簡易檢索 / 詳目顯示

研究生: 林桎葦
Lin, Jr-Wei
論文名稱: 利用溶劑調控有機/高分子半導體的結構與光電特性之研究: 應用到場效電晶體
Tuning the structural and optoelectronic properties of organic/polymeric semiconductors by solvent methods: application to field-effect transistors
指導教授: 鄭弘隆
Cheng, Horng-Long
學位類別: 博士
Doctor
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 131
中文關鍵詞: 有機半導體薄膜微結構結構-特性相關性溶劑效應吸收光譜微拉曼光譜
外文關鍵詞: Organic semiconductors, Thin-film microstructure, Polymorphism, Structure-Property Relationships, Solvent effects, Absorption, MicroRaman spectroscopy
相關次數: 點閱:107下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究聚焦於利用溶劑處理法調控有機/高分子半導體的微結構與光電特性的研究,本論文的第一部分: 第二章到第五章進行poly(3-hexylthiophene) (P3HT)高分子半導體的相關課題研究;第二部分: 第六章研究有機pentacene小分子半導體的相關課題。

    第一部分 poly(3-hexylthiophene)
    第二章
    本章研究長時間操作對P3HT主動層微結構與有機薄膜電晶體(OTFT)電特性的影響,其中P3HT主動層係利用溶液製程搭配旋轉塗佈法製作。利用偏振吸收與偏振拉曼光譜直接量測長時間操作對P3HT於平行或是垂直OTFT通道內分子性質與微結構的改變 ,包括:激子頻寬、分子鏈間電子耦合、以及有效共軛長度。結合實驗的吸收和拉曼光譜與理論分析,結果指出源極到汲極的水平電場能改善P3HT平行於通道的微結構,因此長期操作後,OTFT元件相較於初始狀態有較高的輸出電流、增強地載子遷移率、與較陡的次臨界擺幅;然而,我們也發現垂直通道的閘極電場將誘發P3HT薄膜產生無序/非結晶微結構。我們提出電場偶極交互作用模型成功解釋OTFT操作時外加的水平與垂直電場對高分子鏈微結構的演化,此外,電場誘導分子鏈次序增量效應遠高於熱退火過程。本研究成功解釋先前不完全了解的閘極偏壓誘導高分子元件產生不穩定的現象,我們相信電場誘導分子鏈產生順向性的概念應能夠提供一種有效的方法來優化高分子元件的電特性。
    第三章
    本章敘述一項創新技術,是將高分子進行準膨潤(quasi-swelling)與再結晶(recrystallization)處理,簡稱QSRC法,可使無序扭曲的共軛高分子鏈段重新排列成高度次序性的結晶結構,同時可完成高分子絶緣保護層或介電層的製作。首先,於QSRC過程中,利用吸收與拉曼光譜監測P3HT薄膜微結構的演化,進一步研究其激子頻寬、分子鏈間電子耦合、以及有效共軛長度的改變。另外,當使用低掠角入射X光繞射 (Grazing Incident X-ray Diffraction)研究P3HT薄膜的結晶品質與尺度比未作QSRC法好。綜合以上實驗結果指出,經QSRC處理將非晶區無序的高分子鏈重新組織後,可得到超高高分子鏈內(intrachain)與高分子鏈間(interchain)的有序結構。其中,有效共軛鏈長已趨近極限值,最少大於90個重複單元,遠優於先前相關的研究成果。我們相信這些高度延伸且無缺陷的共軛高分子鏈將開啓光電子元件應用與理論研究的重大進展。
    第四章
    本章利用QSRC法製作薄膜電晶體封裝技術,此技術可獲得高性能的OTFT元件,並處於空氣中有穩定的電特性。實驗上,我們選擇主要層thermal-crosslinked poly(vinylphenol) 與緩衝層 poly(vinylidene fluoride)塗佈於主動層上作為閘極介電質和覆蓋層。令人驚訝的是,此OTFT元件在線性區場效測量到高於0.2 cm2/Vs的載子遷移率,此數值卻是100倍大於實驗上常使用的二氧化矽為閘極介電質的OTFT元件。我們相信這項封裝技術將帶領光電元件應用再往前一大步。
    第五章
    本章研究P3HT本質的缺陷與空隙對OTFTs的電特性影響,我們利用poly (methyl methacrylate) (PMMA)高分子與P3HT一起混入溶液中,製作出P3HT/PMMA摻合物為主動層的OTFTs。其中我們發現摻合後顯示出高分子相分離形態,OTFTs的電特性卻比初態元件(沒混合PMMA)來得好,最佳摻合物為主動層的OTFTs元件具有高的ON電流以及OFF電流降到19 pA ,此ON-OFF電流比值約104並且這數值是兩倍大於初態元件。我們藉由原子力顯微鏡觀察摻合物薄膜的表面形態,結果顯示具有相分離的特徵;以吸收光譜來觀察摻合物內P3HT具有結晶轉換成非結晶的現象。我們深信此高分子在適當混合系統內可控制電荷傳輸和低閘極漏電流的電特性。
    第二部分 Pentacene
    第六章
    本章研究溶劑處理技術,利用溶劑分子與五苯環(pentacene)分子間所產生的作用力進行五苯環多晶簇晶相的調控與轉換,以提昇有機薄膜內結晶相的熱力學穩定性,同時提高五苯環分子間電子/電洞的耦合作用。我們也推估五苯環晶相轉換的反應路徑,用以解釋有機小分子從介穩定態多晶T (“thin film” phase) 轉換成穩定態多晶 B (“bulk” or “single-crystal” phase)的過程。因此,本研究結合量子力學的理論計算,提出適當地定量準則,供選擇溶劑分子來改善有機結晶/薄膜結構並不會毀壞有機半導體的內部結構。我們提出的理論已證明經溶劑處理技術後,有機結晶/薄膜的微結構可獲得明顯改善,可預測此技術對於未來發展有機電子與光電子具有相當的潛力。

    Abstract
    Concerning my investigation in the past 3-and-half years as a candidate for doctor's degree, I would like to write brief summaries by below five paragraphs.

    Part 1. P3HT
    The chapter 2 focuses on the microstructural modifications of regioregular poly (3-hexylthiophene) (rr-P3HT) in the small active channel of thin-film transistors (TFTs) during operations. Polarized absorption and microRaman spectroscopy analyses allow us to probe directly the conformation transitions of rr-P3HT chains parallel or perpendicular to the channel by means of exciton bandwidth, interchain electronic coupling, and effective conjugation length. The results of absorption spectra and a joint experimental-theoretical study of Raman spectra show that an external source-to-drain electric field can align rr-P3HT chains parallel to the channel, improving electrical performance after long-term operations, especially charge transport properties. In comparison, the applied external gate field induced an increase in amorphous fraction of the rr-P3HT films. After the analysis, we propose a chain rearrangement model driven by an external electric field to interpret the changes of the effective conjugation length of rr-P3HT, rather than thermal annealing. Our observations provide a thorough explanation for the previously unknown relationships of structure-electronic properties under the extended operations of polymer TFT devices.
    In chapter 3, combined quasi-swelling and recrystallization concepts, a promising approach was developed to reform distorted segments into the highly-ordered structure with the superlong effective conjugation length (> 90mer at least) for polymer chains, which are impressive results compared with those previously reported in the literature. These highly extended polymeric conjugated chains may have important implications for various optoelectronic devices applications and theoretical studies.
    In chapter 4, we demonstrate high-performance air-stable bottom-contact-top-gate polymer thin-film transistors (TFTs) with linear regime field-effect mobility as high as near 0.2 cm2/Vs using conjugated poly(3-hexylthiophene) (P3HT) as the active layer. A thermal-crosslinked poly(vinylphenol) main layer and a poly(vinylidene fluoride) buffer layer were fabricated on the P3HT layer from the solution process to serve as both the gate dielectric and passivation layer. The lin is two orders of magnitude greater than that in bottom-contact-bottom-gate configuration using conventional silicon dioxide gate dielectric.
    In chapter 5, a series of binary blends of P3HT and insulator polymer, i.e., poly(methyl methacrylate) (PMMA), were prepared and as the active layer of polymeric TFTs. We investigated the correlation of microstructure of the blending films and electrical properties of the TFTs by absorption spectrometer, atomic force microscopy and X-ray diffraction. The result revealed that blending PMMA reduced the crystalline portion of P3HT and produced phase separation morphology of P3HT and PMMA. When appropriate amount of PMMA was added, the devices exhibit better electrical performance that of the device without PMMA. Especially, the optimal TFT with PMMA show enhanced on-current and low-level off-current of only 19 pA. We found that the electrical properties of the P3HT:PMMA blending films-based TFTs could be controlled by adding different concentrations of insulator polymer.

    Part 2. Pentacene
    In chapter, a promising and simple method to control the crystal polymorphic transformations of insoluble pentacene through solvent treatments is developed to obtain superior films with stable polymorphs and enhanced intermolecular electronic coupling, as proven by X-ray diffraction, Raman and absorption spectroscopy, and quantum chemical calculations. The degree of polymorphic transformations within films can be managed by the selection of appropriate organic solvents according to the magnitude of pentacene-solvent interaction. A reaction pathway that could interpret how a metastable polymorph T (“thin film” phase) transforms into a more stable polymorph B (“bulk” or “single-crystal” phase) is proposed. The hypothesis is based on the terms of crystal structural parameters, including separation distance, tile angle, and herringbone edge-to-face angle. With the aid of quantum chemical calculations, we combine the binding energy of pentacene dimers and pentacene-solvent interaction energy to develop a new quantitative criterion for the selection of appropriate organic solvents for the structural improvement of organic crystal/films rather than damage. The proposed solvent post-treatments concepts could provide opportunities for improved vacuum-evaporated organic crystal/films and further expand potential applications in organic electronics and photonics.

    致謝 Abstract (Chinese) I Abstract (English) IV Contents VII Table contents XI Figure contents XII Chapter 1 Introduction p 1 1.1 Brief overview of organic semiconductors p 1 1.2 Basic OTFT structure and operation p 2 1.3 Charge transport mechanism of organic semiconductors p 2 1.4 Organization p 4 1.5 References p 8 Chapter 2 Electric field-induced intrachain order and charge transport enhancements of Poly(3-hexylthiophene) 2.1 Introduction p 9 2.2 Experimental section p 12 2.2.1 Sample preparation p 12 2.2.2 Device characterization p 13 2.2.3 Analytical methods p 13 2.2.3.1 Absorption spectrum p 13 2.2.3.2 Raman spectrum p 13 2.3 Results and discussion p 14 2.3.1. Electrical properties p 14 2.3.2. Optical absorption properties p 16 2.3.3. Raman spectroscopy p 19 2.3.4. Electric field effects p 22 2.3.5. Structural model p 23 2.4 Discussions p 27 2.5 Conclusion p 28 2.6 References and notes p 44 Chapter 3 Reforming polythiophene chains into superlong conjugation length 3.1 Introduction p 49 3.2 Experimental section p 51 3.2.1 Preparation of the P3HT films p 51 3.2.2 Grazing incidence X-ray diffraction p 52 3.2.3 Optical absorption fitting procedure p 52 3.3 Results and discussion p 54 3.3.1 Optical absorption properties of P3HT p 54 3.3.2 Raman spectroscopy measurement p 58 3.3.3 GIXRD measurement p 59 3.4 Conclusion p 60 3.5 References and notes p 71 Chapter 4 Performance enhancement in top-gate conjugated polymer TFTs through solution-processed polymer gate dielectrics 4.1 Introduction p 75 4.2 Experimental section p 76 4.3 Results and discussion p 77 4.4 Conclusion p 79 4.5 References p 84 Chapter 5 Performance Enhancement in Conjugated Polymer TFTs through blending process 5.1 Introduction p 86 5.2 Experimental section p 87 5.2.1 Sample preparation p 87 5.2.2 Device characterization p 87 5.3 Results and discussion p 88 5.4 Conclusion p 90 5.5 References p 96 Chapter 6 Controlling polymorphic transformations of pentacene crystal through solvent treatments: An experimental and theoretical study 6.1 Introduction p 97 6.2 Experimental section p 99 6.2.1 Preparation of pentacene films p 99 6.2.2 Characterization p 100 6.2.2.1 X-ray diffraction spectra p 100 6.2.2.2 Raman spectrum p 100 6.3 Results and discussion p 101 6.3.1 Solvent effects and polymorphic transformations p 101 6.3.2 Relation to optical and electronic properties p 109 6.4 Conclusion p 111 6.5 References p 124 Chapter 7 Future works p 128 Appendix A : Publication List p 129 Appendix B : Brief curriculum vitae p 131

    1.5 References
    [1] A. Tsumura, H. Koezuka, and T. Ando., Appl. Phys. Lett., 1986, 49(18), 1210.
    [2] K. Y. Jen, G. G. Miller, and R. L. Elsenbaumer., Journal of the Chemical Society-Chemical Communications, 1986, (17), 1346.
    [3] A. Assadi, C. Svensson, M. Willander, and O. Inganas., Appl. Phys. Lett., 1988, 53(3), 195.
    [4] Balzani, V., Electron transfer in chemistry, Wiley–VCH: Weinheim, NY, 2001.
    [5] Jortner, J., Bixon, M., Prigogine, I., and Rice, S.A., Electron transfer: From isolated molecules to biomolecules, John Wiley & Sons: New York, 1999.
    [6] Marcus, R.A., 1993, 65, 599.
    [7] Marcus, R.A., J. Chem. Phys., 1956, 24, 966.
    [8] Marcus, R.A. and Sutin, N., 1985, 811, 265.
    [9] Dimitrakopoulos, C.D. and Malenfant, P.R.L., Adv. Mater., 2002, 14, 99.
    [10] Jurchescu, O.D., Baas, J., and Palstra, T.T.M., Appl. Phys. Lett., 2004, 84, 3061.
    [11] Fichou, D., J. Mater. Chem., 2000, 10, 571.
    [12] Duke, C.B. and Schein, L.B., Phys.Today, 1980, 33, 42.
    [13] Warta, W., Stehle, R., and Karl, N., Appl. Phys. A: Mater. Sci. Process., 1985, 36, 163.
    [14] Wu, M.W. and Conwell, E.M., Chem. Phys. Lett., 1997, 266, 363.
    [15] Troisi, A., and Orlandi, G., Chem. Phys. Lett., 2001, 344, 509.
    2.6 References and notes
    [1] H. Sirringhaus, In Organic Field-Effect Transistors, Z. Bao, J. Locklin, Eds.; CRC Press: Boca Raton, FL, 2007; Chap 2.3. For device degradation mechanisms, pls. see pp. 127-130.
    [2] A. Facchetti, Mater. Today 2007, 10, 28-37.
    [3] V. Coropceanu, J. Cornil, D. A. da Silva Filho, Y. Olivier, R. Silbey, J.-L. Brédas, Chem. Rev. 2007, 107, 926-952.
    [4] H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, D. de Leeuw, M. Nature 1999, 401, 685–688.
    [5] Z. Bao, A. Dodabalapur, A. Lovinger, J. Appl. Phys. Lett. 1996, 69, 4108-4110.
    [6] J. F. Chang, B. Sun, D. W. Breiby, M. M. Nielsen, T. I. Solling, M. Giles, I. McCulloch, H. Sirringhaus, Chem. Mater. 2004, 16, 4772-4776.
    [7] R. J. Kline, M. D. McGehee, E. N. Kadnikova, J. S. Liu, J. M. J. Frechet, M. F. Toney, Macromolecules 2005, 38, 3312-3319.
    [8] M. Surin, P. Leclere, R. Lazzaroni, J. D. Yuen, G. Wang, D. Moses, A. J. Heeger, S. Cho, K. Lee, J. Appl. Phys. 2006, 100, 0033712.
    [9] A. Zen, M. Saphiannikova, I. D. Neher, J. Grenzer, S. Grigorian, U. Pietsch, U. Asawapirom, S. Janietz, U. Scherf, I. Lieberwirth, G. Wegner, Macromolecules 2006, 39, 2162-2171.
    [10] F. C. Chang, J. Clark, N. Zhao, H. Sirringhaus, D. W. Breiby, J. W. Anderasen, M. M. Nielsen, M. Giles, M. Heeney, I. McCulloch, Phys. Rev. B 2006, 74, 115318.
    [11] S. Joshi, S. Grigorian, U. Pietsch, P. Pingel, A. Zen, D. Neher, U. Scherf, Macromolecules 2008, 41, 6800-6808.
    [12] J. Clark, F. C. Chang, F. C. Spano, R. H. Friend, C. Silva, Appl. Phys. Lett. 2009, 94, 163306.
    [13] F. Jensen, In Introduction to Computational Chemistry, 2nd ed.; Wiley-VCH, Weinheim, Germany 2007; Ch. 10.
    [14] A. R. Brwon, C. P. Jarrett, D. M. de Leeuw, M. Matters, Synth. Met. 1997, 88, 37-55.
    [15] M. Matters, D. M. de Leeuw, P. T. Herwig, A. R. Brwon, Synth. Met. 1999, 102, 998-999.
    [16] D. B. A. Rep, A. F. Morpurgo, W. G. Sloof, T. M. Klapwijk, J. Appl. Phys. 2003, 93, 2082-2090.
    [17] A. Salleo, F. Endicott, R. A. Street, Appl. Phys. Lett. 2005, 86, 263505.
    [18] R. A. Street, M. L. Chabinyc, F. Endicott, B. Ong, J. Appl. Phys. 2006, 100, 114518.
    [19] T. Umeda, S. Tokito, D. Kumaki, J. Appl. Phys. 2007, 101, 054517.
    [20] S. G. J. Mathijssen, M. Cölle, H. Gomes, E. C. P. Smits, B. De Boer, I. McCulloch, P. A. Bobbert, D. M. De Leeuw, Adv. Mater. 2007, 19, 2785-2789.
    [21] D. V. Lang, X. Chi, T. Siegrist, A. M. Sergent, A. P. Ramirez, Phys. Rev. Lett. 2004, 93, 076601.
    [22] D. Knipp, J. E. Northrup, Adv. Mater. 2009, 21, 2511-2515.
    [23] J. Ficker, A. Ullmann, W. Fix, H. Rost, W. Clemens, J. Appl. Phys. 2003, 94, 2638–2641.
    [24] H. L. Cheng, W. Y. Chou, C. W. Kuo, F. C. Tang, Y. W. Wang, Appl. Phys. Lett. 2006, 88, 161918.
    [25] H. L. Cheng, W. Y. Chou, C. W. Kuo, Y. W. Wang, Y. S. Mai, F. C. Tang, S. W. Chu, Adv. Funct. Mater. 2008, 18, 285-293.
    [26] F. C. Spano, J. Chem. Phys. 2005, 122, 234701.
    [27] J. Clark, C. Silva, R. H. Friend, F. C. Spano, Phys. Rev. Lett. 2007, 98, 206406.
    [28] S. M. Sze, Physics of semiconductor devices; Wiley-Interscience, New York, 1981.
    [29] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Jr. Montgomery, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. P. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision E.01; Gaussian, Inc.: Wallingford CT, 2004.
    [30] A. D. Becke, Phys. Rev. A 1988, 38, 3098-3100; C.T. Lee, W. T. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785-789.
    [31] H. L. Cheng, W. Q. Lin, F. C. Wu, Appl. Phys. Lett. 2009, 94, 223302.
    [32] In order to determine the microcrystalline structure of the rr-P3HT films onto the SiO2 dielectric with the same surface conditions, the film for x-ray diffraction (XRD) measurements was deposited onto the oxygen plasma-treated SiO2/glass substrate without ITO electrodes. Because we could not observe a well-resolved XRD spectrum of the rr-P3HT films which in the small active channel of TFT device.
    [33] M. Kobashi, H. Takeuchi, Macromolecules 1998, 31, 7273-7278.
    [34] P. J. Brown, D. S. Thomas, A. Köhler, J. S. Wilson, J.-S. Kim, C. M. Ramsdale, H. Sirringhaus, R. H. Friend, Phys. Rev. B 2003, 67, 064203.
    [35] J. Cornil, D. A. Dos Santos, X. Crispin, R. Silbey, J.-L. Brédas, J. Am. Chem. Soc. 1998, 120, 1289-1299; E. S. Manas, F. C. Spano, J. Chem. Phys. 1998, 109, 8087-8101; D. Beljonne, J. Cornil, R. Silbey, P. Millié, J.-L. Brédas, J. Chem. Phys. 2000, 112, 4749-4758.
    [36] J. Gierschner, Y. S. Huang, B. V. Averbeke, J. Cornil, R. H. Friend, D. Beijonne, J. Chem. Phys. 2009, 130, 044105.
    [37] W. Barford, J. Chem. Phys. 2007, 126, 134905.
    [38] For examples, see: (a) L. T. Su, J. E. Chung, D. Antoniadis, K. E. Goodson, M. I. Flik, IEEE Trans. Elec. Dev. 1994, 41, 69-75; (b) L. Wang, T. A. Fjeldly, B. Iniguez, H. C. Slade, M. Shur, IEEE Trans. Elec. Dev. 2000, 47, 387-397; (c) S. Inoue, H. Ohshima, T. Shimoda, Jpn. J. Appl. Phys. 2002, 41, 6313-6319.
    [39] M. L. Chabinyc, J.-P. Lu, R. A. Street, Y. Wu, P. Liu, B. S. Ong, J. Appl. Phys. 2004, 96, 2063-2070.
    [40] G. Louarn, M. Trznadel, J. P. Buisson, J. Laska, A. Pron, M. Lapkowski, S. Lefrant, J. Phys. Chem. 1996, 100, 12532-12539.
    [41] (a) A. Sakamoto, Y. Furukawa, M. Tasumi, J. Phys. Chem. 1992, 96, 1490-1494; (b) H. L. Cheng, K. F. Lin, J. Polym. Res. 1999, 6, 123-131.
    [42] Using a 532 nm laser: for the initial films, the standard deviation of peak center,, and peak intensity (integrated peak area) of the v1 band are within 0.05 cm-1, 0.4 cm-1, and 6% (6%); for the annealed films, the corresponding values are within 0.2 cm-1, 0.7 cm-1, and 6% (7%). Using a 633 nm laser: for the initial films, the standard deviation of peak center,, and peak intensity (integrated peak area) of the v1 band are within 0.1 cm-1, 0.2 cm-1, and 8% (13%); for the annealed films, the corresponding values are within 0.06 cm-1, 0.2 cm-1, and 7% (8%).
    [43] (a) P. F. Barbara, T. J. Meyer, M. A. Ratner, J. Phys. Chem. 1996, 100, 13148-13168; (b) A. B. Myers, Chem. Rev. 1996, 96, 911-926; (c) H. L. Cheng, X. W. Liang, W. Y. Chou, Y. S. Mai, C. Y. Yang, L. R. Chang, F. C. Tang, Org. Electron. 2009, 10, 289-298.
    [44] (a) Y. Y. Gotlib, S. V. Lyulin, Macromol. Theory Simul. 1996, 5, 449-465; (b) C.-L. Chen, C.-Y. Hua, C.-R. Wu, Macromol. Theory Simul. 2001, 10, 644-650.
    [45] A. Sugita, S. Tadaka, J. Polym. Sci., Part B: Polym. Phys. 2004, 42, 4433-4439.
    [46] M. V. Kakade, S. Givens, K. Gardner, K. H. Lee, D. B. Chase, J. F. Rabolt, J. Am. Chem. Soc. 2007, 129, 2777-2782.
    [47] S. Joshi, P. Pingel, S. Grigorian, T. Panzner, U. Pietsch, D. Neher, M. Forster, U. Scherf, Macromolecules 2009, 42, 4651-4660.
    3.5 References and Notes
    [1] T. A. Skotheim and J. R. Reynolds, Ed., Handbook of Conducting Polymers, Conjugated Polymers: Theory, Synthesis, Properties, and Characterization, 3rd, CRC press, Boca Raton, FL, 2007.
    [2] W. Barford, Electronic and Optical Properties of Conjugated Polymers, Oxford University Press, Oxford, 2005.
    [3] H. Sirringhaus and M. J. Panzer, in Organic Field-Effect Transistors (Eds: Z. Bao, J. Locklin), CRC Press, Boca Raton, FL, 2007, Ch. 2.3.
    [4] H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig and D. M. de Leeuw, Nature 1999, 401, 685.
    [5] J. Cornil, D. A. Dos Santos, X. Crispin, R. Silbey and J. L. Brédas, J. Am. Chem. Soc., 1998, 120, 1289; D. Beljonne, J. Cornil, R. Silbey, P. Millié and J. L. Brédas, J. Chem. Phys. 2000, 112, 4749.
    [6] T. Izumi, S. Kobashi, K. Takimiya, Y. Aso and T. Otsubo, J. Am. Chem. Soc., 2003, 125, 5286.
    [7] F. C. Spano, J. Chem. Phys., 2005, 122, 234701; Chem. Phys., 2006, 325, 22.
    [8] S. S. Zade and M. Bendikov, Org. Lett., 2006, 8, 5243.
    [9] W. Barford, J. Chem. Phys., 2007, 126, 134905.
    [10] J. Clark, C. Silva, R. H. Friend and F. C. Spano, Phys. Rev. Lett., 2007, 98, 206406.
    [11] J. Gierschner, T. S. Huang, B. V. Averbeke, J. Cornil, R. H. Friend and D. Beijonne, J. Chem. Phys., 2009, 130, 044105.
    [12] M. Byuna, R. L. Laskowskib, M. Hec, F. Qiuc, M. Jeffries-EL and Z. Lin, Soft Matter, 2009, 5, 1583.
    [13] S. Joshi, P. Pingel, S. Grigorian, T. Panzner, U. Pietsch, D. Neher, M. Forster and U. Scherf, Macromolecules, 2009, 42, 4651.
    [14] H. L. Cheng, J. W. Lin, M. F. Jang, F. C. Wu, W. Y. Chou, M. H. Chang and C. H. Chao, Macromolecules, 2009, 42, 8251.
    [15] M. Surin, P. Leclere, R. Lazzaroni, J. D. Yuen, G. Wang, D. Moses, A. J. Heeger, S. Cho and K. Lee, J. Appl. Phys., 2006, 100, 0033712.
    [16] H. Yang, T. J. Shin, L. Yang, K. Cho, C. Y. Ryu and Z. Bao, Adv. Funct. Mater., 2005, 15, 671.
    [17] R. J. Kline, M. D. McGehee, E. N. Kadnikova, J. S. Liu, J. M. J. Frechet and M. F. Toney, Macromolecules, 2005, 38, 3312.
    [18] R. A. Marcus, Rev. Mod. Phys., 1993, 65, 599.
    [19] J.-L. Brédas, D. Beljonne, V. Coropceanu and J. Cornil, Chem. Rev., 2004, 104, 4971.
    [20] Facchetti, A. Mater. Today, 2007, 10, 28.
    [21] A. C. Mayer, S. R. Scully, B. E. Hardin, M. W. Rowell and M. D. McGehee, Mater. Today, 2007, 11, 28.
    [22] A. Zen, J. Pflaum, S. Hirschmann, W. Zhuang, F. Jaiser, U. Asawapirom, J. P. Rabe, U. Scherf and D. Neher, Adv. Funct. Mater., 2004, 14, 757.
    [23] Ruiz, P. G. Nicholson, S. Jollands, P. A. Thomas, J. V. Macpherson and P. R. Unwin, J. Phys. Chem. B, 2005, 109, 19335.
    [24] J. Clark, F. C. Chang, F. C. Spano, R. H. Friend and C. Silva, Appl. Phys. Lett., 2009, 94, 163306.
    [25] J.-F. Chang, B.-Q. Sun, D. W. Breiby, M. M. Nielsen, T. I. Solling, M. Giles, I. McCulloch and H. Sirringhaus, Chem. Mater., 2004, 16, 4772.
    [26] J. Clark, C. Silva, R. H. Friend, and F. C. Spano, Phys. Rev. Lett. 2007 98, 206406.
    [27] F. C. Spano, J. Chem. Phys. 2005, 122, 234701.
    [28] F. C. Spano, Chem. Phys. 2006, 325, 22.
    [29] E.W. Knapp, Chem. Phys. 1984, 85, 73.
    [30] J. Knoester, J. Chem. Phys. 1993, 99, 8466.
    [31] (a) R. D. McCullough, S. Tristram-Nagle, S. P. Williams, R. D. Lowe, M. Jayaraman, J. Am. Chem. Soc. 1993, 115, 4910; (b) C. Tian-An, X. Wu, R. D. Rieke, J. Am. Chem. Soc. 1995, 117, 233.
    [32] P. J. Brown, D. S. Thomas, A. Köhler, J. S. Wilson, J.-S. Kim, C. M. Ramsdale, H. Sirringhaus, R. H. Friend, Phys. Rev. B 2003, 67, 064203.
    [33] (a) R. D. McCullough, R. D. Lowe, M. Jayaraman, D. L. Anderson, J. Org. Chem. 1993, 58, 904; (b) V. Ruiz, P. G. Nicholson, S. Jollands, P. A. Thomas, J. V. Macpherson, P. R. Unwin, J. Phys. Chem. B 2005, 109, 19335; (c) M. Kobashi, H. Takeuchi, Macromolecules 1998, 31, 7273.
    [34] We have performed a calculation of J and Leff relationship by the Zerner’s intermediate neglect of differential overlap (ZINDO/S) semi-empirical quantum mechanical method. The calculation results of parallel polythiophene chains show that the J ~ Leff-1.97 for Leff is larger than 10 repeat units length.
    [35] C. M. Hansen, in Hansen Solubility Parameters: A User's Handbook, 2nd Ed., CRC Press, Boca Raton, FL 2007.
    [36] G. Louarn, M. Trznadel, J. P. Buisson, J. Laska, A. Pron, M. Lapkowski and S. Lefrant, J. Phys. Chem., 1996, 100, 12532.
    [37] We observed a ca. 50 % increase of the v1 band intensity and the integrated peak area of the QSRC-treated film as compared to the initial film. The standard deviation of the v1 band intensity (integrated peak area) of the initial film is within 8 % (10 %).
    [38] N. Kasai and M. Kakudo, in X-ray Diffraction by Macromolecules, Springer, NY, 2005, p. 364.
    [39] Z. Bao and J. Locklin (ed.), Organic Field-Effect Transistors, CRC Press, Boca Raton, FL, 2007.
    [40] S. S. Chang, A. B. Rodr_ıguez, A. M. Higgins, C. Liu, M. Geoghegan, H. Sirringhaus, F. Cousin, R. M. Dalgleishe and Y. Deng, Soft Matter, 2008, 4, 2220.
    4.5 References
    [1] H. Klauk Ed., Organic Electronics, Materials, Manufacturing and Applications, Wiley-VCH, Weinheim, Germany 2006; About c-PVP, please see Ch. 6 by M. Halik.
    [2] H. Sirringhaus, M. J. Panzer, C. D. Frisbie, in Organic Field-Effect Transistors (Eds: Z. Bao, J. Locklin), CRC Press, Boca Raton, FL, Ch. 2.3 and Ch. 2.4, 2007.
    [3] H. N. Raval, S. P. Tiwari, R. R. Navan, S. G. Mhaisalkar, and V. R. Rao, IEEE Electron Device Lett., 2009, 30, (5), 484.
    [4] S. K. Park, Y. H. Kim, J. I. Han, D. G. Moon, and W. K. Kim, IEEE Trans. Electron Devices, 2002, 49, (11), 2008.
    [5] Y. Kato, T. Sekitani, M. Takamiya, M. Doi, K. Asaka, T. Sakurai, and T. Someya, IEEE Trans. Electron Devices, 2007, 54, (2), 202.
    [6] J.-F. Chang, B.-Q. Sun, D. W. Breiby, M. M. Nielsen, T. I. Solling, M. Giles, I. McCulloch, H. Sirringhaus, Chem. Mater., 2004, 16, (23), 4772.
    [7] G. Wang, J. Swensen, D. Moses, A. J. Heeger, J. Appl. Phys., 2003, 93, (10), 6137.
    [8] H. L. Cheng, J. W. Lin, M. F. Jang, F. C. Wu, W. Y. Chou, M. H. Chang, C. H. Chao, Macromolecules, 2009, 42, (21), 8251.
    [9] H. L. Cheng, W. Q. Lin, F. C. Wu, Appl. Phys. Lett., 2009, 94, 223302.
    [10] Y. Jang, D. H. Kim, Y. D. Park, J. H. Cho, M. Hwang, K. Cho, Appl. Phys. Lett., 2005, 87, 152105.
    [11] D. M. Russell, T. Kugler, C. J. Newsomea, S. P. Li, M. Ishida, T. Shimoda, Synth. Met., 2006, 156, 769.
    [12] M. Estrada, I. Mejia, A. Cerdeira, B. Iňiguez, Solid-State Electron., 2008, 52, 53.
    [13] F. Maddalena, M. Spijkman, J. J. Brondijk, P. Fonteijn, F. Brouwer, J. C. Hummelen, D. M. de Leeuw, P. W. M. Blom, B. de Boer, Org. Electron., 2008, 9, 839.
    [14] P. Y. Lo, P. W. Li, Z. W. Pei, J. Hou, and Y. J. Chan, IEEE Trans. Electron Devices, 2009, 30, (6), 629.
    [15] C. M. Hansen, in Hansen Solubility Parameters: A User's Handbook, 2nd Ed., PDF CRC Press, Boca Raton, FL 2007.
    [16] J. Jaczewska, I. Raptis, A. Budkowski, D. Goustouridis, J. Raczkowska, M. Sanopoulou, E. Pamuła, A. Bernasik, and J. Rysz, Synth. Metals, 2007, 157, 726.
    [17] J. Clark, C. Silva, R. H. Friend, F. C. Spano, Phys. Rev. Lett., 2007, 98, 206406.
    5.6 Reference
    [1] H. Sirringhaus, M. J. Panzer, and C. D. Frisbie, in Organic Field-Effect Transistors, edited by Z. Bao and J. Locklin (CRC, Boca Raton, 2007),Chaps. 2.3 and 2.4.
    [2] (a) A. Babel and S. A. Jenekhe, Macromolecules, 2003, 36, 7759; (b) A. Babel and S. A. Jenekhe, Macromolecules, 2004, 37, 9835.
    [3] L. Qiu, J. A. Lim, X. Wang, W. H. Lee, M. Hwang, and K. Cho, Adv. Mater. 2008, 20, 1141.
    [4] E. Lim, B. J. Jung, M. Chikamatsu, R. Azumi, K. Yase, L. M. Do, H. K. Shim, Org. Electron. 2008, 9, 952.
    [5] (a) H. Tanaka, Phys. Rev. Lett. 1993, 71, 3158; (b) H. Tanaka, Phys. Rev. Lett. 1996, 76, 787
    [6] H.-L. Cheng, W.-Q. Lin, and F.-C. Wu, Appl. Phys. Lett. 2009, 94, 223302.
    [7] H.-L. Cheng, J.-W. Lin, M.-F. Jang, F.-C. Wu, W.-Y. Chou, M.-H. Chang and C.-H. Chao, Macromolecules, 2009, 42, 8251.
    [8] F. C. Chang, J. Clark, N. Zhao, H. Sirringhaus, D. W. Breiby, J. W. Anderasen, M. M. Nielsen, M. Giles, M. Heeney, I. McCulloch, Phys. Rev. B 2006, 74, 115318.
    [9] F. C. Spano, J. Chem. Phys. 2005, 122, 234701.
    [10] H. L. Cheng, X. W. Liang, W. Y. Chou, Y. S. Mai, C. Y. Yang, L. R. Chang, and F. C. Tang, Org. Electron. 2009, 10, 289.
    [11] W. Barford, J. Chem. Phys. 2007, 126, 134905.
    [12] (a) E. S. Manas, F. C. Spano, J. Chem. Phys., 1998, 109, 8087; (b) D. Beljonne, J. Cornil, R. Silbey, P. Millié, J.-L. Brédas, J. Chem. Phys. 2000, 112, 4749.
    [13] P. J. Brown, D. S. Thomas, A. Köhler, J. S. Wilson, J.-S. Kim, C. M. Ramsdale, H. Sirringhaus, and R. H. Friend, Phys. Rev. B 2003, 67, 064203.
    [14] R. Chang, J. H. Hsu, W. S. Fann, J. Yu, S. H. Lin, Y. Z. Lee, and S. A. Chen, Chem. Phys. Lett. 2000, 317, 153.
    6.5 References
    [1] For examples, see: (a) W. Brütting, Physics of Organic Semiconductors; Wiley-VCH, Germany, 2005. (b) Z. Bao, J. Locklin, Organic Field-Effect Transistors; CRC Press, Boca Raton, 2007.
    [2] (a) J.-L. Brédas, D. Beljonne, V. Coropceanu, J. Cornil, Chem. Rev. 2004, 104, 4971. (b) V. Coropceanu, J. Cornil, D. A. da Silva Filho, Y. Olivier, R. Silbey, J.-L. Brédas, Chem. Rev. 2007, 107, 926.
    [3] C. V. K. Sharma, Cry. Growth Des. 2002, 2, 465.
    [4] (a) T. Minakata, H. Imai, M. Ozaki, K. Saco, J. Appl. Phys. 1992, 72, 5220. (b) D. Dimitrakopoulos, A. R. Brown, A. Pomp, J. Appl. Phys. 1996, 80, 2501.
    [5] F. Heringdorf, M. C. Reuter, R. M. Tromp, Nature 2001, 412, 517.
    [6] (a) C. C. Mattheus, G. A. de Wijs, R. A. de Groot, T. T. M. Palstra, J. Am. Chem. Soc. 2003, 125, 6323. (b) C. C. Mattheus, A. B. Dros, J. Baas, G. T. Oostergetel, A. Meetsma, J. L. de Boer, T. T. M. Palstra, Synth. Met. 2003, 138, 475.
    [7] S. E. Fritz, S. M. Martin, C. D. Frisbie, M. D. Ward, M. F. Toney, J. Am. Chem. Soc. 2004, 126, 4084.
    [8] L. F. Drummy, D. C. Martin, Adv. Mater. 2005, 17, 903.
    [9] A. C. Mayer, A. Kazimirov, G. G. Malliaras, Phys. Rev. Lett. 2006, 97, 105503.
    [10] H. L. Cheng, Y. S. Mai, W. Y. Chou, L. R. Chang, X. W. Liang, Adv. Funct. Mater. 2007, 17, 3639.
    [11] S. Schiefer, M. Huth, A. Dobrinevski, B. Nickel, J. Am. Chem. Soc. 2007, 129, 10316.
    [12] S. B. Mannsfeld, A. Virkar, C. Reese, M. F. Toney, Z. Bao, Adv. Mater. 2009, 21, 2294.
    [13] Y. Murakami, S. Tomiya, N. Koshitani, Y. Kudo, K. Satori, M. Itabashi, N. Kobayashi, K. Nomoto, Phys. Rev. Lett. 2009, 103, 146102.
    [14] J. E. Northrup, M. L. Tiago, S. G. Louie, Phys. Rev. B. 2002, 66, 121404.
    [15] H. L. Cheng, , X. W. Liang W. Y. Chou, Y. S. Mai, C. Y. Yang, L. R. Chang, F. C. Tang, Org. Electron. 2009, 10, 289.
    [16] A. Facchetti, Mater. Today 2007, 10, 28.
    [17] T. Lee, S. C. Chang, Cry. Growth Des. 2009, 9, 2674.
    [18] H. L. Cheng, W. Y. Chou, C. W. Kuo, Y. W. Wang, Y. S. Mai, F. C. Tang, S. W. Chu, Adv. Funct. Mater. 2008, 18, 285.
    [19] C. M. Hansen, Hansen Solubility Parameters: A User's Handbook; 2nd Ed., CRC press, Boca Raton, 2007.
    [20] (a) S. F. Boys, F. Bernardi, Mol. Phys. 1970, 19, 553. (b) S. Simon, M. Duran, J. J. Dannenberg, J. Chem. Phys. 1996, 105, 11024.
    [21] T. Yanai, D. Tew, N. Handy, Chem. Phys. Lett. 2004, 393, 51.
    [22] M. J. Frisch, et al., Gaussian 03, Revision E.01, Gaussian, Inc., Wallingford , CT, 2004; Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford , CT, 2009.
    [23] N. Kasai, M. Kakudo, X-Ray Diffraction by Macromolecules; Kodansha and Springer, Tokyo, 2005, Ch. 5.
    [24] V. K. Pecharsky, P. Y. Zavalij, in Fundamentals of Powder Diffraction and Structural Characterization of Materials; Springer, NY, 2005, Ch. 2.
    [25] (a) H. Yoshida, N. Sato, Appl. Phys. Lett. 2006, 89, 101919. (b) T. Kakudate, N. Yoshimoto, Y. Saito, Appl. Phys. Lett. 2007, 90, 081903.
    [26] H. Yoshida, K. Inaba, N. Sato, Appl. Phys. Lett. 2007, 90, 181930.
    [27] (a) R. B. Campbell, J. M. Robertson, J. Trotter, Acta Crystallogr. 1962, 15, 289. (b) C. C. Matheus, A. B. Dros, J. Baas, A. Meetsma, J. L. de Boer, T. T. M. Palstra, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 2001, 57, 939. (c) J. S. Wu, J. C. H. Spence, J. Appl. Crystallogr. 2004, 37, 78.
    [28] (a) P. F. Barbara, T. J. Meyer, M. A. Ratner, J. Phys. Chem. 1996, 100, 13148. (b) D. G. Thompson, J. R. Schoonover, C. J. Timpson, T. J. Meyer, J. Phys. Chem. A 2003, 107, 10250.
    [29] F. C. Wu, H. L. Cheng, C. H. Yen, J. W. Lin, S. J. Liu, W. Y. Chou, F. C. Tang, Phys. Chem. Chem. Phys., 2010, 12, 2098.
    [30] (a) P. Hobza, H. L. Selzle, E. W. Schlag, J. Phys. Chem. 1996, 100, 18790. (b) H. Park, S. Lee, Chem. Phys. Lett. 1999, 301, 487. (c) S. Tsuzuki, K. Honda, T. Uchimaru, M. Mikami, K. Tanabe, J. Am. Chem. Soc 2002, 124, 104. (d) C. Gonzalez, E. C. Lim, J. Phys. Chem. A 2000, 104, 2953. (e) N. K. Lee, S. Park, S. K. Kim, J. Chem. Phys. 2002, 116, 7910. (f) T. R. Walsh, Chem. Phys. Lett. 2002, 363, 45. (g) A. Reyes, M. A. Tlenkopatchev, L. Fomina, P. Guadarrama, S. Fomine, J. Phys. Chem. A 2003, 107, 7027.
    [31] J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 2005, 105, 2999.
    [32] D. J. Gundlach, T. N. Jackson, D. G. Schlom, S. F. Nelson, Appl. Phys. Lett. 1999, 74, 3302.
    [33] A. Amassian, V. A. Pozdin, R. Li, D.-M. Smilgies, G. G. Malliaras, J. Mater. Chem. 2010, 13, 2623.
    [34] D. Käfer, M. E. Helou, C. Gemel, G. Witte, Cry. Growth Des. 2008, 8, 3053.
    [35] A. S. Davydov, Theory of Molecular Excitons; McGraw-Hill, NY, 1971.
    [36] K. O. Lee, T. T. Gan, Chem. Phys. Lett. 1977, 51, 120.
    [37] (a) T. Jentzsch, H. T. Juepner, K.-W. Brzezinka, A. Lau, Thin Solid Films 1998, 315, 273. (b) D. Faltermeier, B. Gompf, M. Dressel, A. K. Tripathi, J. Pflaum, Phys. Rev. B 2006, 74, 125416.
    [38] R. Jankowiak, K. D. Rockwltr, H. Bässler, J. Phys. Chem. 1983, 87, 552.
    [39] R. Marcus, A. Rev. Mod. Phys.1993, 65, 599.
    [40] S. T. Bromley, M. M. Torrent, P. Hadley, C. Rovira, J. Am. Chem. Soc. 2004, 126, 6544.

    無法下載圖示 校內:2021-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE