簡易檢索 / 詳目顯示

研究生: 卓訓瑋
Cho, Hsun-Wei
論文名稱: 自組裝單分子膜及熱處理效應對CdS敏化TiO2光電極效能的研究
The Effects of a Self-Assembly Monolayer and Heat Treatment on the Performance of Cadmium Sulfide Sensitized TiO2 Photoelectrode
指導教授: 李玉郎
Lee, Yuh-Lang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 114
中文關鍵詞: 半導體敏化太陽能電池硫化鎘表面修飾劑連續離子吸附反應成膜法熱處理
外文關鍵詞: Semiconductor solar cells, Cadmium sulfide, Self-assembly monolayer, Successive Ionic Layer Adsorption and Reaction, post-heated annealing
相關次數: 點閱:102下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用3-Mercapto-propyl-tri-methoxy silane (MPTMS)單分子膜來修飾TiO2,再以連續離子吸附反應成膜法(Successive Ionic Layer Adsorption and Reaction,SILAR)將硫化鎘組裝至TiO2薄膜表面,以作為TiO2光電極的光敏化劑,並應用於半導體敏化太陽能電池。結果發現利用七次循環沉積的SILAR程序將Cd2+及S2-濃度控制在0.05M及0.5M來沉積CdS,可以得到最佳的光電轉化效率(1.08%)。由紫外光-可見光吸收光譜圖發現經過MPTMS 修飾過的TiO2表面對CdS 成長有抑制作用,此一作用可避免在高次數SILAR沉積時, CdS的聚集現象所導致元件效能下降。MPTMS改質過的TiO2電極有較小的暗電流,顯示此一改質作用可避免裸露的TiO2表面與電解液直接接觸,降低TiO2上的光電子與電解液間的電荷再結合(charge recombination)現象。因此MPTMS改質的電極有較大的填充因子(fill factor)。最後以300℃對TiO2/MPTMS/CdS(7)光電極進行熱處理可提昇CdS的結晶性,並減少光電極界面的缺陷,有效提高光電流,使TiO2/MPTMS/CdS(7)光電極的效率再提升至1.37%。

    In this study, Self-assembly monolayer (SAM), 3-mercaptopropyl-trimethyoxysilane (MPTMS) is utilized for TiO2 surface modification, following successive ionic layer adsorption and reaction procedure (SILAR), CdS is in-situ grown onto TiO2 surface as the sensitizer for semiconductor-sensitized solar cell application.
    By controlling the ion solution concentration at 0.05M and 0.5M for Cd2+and S2-, respectively, the optimal photoelectrical conversion efficiency 1.08% can be achieved at the seventh deposition layer in SILAR procedure. From the UV-Vis absorption spectra, MPTMS on TiO2 surface would inhibit CdS growth, and prevent CdS particle aggregation at higher deposition cycle, which would cause performance declining. On the other hand, MPTMS-modified TiO2 electrodes reveal the lower dark current, implying introduction of surface modification would reduce the charge recombination through the bare TiO2 surface to oxidate species in electrolyte. Therefore, MPTMS-SAM modified electrode possess higher fill factor.
    Finally 300℃ heat treatment for TiO2/MPTMS/CdS(7) photoelectrodes could increase the crystallinity of CdS and eliminate the defect in TiO2/CdS interface for improving efficiency to 1.37% by increasing photocurrent.

    表目錄 IX 圖目錄 XI 第一章 緒論 1 1-1 前言 1 1-2太陽能電池發展的現況 2 1-2.1結晶矽太陽能電池 2 1-2.2薄膜型太陽能電池 3 1-2.3 III-V族半導體 (III-V Semiconductors) 太陽電池 3 1-2.4色素增感太陽能電池(Dye-Sensitized Solar Cells;DSSCs) 4 1-3研究動機與目的 5 第二章 理論原理及文獻回顧 7 2-1 DSSCS之工作原理 7 2-2 DSSC之組成結構 8 2-2.1透明導電玻璃 9 2-2.2氧化物半導體 10 2-2.3染料光敏化劑 11 2-2.4電解液 12 2-2.5金屬/導電玻璃對電極 14 2-3 DSSC的發展與現況 15 2-4半導體奈米材料與量子點 16 2-5量子點的特性 18 2-5.1量子侷限效應 18 2-5.2衝擊離子化效應與歐傑再結合效應 21 2-5.2迷你傳送帶效應 23 2-6量子點合成及組裝技術 24 2-6.1自組裝單分子膜 25 2-6.2連續離子吸附反應成膜法 29 2-6.3自組裝單分子膜與連續離子吸附反應成膜共聯結組裝法 30 2-7量子點光敏化劑在DSSC之發展及其應用 32 2-7.1量子點DSSC之沿革及發展現況 32 2-7.2量子點與氧化物半導體之能階搭配 34 2-7.3量子點與氧化物半導體界面的特性 35 2-7.4量子點與氧化物半導體界面的特性 36 2-7.5多硫成份電解液 37 2-8 DSSC之電流電壓輸出特性 39 第三章 實驗設備與藥品 45 3-1 儀器設備 45 3-2 實驗耗材與藥品 53 3-3實驗流程 54 3-3.1清洗透明導電玻璃 57 3-3.2 二氧化鈦膠體溶液配製 58 3-3.3 二氧化鈦薄膜製備 58 3-3.4 SAMs在TiO2薄膜上的改質 59 3-3.5連續離子吸附反應成膜法合成並組裝CdS量子點 60 3-3.6高溫熱處理 61 3-3.7配製電解液 61 3-3.8組裝電池 62 3-3.9 EIS交流阻抗分析 64 第四章 實驗結果與討論 67 4.1 TIO2薄膜特性分析 67 4-2 CDS組裝在TIO2薄膜上之特性分析 69 4-2.1不同SILAR沉積濃度製備TiO2/CdS電極之光學特性分析 69 4-2.2不同SILAR沉積濃度製備TiO2/CdS電極的表面型態分析 74 4-2.3製備TiO2/MPTMS/CdS電極之光學特性分析 75 4-3 CDS敏化太陽能電池的電性效率分析 77 4-3.1 TiO2/CdS、TiO2/MPTMS/CdS系統的電池效能分析 78 4-3.2 EIS對SAMs分子改質後介面的分析 86 4-3.3熱處理在CdS敏化太陽能電池的應用 88 第五章 結論 99 第六章 未來工作與建議 101 參考文獻 103 作者自述 114 表目錄 表4-1以不同陰、陽離子溶液沉積不同工作電極之電池效率,(n)為SILAR次數 80 表 4-2以不同濃度MPTMS進行TiO2表面改質後的電池效率 83 表4-3以0.05M//0.5M條件下不同工作電極之電池效率,(n)為SILAR次數 86 表4-4 TiO2經MPTMS改質前後Rr的比較 87 表4-5 TiO2/CdS電極經熱處理前後之電池效率; 15min:以15分鐘升溫至300℃進行熱處理 89 表4-6 TiO2/CdS電極經熱處理前後之電池效率 89 表4-7 TiO2/CdS電極經熱處理前後之電池效率; (H表示以 2min升溫至300℃熱處理) 92 表4-8 TiO2/MPTMS/CdS、TiO2/CdS電極經熱處理(以 2min升溫至300℃) 93 表4-9 TiO2/MPTMS/CdS電極經熱處理前後之電池效率,(H表示以 2min升溫至300℃熱處理) 95 表4-10 TiO2/MPTMS/CdS、TiO2/CdS電極經熱處理(以2min升溫至300℃) 96 圖目錄 圖2-1 DSSC的工作原理 8 圖2-2 DSSC的組成結構示意圖 9 圖2-3 CYC-B11之分子式及吸收光譜圖 12 圖2-4 CYC-B11各波長之光電轉換效率(IPCE) 12 圖2-5電子能階隨粒子尺寸的變化狀況 17 圖2-6 CdS的吸、放光光譜與粒徑大小的關係,圓圈處表示激子吸收峰 18 圖2-7半導體材料的粒徑與激子吸收峰位置之關係曲線 19 圖2-8各種量子點放光波長與量子點尺寸的關係圖 20 圖2-9 Henglein 經驗曲線與CdS 量子點的粒徑關係 21 圖2-10 (a)衝擊離子化效應示意圖 (b)歐傑再結合效應示意圖 23 圖2-11迷你傳導帶示意圖 24 圖2-12以MPTMS進行自組裝單分子膜之示意圖 26 圖2-13逆微胞系統下合成CdS示意圖 28 圖2-14連續離子吸附反應成膜法之步驟 30 圖2-15自組裝單分子膜與化學浴沉積共聯結組裝法結構示意圖 32 圖2-16各種半導體導帶與價帶能階位置 36 圖2-17半導體與電解液接面能階 38 圖2-18 TiO2 / CdSe薄膜在Na2S電解液中的光電流 39 圖2-19 DSSC的電流電壓輸出特性圖 40 圖2-20五種電子在電池中傳導的路徑 42 圖2-21空氣質量(Air Mass)示意圖 43 圖2-22標準模擬太陽光AM1.5之光譜 43 圖3-1超音波振盪器 45 圖3-2旋轉塗佈機 46 圖3-3高溫爐(UF-D3FS) 46 圖3-4表面粗度儀 (MA-1450 ) 48 圖3-5紫外光可見光光譜儀(Cintra 10e, GBC, Australia) 49 圖3-6定電位/定電流儀(AUTOLAB) 51 圖3-7太陽光模擬器(Solar simulator) 52 圖3-8實驗架構圖 55 圖3-9實驗流程圖 56 圖3-10 MPTMS 結構圖 60 圖3-11 在工作電極上貼附spacer 64 圖3-12 組裝完成之DSSC 64 圖3-13 交流阻抗圖譜(Nyquist Plot) 66 圖4-1 TiO2薄膜之剖面SEM圖以及Alpha step圖 68 圖4-2 TiO2薄膜之表面型態 69 圖4-3以不同陰、陽離子濃度進行SILAR成長,不同SILAR次數(n) UV-Vis光譜 73 圖4-4以不同陰、陽離子濃度進行SILAR成長,不同SILAR次數(n) SEM image 75 圖4-5 TiO2有無MPTMS改質後進行SILAR實驗 77 圖4-6不同濃度陰、陽離子溶液,SILAR沉積不同層數(n)的TiO2/CdS (n)電極電池的電壓-電流曲線 81 圖4-7 TiO2陣列經MPTMS改質後電極電池的電壓-電流曲線 83 圖4-8單獨以不同濃度MPTMS進行TiO2表面改質後電極電池的暗電流曲線 83 圖4-9以0.05M//0.5M條件下,SILAR沉積不同次數(n)之TiO2/CdS (n)電極電池的電壓-電流曲線 85 圖4-10以0.05M//0.5M條件下,SILAR沉積不同次數(n) TiO2/MPTMS/CdS (n)電極電池的電壓-電流曲線 85 圖4-11以0.05M//0.5M條件下,TiO2 /CdS (8)電極經MPTMS改質前後電池的暗電流曲線 86 圖4-12在不照光的條件下,TiO2經MPTMS改質前後電池的EIS分析圖譜施加電壓為 0.7V,電解液為(I-/I3-) 87 圖4-13在不照光的條件下,TiO2經MPTMS改質前後電池的暗電流分析,電解液為(I-/I3-) 88 圖4-14 TiO2 /CdS電極經熱處理前後之UV-Vis吸收光譜圖 91 圖 4-15 TiO2 /MPTMS/CdS電極經熱處理前後之UV-Vis吸收光譜圖 91 圖 4-16 TiO2 / CdS (n)電極經熱處理前後電池的電壓-電流曲線(TiO2厚度13~15μm) 92 圖4-17 TiO2 / CdS (n) 與TiO2 / MPTMS / CdS (n) 電極經2min升溫至300oC熱處理後電池的電壓-電流曲線(TiO2厚度13~15μm) 93 圖4-18 TiO2 / MPTMS / CdS (n)電極經熱處理前後電池的電壓-電流曲線;H表示以 2min升溫至300oC熱處理(TiO2厚度7~9μm) 95 圖4-19 TiO2 / CdS (n) 與TiO2 / MPTMS / CdS (n) 電極經2min 300oC熱處理後電池的電壓-電流曲線(TiO2厚度7~9μm) 96 圖4-20 TiO2 /CdS (n)電極經熱處理前後電池的暗電流曲線(Polysulfide electrolyte) 97 圖4-21圖4-21 TiO2 /MPTMS電極經熱處理前後電池的暗電流曲線(I-/I3- electrolyte) 97

    1. H. Tsubomura, M. Matsumura, Y, Nomura and T. Amamiya, “Dye-sensitized zinc oxide/aqueous electrolyte/platinum photocell” Nature 261, 402 (1976)
    2. B. O’Regan and M. Grätzel, “A low-cost, high efficiency solar cell based on dye-sensitized colloidal TiO2 films” Nature 353, 737 (1991)
    3. T. Miyasaka, M. Ikegami and Y. Kijitori, “Photovoltaic Performance of Plastic Dye-Sensitized Electrodes Prepared by Low-Temperature Binder-Free Coating of Mesoscopic Titania” J. Electrochem. Soc. 154, A455 (2007)
    4. Chen, C. Y.; Wang, M. K.; Li, J. Y.; Pootrakulchote, N.; Alibabaei, L.; Ngoc-le, C. H.; Decoppet, J. D.; Tsai, J. H.; Gratzel, C.; Wu, C. G.; Zakeeruddin, S. M.; Gratzel, M.,“Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells”ACS Nano 3,3103 (2009)
    5. Shockley, H. J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells” J. Appl. Phys. 32, 510, (1961)
    6. Chen, C. Y.; Wang, M. K.; Li, J. Y.; Pootrakulchote, N.; Alibabaei, L.; Ngoc-le, C. H.; Decoppet, J. D.; Tsai, J. H.; Gratzel, C.; Wu, C. G.; Zakeeruddin, S. M.; Gratzel, M.“Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells” ACS Nano 3, 3103 (2009)
    7. M. Grätzel, “Solar Energy Conversion by Dye-sensitized Photovoltaic Cells” Inorg. Chem. 44, 6841 (2005)
    8. G. Wolfbauer, A. M. Bond, J. C. Eklund and D. R. MacFarlane, “A channel flow cell system specifically designed to test the efficiency of redox shuttles in dye sensitized solar cells” Sol. Energy Mater. Sol. Cells 70, 85 (2001)
    9. N. Kopidakis, K. D. Benkstein, J. Lagemaat and A. J. Frank, “Transport-Limited Recombination of Photocarriers in Dye-Sensitized Nanocrystalline TiO2 Solar Cells” J. Phys. Chem. B 107, 11307 (2003)
    10. D. Kuang, C. Klein, H. J. Snaith, J. Moser, R. Humphry-Baker, P. Comte, S. M. Zakeeruddin and M. Grätzel, “Ion Coordinating Sensitizer for High Efficiency Mesoscopic Dye-Sensitized Solar Cells: Influence of Lithium Ions on the Photovoltaic Performance of Liquid and Solid-State Cells” Nano Lett. 6, 669 (2006)
    11. S. A. Haque, E. Palomares, B. M. Cho, A. N. M. Green, N. Hirata, D. R. Klug and J. R. Durrant, “ Charge Separation versus Recombination in Dye-Sensitized Nanocrystalline Solar Cells: the Minimization of Kinetic Redundancy” J. Am. Chem. Soc. 127, 3456 (2005)
    12. P. Wang, S. M. Zakeeruddin, I. Exnar and M. Grätzel, “High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte” Chem. Commun. 2972 (2002)
    13. W. Kubo, T. Kitamura, K. Hanabusa, Y. Wada and S. Yanagida, “Quasi-solid-state dye-sensitized solar cells using room temperature molten salts and a low molecular weight gelator” Chem. Commun., 374 (2002)
    14. N. Mohmeyer, D. Kuang, P. Wang, H. W. Schmidt, S. M. Zakeeruddin and M. Grätzel, “ An efficient organogelator for ionic liquids to prepare stable quasi-solidstate dye-sensitized solar cells” J. Mater. Chem. 16, 2978 (2006)
    15. A. F. Nogueira and M. D. Paoli, “A dye sensitized TiO2 photovoltaic cell constructed with an elastomeric electrolyte”Sol. Energy Mater. Sol. Cells 61, 135 (2000)
    16. W. Kubo, K. Murakoshi, T. Kitamura, S. Yoshida, M. Haruki, K. Hanabusa, H. Shirai, Y. Wada and S. Yanagida, “Quasi-Solid-State Dye-Sensitized TiO2 Solar Cells: Effective Charge Transport in Mesoporous Space Filled with Gel Electrolytes Containing Iodide and Iodine” J. Phys. Chem. B 105, 12809 (2001)
    17. T. Stergiopoulos, I. M. Arabatzis, G. Katsaros and P. Falaras, “Binary Polyethylene Oxide/Titania Solid-State Redox Electrolyte for Highly Efficient Nanocrystalline TiO2 Photoelectrochemical Cells” Nano Lett. 2, 1259 (2002)
    18. P. Malik, M. Castro and C. Carrot, “Thermal degradation during melt processing of poly(ethylene oxide), poly(vinylidenefluoride-co-hexafluoropropylene) and their blends in the presence of additives, for conducting applications” Polym. Degrad. Stabil. 91, 634 (2006)
    19. P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin,T. Sekiguchi and M. Grätzel, “A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte” Nature Mater. 2, 402 (2003)
    20. P. Wang, S. M. Zakeeruddin, M. Grätzel, “Solidifying liquid electrolytes with fluorine polymer and silica nanoparticles for quasi-solid dye-sensitized solar cells” J. Fluor. Chem. 125, 1241 (2004)
    21. P. Wang, Q. Dai, S. M. Zakeeruddin, M. Forsyth, D. R. MacFarlane and M. Grätzel, “Ambient Temperature Plastic Crystal Electrolyte for Efficient, All-Solid-State Dye-Sensitized Solar Cell” J. Am. Chem. Soc. 126, 13590 (2004)
    22. Y. Wang and N. Herron, “Nanometer-Sized Semiconductor Clusters: Materials Synthesis, Quantum Size Effects, and Photophysical Properties” J. Phys. Chem. 95, 525 (1991).
    23. W. W. Yu and X. Peng, “Formation of High-Quality CdS and Other II-VI Semiconductor Nanocrystals in Noncoordinating Solvents: Tunable Reactivity of Monomers” Angew. Chem. Int. Ed. 41, 2368 (2002).
    24. W. W. Yu, L. Qu, W. Guo and X. Peng, “Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals” Chem. Mater. 15, 2854 (2003).
    25. X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir and S. Weiss, “Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics” Science 307, 538 (2005)
    26. L. Spanhel, M. Hasse, H. Weller and A. Henglein, “Photochemistry of Colloidal Semiconductors. 20. Surface Modification and Stability of Strong Luminescing CdS Particles” A., J. Am. Chem. Soc. 109, 5649 (1987).
    27. A. J. Nozik, “Exciton Multiplication and Relaxation Dynamics in Quantum Dots: Applications to Ultrahigh-Efficiency Solar Photon Conversion” Inorg. Chem. 44, 6893 (2005)
    28. W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells” J. Appl. Phys. 32, 510 (1961)
    29. A. J. Nozik, “Quantum dot solar cells” Physica E 14, 115 (2002)
    30. I. Gur, N. A. Fromer, M. L. Geier, A. P. Alivisatos, “Air-Stable All-Inorganic Nanocrystal Solar Cells Processed from Solution” Science 310, 462 (2005)
    31. L. Sheeney-Haj-Ichia, S. Pogorelova, Y. Gofer, I. Willner, “Enhanced Photoelectrochemistry in CdS/Au Nanoparticle Bilayers” Adv. Funct. Mater. 14, 416 (2004)
    32. L. Sheeney-Haj-Ichia, J. Wasserman, I. Willner, “CdS-Nanoparticle Architectures on Electrodes for Enhanced Photocurrent Generation” Adv. Mater. 14, 1323 (2002)
    33. L. Sheeney-Haj-Ichia, B. Basnar, I. Willner, “Efficient Generation of Photocurrents by Using CdS/Carbon Nanotube Assemblies on Electrodes” Angew. Chem. Int. Ed. 44, 78 (2005)
    34. M. Lahav, V. H. Shabtai, J. Wasserman, E. Katz, I. Willner, H. Dürr, Y. Z. Hu, S. H. Bossmann, “Photoelectrochemistry with Integrated Photosensitizer-Electron Acceptor and Au-Nanoparticle Arrays” J. Am. Chem. Soc. 122, 11480 (2000)
    35. C. P. Collier, R. J. Saykally, J. J. Shiang, S. E. Henrichs, J. R. Heath, “Reversible Tuning of Silver Quantum Dot Monolayers Trough the Metal-Insulator Transition” Science 277, 1978 (1997)
    36. Z. Y. Pan, X. J. Liu, S. Y. Zhang, G. J. Shen, L. G. Zhang, Z. H. Lu, J. Z. Liu, “Controlled Growth of the Ordered Cadmium Sulfide Particulate Films and the Photoacoustics Investigation” J. Phys. Chem. B 101, 9703 (1997)
    37. A. Samokhvalov, R. W. Gurney, M. Lahav, R. Naaman, “Electronic Properties of Hybrid Organic/Inorganic Langmuir-Blodgett Films Containing CdS Quantum Particles” J. Phys. Chem. B 106, 9070 (2002)
    38. A. Samokhvalov, R. W. Gurney, M. Lahav, S. Cohen, H. Cohen, R. Naaman, “Charge Transfer between a Gold Substrate and CdS Nanoparticles Assembled in Hybrid Organic-Inorganic Films” J. Phys. Chem. B 107, 4245 (2003)
    39. P. Jiang, Z. F. Liu, S. M. Cai, “Growing Monodispersed PbS Nanoparticles on Self-Assembled Monolayers of 11-Mercaptoundecanoic Acid on Au(111) Substrate” Langmuir 18, 4495 (2002)
    40. S. K. Haram, A. J. Bard, “Scanning Electrochemical Microscopy. 42. Studies of the Kinetics and Photoelectrochemistry of Thin Film CdS/Electrolyte Interface” J. Phys. Chem. B 105, 8192 (2001)
    41. M. L. Breen, J. T. Woodward, IV, D. K. Schwartz, “Direct Evidence for an Ion-by-Ion Deposition Mechanism in Solution Growth of CdS Thin Films” Chem. Mater. 10, 710 (1998)
    42. P. O’Brien, J. McAleese, “Developing an Understanding of the Processes Controlling the Chemical Bath Deposition of ZnS and CdS” J. Mater. Chem. 8, 2309 (1998)
    43. J. L. Blackburn, D. C. Selmarten, A. J. Nozik,“Electron Transfer Dynamics in Quantum Dot/Titanium Dioxide Composites Formed by in-situ Chemical Bath Deposition” J. Phys. Chem. B 107, 14154 (2003)
    44. H .M. PATHAN, C. D. LOKHANDE,“Deposition of metal chalcogenide thin films by successive ionic layer adsorption and reaction (SILAR) method” Bull. Mat. Sci. 27,85-111(2004)
    45. M. Sastry, M. Rao, K. N. Ganesh, “Electrostatic Assembly of Nanoparticles and Biomarcromolecules” Acc. Chem. Res. 35, 847, (2002)
    46. H. Haick, M. Ambrico, T. Ligonzo, D. Cahen, “Discontinuous Molecular Films Can Control Metal/Semiconductor Junctions” Adv. Mater. 16(23-24), 2145, (2004)
    47. I. Robel, V. Subramanian, M. Kuno and P. V. Kamat, “Quantum Dot Solar Cells. Harvesting Light Energy with CdSe Nanocrystals Molecularly Linked to Mesoscopic TiO2 Films” J. Am. Chem. Soc. 128, 2385 (2006)
    48. L. M. Peter, D. J. Riley, E. J. Tull and K. G. U. Wijayantha, “Photosensitization of nanocrystalline TiO2 by self-assembled layers of CdS quantum dots” Chem. Commun., 1030 (2002)
    49. Y. J. Shen and Y. L. Lee, “Assembly of CdS quantum dots onto mesoscopic TiO2 films for quantum dot-sensitized solar cell applications” Nanotechnology 19, 45602 (2008)
    50. A. L. Rogach, A. Kornowski, M. Gao, A. Eychmüller and H. Weller, “Synthesis and Characterization of a Size Series of Extremely Small Thiol-Stabilized CdSe Nanocrystals” J. Phys. Chem. B 103, 3065 (1999)
    51. M. A. Hines and G. D. Scholes, “Colloidal PbS Nanocrystals with Size-Tunable Near-Infrared Emission Observation of Post-Synthesis Self-Narrowing of the Particle Size Distribution” Adv. Mater. 15, 1844 (2003)
    52. X. D. Ma, X. F. Qian, J. Yin, H. A. Xi and Z. K. Zhu, “Preparation and Characterization of Polyvinyl Alcohol-Capped CdSe Nanoparticles at Room Temperature” J. Coll. Interf. Sci. 252, 77 (2002)
    53. J. M. Nedeljković, O. I. Mićić, S. P. Ahrenkiel, A. Miedaner and A. J. Nozik, “Growth of InP Nanostructures via Reaction of Indium Droplets with Phosphide Ions: Synthesis of InP Quantum Rods and InP-TiO2 Composites” J. Am. Chem. Soc. 126, 2632 (2004)
    54. L. Manna, D. J. Milliron, A. Meisel, E. C. Scher and A. P. Alivisatos, “Controlled growth of tetrapod-branched inorganic nanocrystals”, Nature Mater. 2, 382 (2003)
    55. K. W. Jun, P. K. Khannaa, K. B. Honga, J. O. Baeg and Y. D. Suha, “Synthesis of InP nanocrystals from indium chloride and sodium phosphide by solution route” Mater. Chem. Phys. 96 494 (2006)
    56. M. R. Greenberg, W. Chen, B. N. Pulford, G. A. Smolyakov, Y. B. Jiang, S. D. Bunge, T. J. Boyle and Marek Osiński, “Synthesis and Characterization of InP and InN Colloidal Quantum Dots” Proc.SPIE 5705, 68 (2005)
    57. A. Agostiano, M. Catalano, M. L. Curri, M. D. Monica, L. Manna and L. Vasanelli, “Synthesis and structural characterisation of CdS nanoparticles prepared in a four-components “water-in-oil” microemulsion” Micron 31, 253 (2000)
    58. J. Zhang, L. Sun, C. Liao and C. Yan, “Size control and photoluminescence enhancement of CdS nanoparticles prepared via reverse micelle method” Solid State Commun. 124, 45 (2002)
    59. S. Abd-Lefdil, C. Messaoudi, M. Abd-Lefdil and D. Sayah, “Temperature Growth and Annealing Effects on CdS Thin Films Prepared by Chemical Bath Deposition Process” Phys.Stat. Sol. (a) 168, 417 (1998)
    60. R. Vogel, P. Hoyer, and H. Weller, “Quantum-Sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 Particles as Sensitizers for Various Nanoporous Wide- Bandgap Semiconductors” J. Phys. Chem. 98, 3183 (1994)
    61. P. Hoyer and R. Könenkamp, “Photoconduction in porous TiO2 sensitized by PbS quantum dots” Appl. Phys. Lett. 66, 349 (1995)
    62. R. Plass, S. Pelet, J. Krueger and M. Grätzel, “Quantum Dot Sensitization of Organic-Inorganic Hybrid Solar Cells” J. Phys. Chem. B 106, 7578 (2002)
    63. J. L. Blackburn, D. C. Selmarten and A. J. Nozik, “Electron Transfer Dynamics in Quantum Dot/Titanium Dioxide Composites Formed by in Situ Chemical Bath Deposition” J. Phys. Chem. B 107, 14154 (2003)
    64. S. C. Lin, Y. L. Lee, C. H. Chang, Y. L. Shen and Y. M. Yang, “Quantum Dot-Sensitized Solar Cells: Assembly of CdS Quantum Dots Coupling Techniques of Self-Assembly Monolayer and Chemical Bath Deposition” Appl. Phys. Lett. 90, 143517 (2007)
    65. C. H. Chang and Y. L. Lee, “Chemical Bath Deposition of CdS Quantum Dots onto Mesoscopic TiO2 Films for Application in Quantum-Dot-Sensitized Solar Cells” Appl. Phys. Lett .91, 053503 (2007).
    66. 林昇志, “量子點的組裝及其在染料敏化太陽能電池的應用” 國立成功大學化學工程學系碩士論文 民國95年
    67. A. Zaban, O. I. Mićić, B. A. Gregg, and A. J. Nozik, “Photosensitization of Nanoporous TiO2 Electrodes with InP Quantum Dots” Langmuir 14, 3153 (1998).
    68. Y. Tian and T. Tatsuma, “Mechanisms and Applications of Plasmon-Induced Charge Separation at TiO2 Films Loaded with Gold Nanoparticles” J. Am. Chem. Soc. 127, 7632 (2005).
    69. L. J. Diguna, Q. Shen, J. Kobayashi and T. Toyoda, “High efficiency of CdSe quantum-dot-sensitized TiO2 inverse opal solar cells” Appl. Phys. Lett. 91, 023116 (2007)
    70. Y. L. Lee, Y. S. Lo, “Highly Efficient Quantum-Dot-Sensitized Solar Cell Based on Co-Sensitization of CdS/CdSe” Adv. Funct. Mater. 19, 604 (2009)
    71. M. Grätzel, “Photoelectrochemical cells” Nature 414, 338 (2001)
    72. S. M. Yang, C. H. Huang, J. Zhai, Z. S. Wang and L. Jiang, “High Photostability and Quantum Yield of Nanoporous TiO2 Thin Film Electrodes Co-Sensitized with Capped Sulfides” J. Mater. Chem. 12, 1459 (2002)
    73. M.E. Rincon, M, Sanchez, A. Olea, I. Ayala, P.K. Nair, “Photoelectrochemical behavior of chemically deposited CdSe and coupled CdS/CdSe semiconductor films”Sol. Energy Mater. Sol. Cells 52 , 399 (1998)
    74. M.E. Rincon, A. Jimenez, A. Orihuela, G. Martinez,“Thermal treatment effects in the photovoltaic conversion of spray-painted TiO2 coatings sensitized by chemically deposited CdSe thin films” Sol. Energy Mater. Sol. Cells 70 , 163 (2001)
    75. Q. Shen and T. Toyoda, “Characterization of Nanostructured TiO2 Electrodes Sensitized with CdSe Quantum Dots Using Photoacoustic and Photoelectrochemical Current Methods” Jpn J. Appl. Phys. 43, 2946 (2004)
    76. G. Milczareka, A. Kasuyab, S. Mamykinb, T. Araib, K. Shinodab and K. Tohji, “Optimization of a two-compartment photoelectrochemical cell for solar hydrogen production” Int. J. Hydrogen Energy 28, 919 (2003)
    77. C. H. J. Liu, J. Olsen, D. R. Saunders and J. H. Wang, “Photoactivation of CdSe Films for Photoelectrochemical Cells” J. Electrochem. Soc. 128, 1224 (1981)
    78. Y. Ueno, H. Minoura, T. Nishikawa and M. Tsuiki, “Electrophoretically Deposited CdS and CdSe Anodes for Photoelectrochemical Cells” J. Electrochem. Soc. 130, 43 (1983)
    79. Y. Bessekhouada, M. Mohammedib and M. Trari, “Hydrogen photoproduction from hydrogen sulfide on Bi2S3 catalyst”Sol. Energy Mater. Sol. Cells 73, 339 (2002)
    80. S. Licht, “A desription of energy conversion in photoelectrochemical solar cells” Nature 330, 148 (1987)
    81. Y. L. Lee and C. H. Chang, “Efficient polysulfide electrolyte for CdS quantum dot-sensitized solar cells” J. Power Sources 185, 584 (2008)
    82. R. S. Mane, S. J. Roh, O.S. Joo, C. D. Lokhande, S. H. Han, “Improved Performance of Dense TiO2/CdSe Coupled Thin Films by Low Temperature Process” Electrochim. Acta 50, 2453 (2005)
    83. J. V. D. Lagemaat and A. J. Frank, “Nonthermalized Electron Transport in Dye-Sensitized Nanocrystalline TiO2 Films : Transient Photocurrent and Random-Walk Modeling Studies” J. Phys. Chem. B 105, 11194 (2001)
    84. A. C. Fisher, L. M. Peter, E. A. Ponomarev, A. B. Walker, and K. G. U. Wijayantha, “Intensity Dependence of the Back Reaction and Transport of Electrons in Dye-Sensitized Nanocrystalline TiO2 Solar Cells” J. Phys. Chem. B 104, 949 (2000)
    85. Allen J. Bard Mark S. Wrighton, “Thermodynamic Potential for the Anodic Dissolution of n-Type Semiconductor” J. Electrochem. Soc.124,1706 (1977)
    86. H. Metin, R. Esen “Annealing studies on SILARgrown CdS thin films” J. of Crystal Growth 258,141 (2003)
    87. Hikmat S. Hilal , Rania M.A. Ismail, Amer El-Hamouz, Ahed Zyoud, Iyad Saadeddin “Effect of cooling rate of pre-annealed CdS thin film electrodes prepared by chemical bath deposition: Enhancement of photoelectrochemical characteristics” Electrochimica Acta 54,3433 (2009)
    88. R Jayakrishnan, S R Kumar and R K Pandeyt “Rapid thermal annealing of multiple dip-coated CdS films” Semimnd. Sci. Technoi. 9,97 (1994)
    89. 廖士懿, “硫化鎘與硒化鎘敏化TiO2光電極在光電化學系統產氫之研究” 國立成功大學化學工程學系碩士論文 民國98年
    90. Zelaya-Angel, O.,“Band-gap shift in CdS: phase transition from cubic to hexagonal on thermal annealing” Vacuum 46,1083 (1995) .
    91. Sathish, M. and R.P. Viswanath, “Photocatalytic generation of hydrogen over mesoporous CdS nanoparticle: Effect of particle size, noble metal and support”Catalysis Today 129,421 (2007)
    92. Koide, N.; Islam, A.; Chiba, Y.; Han, L. Y., “Improvement of efficiency of dye-sensitized solar cells based on analysis of equivalent circuit”J. Photochem. Photobiol. A-Chem. 182,296 (2006).

    下載圖示 校內:2012-07-30公開
    校外:2012-07-30公開
    QR CODE