| 研究生: |
林志韋 Lin, Chih-Wei |
|---|---|
| 論文名稱: |
tmigd1基因單核苷酸多型性之乾式生物檢測試紙系統 Dry-Reagent Strip Biosensor for Single Nucleotide Polymorphism in tmigd1 Gene |
| 指導教授: |
郭瑞昭
Kuo, Jui-Chao |
| 共同指導教授: |
黃秀琳
Huang, Hsiu-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 178 |
| 中文關鍵詞: | 免疫層析法 、奈米金 、單核苷酸多型性 、菜鴨 |
| 外文關鍵詞: | lateral-flow immunoassay, gold nanoparticle, single nucleotide polymorphism, Tsaiya duck |
| 相關次數: | 點閱:101 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
免疫層析法是一種操作簡便、低成本、時間需求低的檢測技術,並已被廣泛的應用在各種的生物檢測應用上。近年來,此種方式已由原始之抗體-抗原檢測方式成功應用至基因檢測、甚至是Single Nucleotide Polymorphism (SNP)偵測。本論文探討免疫層析試紙之開發與相關製程條件之參數,並將成品應用於菜鴨之tmigd1基因之SNP檢驗上。
本論文選定奈米金粒子作為免疫層析試紙之顯色單元,並由試驗結果選定0.67M NaCl作為奈米金粒子表面單股核酸探針修飾之最終鹽度設定。在後續的試紙先行測試中,Streptavidin使用量在0.25μg下時將不會有肉眼可辨識之假陽性訊號產生,因此後續的試驗中將以此數值作為試紙參數調整之起始數值。
本論文中使用Primer Extension作為SNP辨識之核心機制,利用特定DNA聚合酶不具有3’-5’外切性之特性,只有目標SNP存在時才能發生聚合反應並將Biotin-16-dUTP嵌入產物中。產物將因帶有Biotin而能夠被試紙上之Streptavidin所捕捉。在此反應中Mg2+離子濃度為影響試紙訊號特異性最主要因素,次之為試紙上Streptavidin之使用量。本論文選定1mM Mg2+搭配0.12μg Streptavidin作為最終的標準設定。且由試驗結果可知增加PCR產物使用量與Primer Extension反應循環次數均可有效得提升G/A genotype之信號強度,同時G/G與A/A genotype之信號特異性不會受到顯著的影響。本研究再額外使用6組DNA樣品以7個Primer Extension循環進行再現性驗證,由試驗結果可發現6組樣品均可得到預期中的訊噪對比,但特異性訊號強度會受到PCR產物濃度影響。最後根據計算,本檢驗方式之時間需求約為40分鐘、單位成本為38.5元新台幣。
In this research, we developed a lateral-flow immunoassay combined with primer extension (PEXT) method for SNP genotyping of tmigd1 gene in Tsaiya duck (Anas platyrhynchos), and discussed the effects of experiment parameters on both signal specificity and intensity.
According to our result, the optimal setup is 1mM Mg2+ with 0.12μg streptavidin. Increasing the amount of PCR product or PEXT reaction cycle number can enhance the signal without observable change of signal specificity. To validate the reproducibility, we perform the test with additional 6 DNA samples. We were able to obtain specific signals from all the DNA samples, but the signal intensities were be affected by the concentration of PCR prducts.
According to our calculation, time requirement of this method is about 40 minutes, and the cost for 1 strip test is about 38.5 NTD.
1. J.C. Venter, M.D. Adams, E.W. Myers, P.W. Li, R.J. Mural, G.G. Sutton, H.O. Smith, M. Yandell, C.A. Evans, R.A. Holt, J.D. Gocayne, P. Amanatides, R.M. Ballew, D.H. Huson, J.R. Wortman, Q. Zhang, C.D. Kodira, X.H. Zheng, L. Chen, M. Skupski, G. Subramanian, P.D. Thomas, J. Zhang, G.L. Gabor Miklos, C. Nelson, S. Broder, A.G. Clark, J. Nadeau, V.A. McKusick, N. Zinder, A.J. Levine, R.J. Roberts, M. Simon, C. Slayman, M. Hunkapiller, R. Bolanos, A. Delcher, I. Dew, D. Fasulo, M. Flanigan, L. Florea, A. Halpern, S. Hannenhalli, S. Kravitz, S. Levy, C. Mobarry, K. Reinert, K. Remington, J. Abu-Threideh, E. Beasley, K. Biddick, V. Bonazzi, R. Brandon, M. Cargill, I. Chandramouliswaran, R. Charlab, K. Chaturvedi, Z. Deng, V.D. Francesco, P. Dunn, K. Eilbeck, C. Evangelista, A.E. Gabrielian, W. Gan, W. Ge, F. Gong, Z. Gu, P. Guan, T.J. Heiman, M.E. Higgins, R.-R. Ji, Z. Ke, K.A. Ketchum, Z. Lai, Y. Lei, Z. Li, J. Li, Y. Liang, X. Lin, F. Lu, G.V. Merkulov, N. Milshina, H.M. Moore, A.K. Naik, V.A. Narayan, B. Neelam, D. Nusskern, D.B. Rusch, S. Salzberg, W. Shao, B. Shue, J. Sun, Z.Y. Wang, A. Wang, X. Wang, J. Wang, M.-H. Wei, R. Wides, C. Xiao, C. Yan, A. Yao, J. Ye, M. Zhan, W. Zhang, H. Zhang, Q. Zhao, L. Zheng, F. Zhong, W. Zhong, S.C. Zhu, S. Zhao, D. Gilbert, S. Baumhueter, G. Spier, C. Carter, A. Cravchik, T. Woodage, F. Ali, H. An, A. Awe, D. Baldwin, H. Baden, M. Barnstead, I. Barrow, K. Beeson, D. Busam, A. Carver, A. Center, M.L. Cheng, L. Curry, S. Danaher, L. Davenport, R. Desilets, S. Dietz, K. Dodson, L. Doup, S. Ferriera, N. Garg, A. Gluecksmann, B. Hart, J. Haynes, C. Haynes, C. Heiner, S. Hladun, D. Hostin, J. Houck, T. Howland, C. Ibegwam, J. Johnson, F. Kalush, L. Kline, S. Koduru, A. Love, F. Mann, D. May, S. McCawley, T. McIntosh, I. McMullen, M. Moy, L. Moy, B. Murphy, K. Nelson, C. Pfannkoch, E. Pratts, V. Puri, H. Qureshi, M. Reardon, R. Rodriguez, Y.-H. Rogers, D. Romblad, B. Ruhfel, R. Scott, C. Sitter, M. Smallwood, E. Stewart, R. Strong, E. Suh, R. Thomas, N.N. Tint, S. Tse, C. Vech, G. Wang, J. Wetter, S. Williams, M. Williams, S. Windsor, E. Winn-Deen, K. Wolfe, J. Zaveri, K. Zaveri, J.F. Abril, R. Guigó, M.J. Campbell, K.V. Sjolander, B. Karlak, A. Kejariwal, H. Mi, B. Lazareva, T. Hatton, A. Narechania, K. Diemer, A. Muruganujan, N. Guo, S. Sato, V. Bafna, S. Istrail, R. Lippert, R. Schwartz, B. Walenz, S. Yooseph, D. Allen, A. Basu, J. Baxendale, L. Blick, M. Caminha, J. Carnes-Stine, P. Caulk, Y.-H. Chiang, M. Coyne, C. Dahlke, A.D. Mays, M. Dombroski, M. Donnelly, D. Ely, S. Esparham, C. Fosler, H. Gire, S. Glanowski, K. Glasser, A. Glodek, M. Gorokhov, K. Graham, B. Gropman, M. Harris, J. Heil, S. Henderson, J. Hoover, D. Jennings, C. Jordan, J. Jordan, J. Kasha, L. Kagan, C. Kraft, A. Levitsky, M. Lewis, X. Liu, J. Lopez, D. Ma, W. Majoros, J. McDaniel, S. Murphy, M. Newman, T. Nguyen, N. Nguyen, M. Nodell, S. Pan, J. Peck, M. Peterson, W. Rowe, R. Sanders, J. Scott, M. Simpson, T. Smith, A. Sprague, T. Stockwell, R. Turner, E. Venter, M. Wang, M. Wen, D. Wu, M. Wu, A. Xia, A. Zandieh and X. Zhu, The sequence of the human genome. Science, 2001. 291: p. 1304-1351.
2. P.E. Thomas, R. Klinger, L.I. Furlong, M. Hofmann-Apitius and C.M. Friedrich, Challenges in the association of human single nucleotide polymorphism mentions with unique database identifiers. BMC Bioinformatics, 2011. 12: p. S4-S4.
3. F.S. Collins, L.D. Brooks and A. Chakravarti, A DNA polymorphism discovery resource for research on human genetic variation. Genome Research, 1998. 8: p. 1229-1231.
4. R.S. Herbst, J.V. Heymach and S.M. Lippman, Lung cancer. New England Journal of Medicine, 2008. 359: p. 1367-1380.
5. K. Yanase, S. Tsukahara, J. Mitsuhashi and Y. Sugimoto, Functional SNPs of the breast cancer resistance protein ‐ therapeutic effects and inhibitor development. Cancer Letters, 2006. 234: p. 73-80.
6. H.L. Huang, L.T. Huang and Y.S. Cheng, A novel SNP marker of ovalbumin gene in association with duck hatchability. Theriogenology, 2013. 79: p. 1218-1223.
7. J.A. Goldstein, Clinical relevance of genetic polymorphisms in the human CYP2C subfamily. British Journal of Clinical Pharmacology, 2001. 52: p. 349-355.
8. X. Chen and P.F. Sullivan, Single nucleotide polymorphism genotyping: Biochemistry, protocol, cost and throughput. Pharmacogenomics J, 2003. 3: p. 77-96.
9. P.Y. Kwok, Methods for genotyping single nucleotide polymorphisms. Annual Review of Genomics and Human Genetics, 2001. 2: p. 235-258.
10. E.A. Sapountzi, S.S. Tragoulias, D.P. Kalogianni, P.C. Ioannou and T.K. Christopoulos, Lateral flow devices for nucleic acid analysis exploiting quantum dots as reporters. Analytica Chimica Acta, 2015. 864: p. 48-54.
11. A.P. Moers, R.L. Hallett, R. Burrow, H.D. Schallig, C.J. Sutherland and A. van Amerongen, Detection of single-nucleotide polymorphisms in plasmodium falciparum by PCR primer extension and lateral flow immunoassay. Antimicrobial Agents and Chemotherapy, 2015. 59: p. 365-371.
12. Y. He, X. Zhang, S. Zhang, M.K.L. Kris, F.C. Man, A.N. Kawde and G. Liu, Visual detection of single-base mismatches in DNA using hairpin oligonucleotide with double-target DNA binding sequences and gold nanoparticles. Biosensors and Bioelectronics, 2012. 34: p. 37-43.
13. M. Amvrosiadou, M. Petropoulou, M. Poulou, M. Tzetis, E. Kanavakis, T.K. Christopoulos and P.C. Ioannou, Multi-allele genotyping platform for the simultaneous detection of mutations in the wilson disease related ATP7B gene. Journal of Chromatography B, 2015. 1006: p. 201-208.
14. Z. Xiao, P. Lie, Z. Fang, L. Yu, J. Chen, J. Liu, C. Ge, X. Zhou and L. Zeng, A lateral flow biosensor for detection of single nucleotide polymorphism by circular strand displacement reaction. Chemical Communications, 2012. 48: p. 8547-8549.
15. J.K. Konstantou, P.C. Ioannou and T.K. Christopoulos, Dual-allele dipstick assay for genotyping single nucleotide polymorphisms by primer extension reaction. European Journal of Human Genetics, 2008. 17: p. 105-111.
16. B.R. Glick, J.J. Pasternak and C.L. Patten, Molecular biotechnology: Principles and applications of recombinant DNA. 2010, Washington, DC: ASM Press. 1018.
17. J.D. Watson and F.H.C. Crick, Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid. Nature, 1953. 171: p. 737-738.
18. T.E. Ouldridge, P. Sulc, F. Romano, J.P. Doye and A.A. Louis, DNA hybridization kinetics: Zippering, internal displacement and sequence dependence. Nucleic Acids Research, 2013. 41: p. 8886-8895.
19. J. SantaLucia, Jr. and D. Hicks, The thermodynamics of DNA structural motifs. Annual Review of Biophysics and Biomolecular Structure, 2004. 33: p. 415-440.
20. D.P. Clark, Molecular biology. 1 ed. 2005, Burlington, MA: Elsevier Academic Press. 784.
21. K. Glynou, P.C. Ioannou, T.K. Christopoulos and V. Syriopoulou, Oligonucleotide-functionalized gold nanoparticles as probes in a dry-reagent strip biosensor for DNA analysis by hybridization. Analytical Chemistry, 2003. 75: p. 4155-4160.
22. R. Saiki, S. Scharf, F. Faloona, K. Mullis, G. Horn, H. Erlich and N. Arnheim, Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science, 1985. 230: p. 1350-1354.
23. F. Sanger and A.R. Coulson, A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. Journal of Molecular Biology, 1975. 94: p. 441-448.
24. A.J. Brookes, The essence of SNPs. Gene, 1999. 234: p. 177-186.
25. M. Olivier, The invader® assay for SNP genotyping. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2005. 573: p. 103-110.
26. J.M. Singer and C.M. Plotz, The latex fixation test: I. Application to the serologic diagnosis of rheumatoid arthritis. The American Journal of Medicine, 1956. 21: p. 888-892.
27. E. Engvall and P. Perlmann, Enzyme-linked immunosorbent assay (ELISA) quantitative assay of immunoglobulin G. Immunochemistry, 1971. 8: p. 871-874.
28. D.J. Litman, T.M. Hanlon and E.F. Ullman, Enzyme channeling immunoassay: A new homogeneous enzyme immunoassay technique. Analytical Biochemistry, 1980. 106: p. 223-229.
29. R.C. Wong and H.Y. Tse, eds. Lateral flow immunoassay. 2009, New York, NY: Humana Press. 224.
30. T. Nakayama, J. Zhao, D. Takeuchi, A. Kerdsin, P. Chiranairadul, P. Areeratana, P. Loetthong, A. Pienpringam, Y. Akeda and K. Oishi, Colloidal gold-based immunochromatographic strip test compromising optimised combinations of anti-s. Suis capsular polysaccharide polyclonal antibodies for detection of Streptococcus suis. Biosensors and Bioelectronics, 2014. 60: p. 175-179.
31. W. Zhang, X. Ge, Y. Tang, D. Du, D. Liu and Y. Lin, Nanoparticle-based immunochromatographic test strip with fluorescent detector for quantification of phosphorylated acetylcholinesterase: An exposure biomarker of organophosphorus agents. Analyst, 2013. 138: p. 5431-5436.
32. K. Abe, K. Kotera, K. Suzuki and D. Citterio, Inkjet-printed paperfluidic immuno-chemical sensing device. Anal Bioanal Chem, 2010. 398: p. 885-893.
33. A.W. Martinez, S.T. Phillips and G.M. Whitesides, Three-dimensional microfluidic devices fabricated in layered paper and tape. Proceedings of the National Academy of Sciences of the United States of America, 2008. 105: p. 19606-19611.
34. E.M. Southern, Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology, 1975. 98: p. 503-517.
35. C.A. Mirkin, R.L. Letsinger, R.C. Mucic and J.J. Storhoff, A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature, 1996. 382: p. 607-609.
36. S.Y. Hou, Y.L. Hsiao, M.S. Lin, C.C. Yen and C.S. Chang, Microrna detection using lateral flow nucleic acid strips with gold nanoparticles. Talanta, 2012. 99: p. 375-379.
37. X. Mao, Y. Ma, A. Zhang, L. Zhang, L. Zeng and G. Liu, Disposable nucleic acid biosensors based on gold nanoparticle probes and lateral flow strip. Analytical Chemistry, 2009. 81: p. 1660-1668.
38. Y. He, K. Zeng, A.S. Gurung, M. Baloda, H. Xu, X. Zhang and G. Liu, Visual detection of single-nucleotide polymorphism with hairpin oligonucleotide-functionalized gold nanoparticles. Analytical Chemistry, 2010. 82: p. 7169-7177.
39. D.P. Kalogianni, T. Koraki, T.K. Christopoulos and P.C. Ioannou, Nanoparticle-based DNA biosensor for visual detection of genetically modified organisms. Biosensors and Bioelectronics, 2006. 21: p. 1069-1076.
40. I. Freestone, N. Meeks, M. Sax and C. Higgitt, The lycurgus cup — a roman nanotechnology. Gold Bulletin, 2007. 40: p. 270-277.
41. D.B. Harden and J.M.C. Toynbee, Vii.—the rothschild lycurgus cup. Archaeologia (Second Series), 1959. 97: p. 179-212.
42. D.J. Barber and I.C. Freestone, An investigation of the origin of the color of the lycurgus cup by analytical transmission electron-microscopy. Archaeometry, 1990. 32: p. 33-45.
43. M. Faraday, The bakerian lecture: Experimental relations of gold (and other metals) to light. Philosophical Transactions of the Royal Society of London, 1857. 147: p. 145-181.
44. K.M. Mayer and J.H. Hafner, Localized surface plasmon resonance sensors. Chemical Reviews, 2011. 111: p. 3828-3857.
45. G. Mie, Contributions to the optics of turbid media, particularly of colloidal metal solutions. Annalen der Physik, 1908. 25: p. 377-445.
46. 吳民耀 and 劉威志, 表面電漿子理論與模擬. 物理雙月刊, 2006. 28: p. 486-496
47. C.F. Bohren and D.R. Huffman, Absorption and scattering by an arbitrary particle, in Absorption and scattering of light by small particles. 2007, Wiley-VCH Verlag GmbH. p. 57-81.
48. P.K. Jain and M.A. El-Sayed, Plasmonic coupling in noble metal nanostructures. Chemical Physics Letters, 2010. 487: p. 153-164.
49. P.K. Jain, S. Eustis and M.A. El-Sayed, Plasmon coupling in nanorod assemblies: Optical absorption, discrete dipole approximation simulation, and exciton-coupling model. The Journal of Physical Chemistry B, 2006. 110: p. 18243-18253.
50. P.K. Jain, W. Huang and M.A. El-Sayed, On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: A plasmon ruler equation. Nano Letters, 2007. 7: p. 2080-2088.
51. S.J. Hurst, A.K.R. Lytton-Jean and C.A. Mirkin, Maximizing DNA loading on a range of gold nanoparticle sizes. Analytical Chemistry, 2006. 78: p. 8313-8318.
52. D.M. Soares, W.E. Gomes and M.A. Tenan, Sodium dodecyl sulfate adsorbed monolayers on gold electrodes. Langmuir, 2007. 23: p. 4383-4388.
53. T.A. Steitz, DNA polymerases: Structural diversity and common mechanisms. Journal of Biological Chemistry, 1999. 274: p. 17395-17398.
校內:2021-01-01公開