLP technique to assess spatial and temporal changes in the bacterial community structure within an agricultural soil planted with transgenic and non-transgenic potato plants. FEMS Microbiol. Ecol. 32(3):241-247.

    Manz, W., R. Amann, W. Ludwig and K. H. Schleifer. 1992. Phylogenetic oligodeoxynucleotide probes for the major subclass of Proteobacteria: problems and solution. Syst. Appl. Microbiol. 15:593-600.

    Mayer, F., M. P. Coughlan, Y. Mori, and L. G. Ljungdahl. 1987. Macromolecular organization of the cellulolytic enzyme complex of Clostridium thermocellum as revealed by electron microscopy. Appl. Environ. Microbiol. 53: 2785-2792.

    Miller, D. N., J. E. Bryant, E. L. Madsen, and W. C. Ghiorse. 1999. Evaluation and optimatization of DNA extraction and purification procedures for soil and sediment samples. Appl. Environ. Microbiol. 65: 4715-5724.

    Minamisawa, K., K. Nishioka, T. Miyaki, B. Ye, T. Miyamoto, M. You, A. Saito, M. Saito, B. L. Wilfredo, N. Teaumroong, T. Sein, and T. Sato. 2004. Anaerobic nitrogen-fixing consortia consisting of Clostridia isolated from gramineous plants. Appl. Environ. Microbiol. 70: 3096-3102.

    Kazuhisa, M. 1997. Renewable biological systems for alternative sustainable energy production. FAO Agricultural Services Bulletin 128.

    Moeseneder, M. M., C. Winter, J. M. Arrieta, and G. J. Herndl. 2001.Terminalrestriction fragment length polymorphism (T-RFLP) screening of a marine archaeal clone library to determine the different phylotypes, J. Microbiol. Methods. 44:159–172.

    Moyer, C. L., J. M. Tiedjue, F. C. Dobbs, and D. M. Karl. 1996. A computer-stimulated restriction fragment length polymorphism analysis of bacterial small-subunit rRNA genes: efficacy of selected tetrameric restriction enzymes for studies of microbial diversity in nature. Appl. Environ. Microbiol. 62: 2501-2507.

    Muyzer, G., E. C. de Waal, and A. G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol.59: 659-700.

    Muyzer, G., and K. Smalla. 1998. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie van Leeuwenhoek 73:127-141.

    Muyzer, G., A. Teske, C. O. Wirsen, and H. W. Jannasch. 1995. Phylogenetic relationship of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. Arch. microbiol. 164:165-172.

    Myers, R .M., S. G. Fisher, L. S. Lerman, and T. Maniatis. 1985. Nearly all single base substitutions in DNA fragments joined to a GCclamp can be detected by denaturing gradient gel electrophoresis. Nucleic Acids Res. 13: 3131– 3145.

    Nicol, G. W., L. A. Glover,and J. I. Prosser. 2003. The impact grassland management on archaeal community structure in upland pasture rhizosphere soil. Environ. Microbiol. 5 : 152– 162.

    Nicolaisen, M. H., and N. B. Ramsing. 2002, Denaturing gradient gel electrophoresis (DGGE) approaches to study the diversity of ammonia-oxidizing bacteria. J. microbiol. methods. 50 :189– 203.

    Nielsen, E. N., J., F. V. Emgberg, L. B. Petersen, and C. H. On. 2000.

    Evaluation of phenotypic and genotypic methods for subtyping Campylobacter jejuni isolates from humans, poultry, and cattle. J. Clin. Microbiol. 38 : 3800– 3810.

    Norris, T. B., J. M., Wraith, R. W. Castenholz,and T. R. McDermott. 2002. Soil microbial community structure across a thermal gradient following a geothermal heating event. Appl. Environ. Microbiol. 68 : 6300–6309.

    OECD, Paris 2003.Agricultural impacts on soil erosion and soil biodiversity:Developing indicators for policy analysis. 25-28.

    Olsen, G. J., D. J. Lane, S. J. Giovannoni, N. R. Pace, and D. A. Stahl. 1987. Microbial and evolution: a ribosomal RNA approach. Annu. rev. microbial. 40 : 337.

    Park, J. W. and D. E. Crowley. 2005. Normalization of soil DNA extraction for accurate quantification of target genes by real-time PCR and DGGE. BioTechniques. 38(4): 579-586.

    Perez-Luz, S., Adela, Y. M., and V. Catalan. 2004. Identification of waterborne bacteria by the analysis of 16S-23S rRNA intergenic spacer region. Journal of Applied Microbiology. 97 : 191-204.

    Petitdemange, E., F. Caillet, J. Giallo, and C. Gaudin. 1984. Clostridium cellulolyticum sp. nov., a cellulolytic mesophilic species from decayed grass. Int. J. Syst. Bacteriol. 34 : 155-159.

    Richard, S. H. and T. E. Hanson. 1996. Methylotrophic Bacteria. Microbial. Rev. 60 : 439-471.

    Richardson, R. E., V. K. Bhupathiraju, D. L. Song, T. A. Goulet, and L. A. Choen. 2002. Phylogenetic characterization of microbial communities that reductively dechlorinate TCE based upon a combination of molecular techniques, Environ. Sci. Technol. 36 : 2652–2662.

    Rousseaux, S, A. Hartmann., and G. Soulas. 2001. Isolation and characterisation of new Gram-negative and Gram-positive atrazine degrading bacteria from different French soils. FEMS Microbiol. Ecol. 36(2-3) : 211-222.

    Saikei, R. K., D. H. Gelfand, S. Scharf, S. J. Scharf, R. Higuchi, G. T. Horn, K. B. Mullis, and H. A. Erlich. 1988. Primer-directed enzymatic amplification of DNA with thermostable DNA polymerase. Science. 239 : 487-491.

    Saitou, N. and N. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular and Biological Evolution. 4 : 406-425.

    Scala, D. J., and L. J. Kerkhof. 2000. Horizontal heterogeneity of denitrifying bacterial communities in marine sediments by terminal restriction fragment length polymorphism analysis, Appl. Environ. Microbiol. 66 : 1980–1986.

    Schmalenberger, A., F. Schweiger, and C.C. Tebbe. 2001. Effect of primers hybridizing to different evolutionarily conserved regions of the small-subunit rRNA gene in PCR-based microbial community analyses and genetic profiling. Appl. Environ. Microbiol. 67 : 3557– 3563.

    Schmalenberger, A., and C.C. Tebbe. 2003. Bacterial diversity in maizer hizospheres: conclusions on the use of genetic profiles based on PCR-amplified partial small subunit rRNA genes in ecological studies. Mol. Ecol. 12 : 251– 262.

    Schwarz, W. H. 2001. The cellulosome and cellulose degradation by anaerobic bacteria. Appl. Microbiol. Biotechnol. 56(5-6) : 634-649.

    Sekiguchi, Y., Y. Kamagata, K. Syutsubo, A. Ohashi, H. Harada, and K. Nakamura. 1998. Phylogenetic diversity of mesophilic and thermophilic granular sludges determined by 16S rRNA gene analysis. Microbiology 144 : 2655-2665.

    Semrau, J. D., A. Chistoserdov, J. Lebron, A. Costello, J. Davagnino, E. Kenna, A. J. Holmes, R. Finch, J. C. Murrell, and M. E. Lidstorm. 1995. Particulate methane monooxygenase genes in methanotrophs. Bacteriol 177 : 3071-3079.

    Sessitsch, A., A. Weilharter, M. H. Gerzabek, H. Kirchmann, and E. Kandeler. 2001. Microbial population structures in soil particle size fractions of a long-term fertilizer field experiment. Appl. Environ. Microbiol. 67 : 4215-4224.

    Sheffield, V. C., J. S. Beck,, E. M. Stone, and R. M. Myers. 1989. Attachment of a 40 bp G+ C rich sequence (GC-clamp) to genomic DNA fragments by polymerase chain reaction results in improved detection of single-base changes. Proc. Natl. Acad. Sci. U. S. A. 86 : 232– 236.

    Sinha, A. 1997. Release of nitrogen, phosphorus and potassium from the decomposing leaf litter of a tropical natural forest. J Trop For Sci 9(3):431-433.

    Smith, C. T. 2002. The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification. Int. J. Syst. Evol. Microbiol. 52 : 7–76.

    Spinnler, H. E. 1986. Hydrolysis of cellulose in fed-batch culture by C. thermocellum:a way to increase speed of cellulose hydrolysis. Biotechnol. Lett. 8:213-218.

    Stults, J. R., O. S. West, B. Methe, D. R. Lovley, and D.P. Chandler. 2001. Application of the 5' fluorogenic exonuclease assay (TaqMan) for quantitative ribosomal DNA and rRNA analysis in sediments. Appl. Environ. Microbiol. 67 : 2781-2789.

    Torsvik, V., F. L. Daae, R. A. Sandaa and L. Ovreas. 1998 Novel techniques for analysising microbial diversity in natural and perturbed environments. J. Biotechnol. 64 : 53-62.

    Trirup, L., A. Johansen and A. Winding. 2003. Microbial succession in the rhizophere of live and decomposing barley roots as affected by the antagonistic strain Psendomomas fluorescens DR54-BN14 or the fungicide imazalil. FEMS microbiol. Ecol. 43 : 383-392.

    Tsai, Y. L., and B. H. Olson. 1992. Rapid method for separation of bacterial DNA from humic substances in sediments for polymerase chain reaction. Appl. Environ. Microbiol. 58 : 2292-2295.

    Van Dyke, M. I., and A. J. McCarthy. 2002. Molecular biological detection and characterization of Clostridium population in municipal landfill sites. Appl. Environ. Microbiol. 68 : 2049-2053.

    Waring, R. H. and W. H. Schlesinger. 1985. Forest ecosystem: concepts and management. 340.

    Webster, N. S., R. I. Webb, M. J. Ridd, R. T. Hill, and A. P. Negri. 2001. The effects of copper on the microbial community of a coral reef sponge. Environ. Microbiol. 3(1) : 19-31.

    Wedderburn, M. E. and J. Carter, 1999. Litter decomposition bu four functional tree types for use in silvopastoral systems. Soil. Biol. Biochem. 31 : 455-461.

    Widjojoatmodjo, M. N., A. C. Fluit, R. Torensma, G. P. H. T. Verdonk, and J. Verhoef. 1992. The magnetic immuno polymerase chain reaction assay for direct detection of salmonellae in fecal samples. J. clin. microbiol. 30 : 3195-3199.

    Winding, A. 2004. Indicators of soil bacterial divister. In: agricultural Impacters on soil erosiom and soil biodiversity: develpoing indicators for policy analysis.

    Woese, C. R. 1987. Bacterial evolution. Microbiol. rev. 51 : 221-271.

    Wu, M., L. Song, J. Ren, J. Kan, and P. Y. Qian. 2004. Assessment of microbial dynamics in the Pearl River Estuary by 16S rRNA terminal restriction fragment analysis. Continental Shelf Research 24 : 1925–1934.

    Yabuuchi, E. and I. Yano. 1981. Achromobacter gen. nov. and Achromobacter xylosoxidans(ex Yabuuchi and Ohyama 1971)nom. rev. Int. J. Syst. Bacteriol. 31:477-478.

    Yeager, C. M., D. E. Northup, C. C. Grow, S. M. Barns, and Cheryl R. Kuske. 2005. Changes in nitrogen-fixing and ammonia-oxidizing bacterial communities in soil of a mixed conifer forest after wildfire. Appl. Environ. Microbiol.71(5); 2713–2722.

    Yoneta, M., T. Sahara, K. Nitta, and Y. Takada. 2004. Characterization of chimeric isocitrate dehydrogenases of a mesophilic nitrogen-fixing bacterium, Azotobacter vinelandii, and a Psychrophilic Bacterium, Colwellia maris. Cur. microbiol. 48: 383–388.

    下載圖示 校內:2010-07-22公開
    校外:2010-07-22公開
    QR CODE