| 研究生: |
卓訓瑋 Cho, Hsun-Wei |
|---|---|
| 論文名稱: |
自組裝單分子膜及熱處理效應對CdS敏化TiO2光電極效能的研究 The Effects of a Self-Assembly Monolayer and Heat Treatment on the Performance of Cadmium Sulfide Sensitized TiO2 Photoelectrode |
| 指導教授: |
李玉郎
Lee, Yuh-Lang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 114 |
| 中文關鍵詞: | 半導體敏化太陽能電池 、硫化鎘 、表面修飾劑 、連續離子吸附反應成膜法 、熱處理 |
| 外文關鍵詞: | Semiconductor solar cells, Cadmium sulfide, Self-assembly monolayer, Successive Ionic Layer Adsorption and Reaction, post-heated annealing |
| 相關次數: | 點閱:102 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用3-Mercapto-propyl-tri-methoxy silane (MPTMS)單分子膜來修飾TiO2,再以連續離子吸附反應成膜法(Successive Ionic Layer Adsorption and Reaction,SILAR)將硫化鎘組裝至TiO2薄膜表面,以作為TiO2光電極的光敏化劑,並應用於半導體敏化太陽能電池。結果發現利用七次循環沉積的SILAR程序將Cd2+及S2-濃度控制在0.05M及0.5M來沉積CdS,可以得到最佳的光電轉化效率(1.08%)。由紫外光-可見光吸收光譜圖發現經過MPTMS 修飾過的TiO2表面對CdS 成長有抑制作用,此一作用可避免在高次數SILAR沉積時, CdS的聚集現象所導致元件效能下降。MPTMS改質過的TiO2電極有較小的暗電流,顯示此一改質作用可避免裸露的TiO2表面與電解液直接接觸,降低TiO2上的光電子與電解液間的電荷再結合(charge recombination)現象。因此MPTMS改質的電極有較大的填充因子(fill factor)。最後以300℃對TiO2/MPTMS/CdS(7)光電極進行熱處理可提昇CdS的結晶性,並減少光電極界面的缺陷,有效提高光電流,使TiO2/MPTMS/CdS(7)光電極的效率再提升至1.37%。
In this study, Self-assembly monolayer (SAM), 3-mercaptopropyl-trimethyoxysilane (MPTMS) is utilized for TiO2 surface modification, following successive ionic layer adsorption and reaction procedure (SILAR), CdS is in-situ grown onto TiO2 surface as the sensitizer for semiconductor-sensitized solar cell application.
By controlling the ion solution concentration at 0.05M and 0.5M for Cd2+and S2-, respectively, the optimal photoelectrical conversion efficiency 1.08% can be achieved at the seventh deposition layer in SILAR procedure. From the UV-Vis absorption spectra, MPTMS on TiO2 surface would inhibit CdS growth, and prevent CdS particle aggregation at higher deposition cycle, which would cause performance declining. On the other hand, MPTMS-modified TiO2 electrodes reveal the lower dark current, implying introduction of surface modification would reduce the charge recombination through the bare TiO2 surface to oxidate species in electrolyte. Therefore, MPTMS-SAM modified electrode possess higher fill factor.
Finally 300℃ heat treatment for TiO2/MPTMS/CdS(7) photoelectrodes could increase the crystallinity of CdS and eliminate the defect in TiO2/CdS interface for improving efficiency to 1.37% by increasing photocurrent.
1. H. Tsubomura, M. Matsumura, Y, Nomura and T. Amamiya, “Dye-sensitized zinc oxide/aqueous electrolyte/platinum photocell” Nature 261, 402 (1976)
2. B. O’Regan and M. Grätzel, “A low-cost, high efficiency solar cell based on dye-sensitized colloidal TiO2 films” Nature 353, 737 (1991)
3. T. Miyasaka, M. Ikegami and Y. Kijitori, “Photovoltaic Performance of Plastic Dye-Sensitized Electrodes Prepared by Low-Temperature Binder-Free Coating of Mesoscopic Titania” J. Electrochem. Soc. 154, A455 (2007)
4. Chen, C. Y.; Wang, M. K.; Li, J. Y.; Pootrakulchote, N.; Alibabaei, L.; Ngoc-le, C. H.; Decoppet, J. D.; Tsai, J. H.; Gratzel, C.; Wu, C. G.; Zakeeruddin, S. M.; Gratzel, M.,“Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells”ACS Nano 3,3103 (2009)
5. Shockley, H. J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells” J. Appl. Phys. 32, 510, (1961)
6. Chen, C. Y.; Wang, M. K.; Li, J. Y.; Pootrakulchote, N.; Alibabaei, L.; Ngoc-le, C. H.; Decoppet, J. D.; Tsai, J. H.; Gratzel, C.; Wu, C. G.; Zakeeruddin, S. M.; Gratzel, M.“Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells” ACS Nano 3, 3103 (2009)
7. M. Grätzel, “Solar Energy Conversion by Dye-sensitized Photovoltaic Cells” Inorg. Chem. 44, 6841 (2005)
8. G. Wolfbauer, A. M. Bond, J. C. Eklund and D. R. MacFarlane, “A channel flow cell system specifically designed to test the efficiency of redox shuttles in dye sensitized solar cells” Sol. Energy Mater. Sol. Cells 70, 85 (2001)
9. N. Kopidakis, K. D. Benkstein, J. Lagemaat and A. J. Frank, “Transport-Limited Recombination of Photocarriers in Dye-Sensitized Nanocrystalline TiO2 Solar Cells” J. Phys. Chem. B 107, 11307 (2003)
10. D. Kuang, C. Klein, H. J. Snaith, J. Moser, R. Humphry-Baker, P. Comte, S. M. Zakeeruddin and M. Grätzel, “Ion Coordinating Sensitizer for High Efficiency Mesoscopic Dye-Sensitized Solar Cells: Influence of Lithium Ions on the Photovoltaic Performance of Liquid and Solid-State Cells” Nano Lett. 6, 669 (2006)
11. S. A. Haque, E. Palomares, B. M. Cho, A. N. M. Green, N. Hirata, D. R. Klug and J. R. Durrant, “ Charge Separation versus Recombination in Dye-Sensitized Nanocrystalline Solar Cells: the Minimization of Kinetic Redundancy” J. Am. Chem. Soc. 127, 3456 (2005)
12. P. Wang, S. M. Zakeeruddin, I. Exnar and M. Grätzel, “High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte” Chem. Commun. 2972 (2002)
13. W. Kubo, T. Kitamura, K. Hanabusa, Y. Wada and S. Yanagida, “Quasi-solid-state dye-sensitized solar cells using room temperature molten salts and a low molecular weight gelator” Chem. Commun., 374 (2002)
14. N. Mohmeyer, D. Kuang, P. Wang, H. W. Schmidt, S. M. Zakeeruddin and M. Grätzel, “ An efficient organogelator for ionic liquids to prepare stable quasi-solidstate dye-sensitized solar cells” J. Mater. Chem. 16, 2978 (2006)
15. A. F. Nogueira and M. D. Paoli, “A dye sensitized TiO2 photovoltaic cell constructed with an elastomeric electrolyte”Sol. Energy Mater. Sol. Cells 61, 135 (2000)
16. W. Kubo, K. Murakoshi, T. Kitamura, S. Yoshida, M. Haruki, K. Hanabusa, H. Shirai, Y. Wada and S. Yanagida, “Quasi-Solid-State Dye-Sensitized TiO2 Solar Cells: Effective Charge Transport in Mesoporous Space Filled with Gel Electrolytes Containing Iodide and Iodine” J. Phys. Chem. B 105, 12809 (2001)
17. T. Stergiopoulos, I. M. Arabatzis, G. Katsaros and P. Falaras, “Binary Polyethylene Oxide/Titania Solid-State Redox Electrolyte for Highly Efficient Nanocrystalline TiO2 Photoelectrochemical Cells” Nano Lett. 2, 1259 (2002)
18. P. Malik, M. Castro and C. Carrot, “Thermal degradation during melt processing of poly(ethylene oxide), poly(vinylidenefluoride-co-hexafluoropropylene) and their blends in the presence of additives, for conducting applications” Polym. Degrad. Stabil. 91, 634 (2006)
19. P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin,T. Sekiguchi and M. Grätzel, “A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte” Nature Mater. 2, 402 (2003)
20. P. Wang, S. M. Zakeeruddin, M. Grätzel, “Solidifying liquid electrolytes with fluorine polymer and silica nanoparticles for quasi-solid dye-sensitized solar cells” J. Fluor. Chem. 125, 1241 (2004)
21. P. Wang, Q. Dai, S. M. Zakeeruddin, M. Forsyth, D. R. MacFarlane and M. Grätzel, “Ambient Temperature Plastic Crystal Electrolyte for Efficient, All-Solid-State Dye-Sensitized Solar Cell” J. Am. Chem. Soc. 126, 13590 (2004)
22. Y. Wang and N. Herron, “Nanometer-Sized Semiconductor Clusters: Materials Synthesis, Quantum Size Effects, and Photophysical Properties” J. Phys. Chem. 95, 525 (1991).
23. W. W. Yu and X. Peng, “Formation of High-Quality CdS and Other II-VI Semiconductor Nanocrystals in Noncoordinating Solvents: Tunable Reactivity of Monomers” Angew. Chem. Int. Ed. 41, 2368 (2002).
24. W. W. Yu, L. Qu, W. Guo and X. Peng, “Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals” Chem. Mater. 15, 2854 (2003).
25. X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir and S. Weiss, “Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics” Science 307, 538 (2005)
26. L. Spanhel, M. Hasse, H. Weller and A. Henglein, “Photochemistry of Colloidal Semiconductors. 20. Surface Modification and Stability of Strong Luminescing CdS Particles” A., J. Am. Chem. Soc. 109, 5649 (1987).
27. A. J. Nozik, “Exciton Multiplication and Relaxation Dynamics in Quantum Dots: Applications to Ultrahigh-Efficiency Solar Photon Conversion” Inorg. Chem. 44, 6893 (2005)
28. W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells” J. Appl. Phys. 32, 510 (1961)
29. A. J. Nozik, “Quantum dot solar cells” Physica E 14, 115 (2002)
30. I. Gur, N. A. Fromer, M. L. Geier, A. P. Alivisatos, “Air-Stable All-Inorganic Nanocrystal Solar Cells Processed from Solution” Science 310, 462 (2005)
31. L. Sheeney-Haj-Ichia, S. Pogorelova, Y. Gofer, I. Willner, “Enhanced Photoelectrochemistry in CdS/Au Nanoparticle Bilayers” Adv. Funct. Mater. 14, 416 (2004)
32. L. Sheeney-Haj-Ichia, J. Wasserman, I. Willner, “CdS-Nanoparticle Architectures on Electrodes for Enhanced Photocurrent Generation” Adv. Mater. 14, 1323 (2002)
33. L. Sheeney-Haj-Ichia, B. Basnar, I. Willner, “Efficient Generation of Photocurrents by Using CdS/Carbon Nanotube Assemblies on Electrodes” Angew. Chem. Int. Ed. 44, 78 (2005)
34. M. Lahav, V. H. Shabtai, J. Wasserman, E. Katz, I. Willner, H. Dürr, Y. Z. Hu, S. H. Bossmann, “Photoelectrochemistry with Integrated Photosensitizer-Electron Acceptor and Au-Nanoparticle Arrays” J. Am. Chem. Soc. 122, 11480 (2000)
35. C. P. Collier, R. J. Saykally, J. J. Shiang, S. E. Henrichs, J. R. Heath, “Reversible Tuning of Silver Quantum Dot Monolayers Trough the Metal-Insulator Transition” Science 277, 1978 (1997)
36. Z. Y. Pan, X. J. Liu, S. Y. Zhang, G. J. Shen, L. G. Zhang, Z. H. Lu, J. Z. Liu, “Controlled Growth of the Ordered Cadmium Sulfide Particulate Films and the Photoacoustics Investigation” J. Phys. Chem. B 101, 9703 (1997)
37. A. Samokhvalov, R. W. Gurney, M. Lahav, R. Naaman, “Electronic Properties of Hybrid Organic/Inorganic Langmuir-Blodgett Films Containing CdS Quantum Particles” J. Phys. Chem. B 106, 9070 (2002)
38. A. Samokhvalov, R. W. Gurney, M. Lahav, S. Cohen, H. Cohen, R. Naaman, “Charge Transfer between a Gold Substrate and CdS Nanoparticles Assembled in Hybrid Organic-Inorganic Films” J. Phys. Chem. B 107, 4245 (2003)
39. P. Jiang, Z. F. Liu, S. M. Cai, “Growing Monodispersed PbS Nanoparticles on Self-Assembled Monolayers of 11-Mercaptoundecanoic Acid on Au(111) Substrate” Langmuir 18, 4495 (2002)
40. S. K. Haram, A. J. Bard, “Scanning Electrochemical Microscopy. 42. Studies of the Kinetics and Photoelectrochemistry of Thin Film CdS/Electrolyte Interface” J. Phys. Chem. B 105, 8192 (2001)
41. M. L. Breen, J. T. Woodward, IV, D. K. Schwartz, “Direct Evidence for an Ion-by-Ion Deposition Mechanism in Solution Growth of CdS Thin Films” Chem. Mater. 10, 710 (1998)
42. P. O’Brien, J. McAleese, “Developing an Understanding of the Processes Controlling the Chemical Bath Deposition of ZnS and CdS” J. Mater. Chem. 8, 2309 (1998)
43. J. L. Blackburn, D. C. Selmarten, A. J. Nozik,“Electron Transfer Dynamics in Quantum Dot/Titanium Dioxide Composites Formed by in-situ Chemical Bath Deposition” J. Phys. Chem. B 107, 14154 (2003)
44. H .M. PATHAN, C. D. LOKHANDE,“Deposition of metal chalcogenide thin films by successive ionic layer adsorption and reaction (SILAR) method” Bull. Mat. Sci. 27,85-111(2004)
45. M. Sastry, M. Rao, K. N. Ganesh, “Electrostatic Assembly of Nanoparticles and Biomarcromolecules” Acc. Chem. Res. 35, 847, (2002)
46. H. Haick, M. Ambrico, T. Ligonzo, D. Cahen, “Discontinuous Molecular Films Can Control Metal/Semiconductor Junctions” Adv. Mater. 16(23-24), 2145, (2004)
47. I. Robel, V. Subramanian, M. Kuno and P. V. Kamat, “Quantum Dot Solar Cells. Harvesting Light Energy with CdSe Nanocrystals Molecularly Linked to Mesoscopic TiO2 Films” J. Am. Chem. Soc. 128, 2385 (2006)
48. L. M. Peter, D. J. Riley, E. J. Tull and K. G. U. Wijayantha, “Photosensitization of nanocrystalline TiO2 by self-assembled layers of CdS quantum dots” Chem. Commun., 1030 (2002)
49. Y. J. Shen and Y. L. Lee, “Assembly of CdS quantum dots onto mesoscopic TiO2 films for quantum dot-sensitized solar cell applications” Nanotechnology 19, 45602 (2008)
50. A. L. Rogach, A. Kornowski, M. Gao, A. Eychmüller and H. Weller, “Synthesis and Characterization of a Size Series of Extremely Small Thiol-Stabilized CdSe Nanocrystals” J. Phys. Chem. B 103, 3065 (1999)
51. M. A. Hines and G. D. Scholes, “Colloidal PbS Nanocrystals with Size-Tunable Near-Infrared Emission Observation of Post-Synthesis Self-Narrowing of the Particle Size Distribution” Adv. Mater. 15, 1844 (2003)
52. X. D. Ma, X. F. Qian, J. Yin, H. A. Xi and Z. K. Zhu, “Preparation and Characterization of Polyvinyl Alcohol-Capped CdSe Nanoparticles at Room Temperature” J. Coll. Interf. Sci. 252, 77 (2002)
53. J. M. Nedeljković, O. I. Mićić, S. P. Ahrenkiel, A. Miedaner and A. J. Nozik, “Growth of InP Nanostructures via Reaction of Indium Droplets with Phosphide Ions: Synthesis of InP Quantum Rods and InP-TiO2 Composites” J. Am. Chem. Soc. 126, 2632 (2004)
54. L. Manna, D. J. Milliron, A. Meisel, E. C. Scher and A. P. Alivisatos, “Controlled growth of tetrapod-branched inorganic nanocrystals”, Nature Mater. 2, 382 (2003)
55. K. W. Jun, P. K. Khannaa, K. B. Honga, J. O. Baeg and Y. D. Suha, “Synthesis of InP nanocrystals from indium chloride and sodium phosphide by solution route” Mater. Chem. Phys. 96 494 (2006)
56. M. R. Greenberg, W. Chen, B. N. Pulford, G. A. Smolyakov, Y. B. Jiang, S. D. Bunge, T. J. Boyle and Marek Osiński, “Synthesis and Characterization of InP and InN Colloidal Quantum Dots” Proc.SPIE 5705, 68 (2005)
57. A. Agostiano, M. Catalano, M. L. Curri, M. D. Monica, L. Manna and L. Vasanelli, “Synthesis and structural characterisation of CdS nanoparticles prepared in a four-components “water-in-oil” microemulsion” Micron 31, 253 (2000)
58. J. Zhang, L. Sun, C. Liao and C. Yan, “Size control and photoluminescence enhancement of CdS nanoparticles prepared via reverse micelle method” Solid State Commun. 124, 45 (2002)
59. S. Abd-Lefdil, C. Messaoudi, M. Abd-Lefdil and D. Sayah, “Temperature Growth and Annealing Effects on CdS Thin Films Prepared by Chemical Bath Deposition Process” Phys.Stat. Sol. (a) 168, 417 (1998)
60. R. Vogel, P. Hoyer, and H. Weller, “Quantum-Sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 Particles as Sensitizers for Various Nanoporous Wide- Bandgap Semiconductors” J. Phys. Chem. 98, 3183 (1994)
61. P. Hoyer and R. Könenkamp, “Photoconduction in porous TiO2 sensitized by PbS quantum dots” Appl. Phys. Lett. 66, 349 (1995)
62. R. Plass, S. Pelet, J. Krueger and M. Grätzel, “Quantum Dot Sensitization of Organic-Inorganic Hybrid Solar Cells” J. Phys. Chem. B 106, 7578 (2002)
63. J. L. Blackburn, D. C. Selmarten and A. J. Nozik, “Electron Transfer Dynamics in Quantum Dot/Titanium Dioxide Composites Formed by in Situ Chemical Bath Deposition” J. Phys. Chem. B 107, 14154 (2003)
64. S. C. Lin, Y. L. Lee, C. H. Chang, Y. L. Shen and Y. M. Yang, “Quantum Dot-Sensitized Solar Cells: Assembly of CdS Quantum Dots Coupling Techniques of Self-Assembly Monolayer and Chemical Bath Deposition” Appl. Phys. Lett. 90, 143517 (2007)
65. C. H. Chang and Y. L. Lee, “Chemical Bath Deposition of CdS Quantum Dots onto Mesoscopic TiO2 Films for Application in Quantum-Dot-Sensitized Solar Cells” Appl. Phys. Lett .91, 053503 (2007).
66. 林昇志, “量子點的組裝及其在染料敏化太陽能電池的應用” 國立成功大學化學工程學系碩士論文 民國95年
67. A. Zaban, O. I. Mićić, B. A. Gregg, and A. J. Nozik, “Photosensitization of Nanoporous TiO2 Electrodes with InP Quantum Dots” Langmuir 14, 3153 (1998).
68. Y. Tian and T. Tatsuma, “Mechanisms and Applications of Plasmon-Induced Charge Separation at TiO2 Films Loaded with Gold Nanoparticles” J. Am. Chem. Soc. 127, 7632 (2005).
69. L. J. Diguna, Q. Shen, J. Kobayashi and T. Toyoda, “High efficiency of CdSe quantum-dot-sensitized TiO2 inverse opal solar cells” Appl. Phys. Lett. 91, 023116 (2007)
70. Y. L. Lee, Y. S. Lo, “Highly Efficient Quantum-Dot-Sensitized Solar Cell Based on Co-Sensitization of CdS/CdSe” Adv. Funct. Mater. 19, 604 (2009)
71. M. Grätzel, “Photoelectrochemical cells” Nature 414, 338 (2001)
72. S. M. Yang, C. H. Huang, J. Zhai, Z. S. Wang and L. Jiang, “High Photostability and Quantum Yield of Nanoporous TiO2 Thin Film Electrodes Co-Sensitized with Capped Sulfides” J. Mater. Chem. 12, 1459 (2002)
73. M.E. Rincon, M, Sanchez, A. Olea, I. Ayala, P.K. Nair, “Photoelectrochemical behavior of chemically deposited CdSe and coupled CdS/CdSe semiconductor films”Sol. Energy Mater. Sol. Cells 52 , 399 (1998)
74. M.E. Rincon, A. Jimenez, A. Orihuela, G. Martinez,“Thermal treatment effects in the photovoltaic conversion of spray-painted TiO2 coatings sensitized by chemically deposited CdSe thin films” Sol. Energy Mater. Sol. Cells 70 , 163 (2001)
75. Q. Shen and T. Toyoda, “Characterization of Nanostructured TiO2 Electrodes Sensitized with CdSe Quantum Dots Using Photoacoustic and Photoelectrochemical Current Methods” Jpn J. Appl. Phys. 43, 2946 (2004)
76. G. Milczareka, A. Kasuyab, S. Mamykinb, T. Araib, K. Shinodab and K. Tohji, “Optimization of a two-compartment photoelectrochemical cell for solar hydrogen production” Int. J. Hydrogen Energy 28, 919 (2003)
77. C. H. J. Liu, J. Olsen, D. R. Saunders and J. H. Wang, “Photoactivation of CdSe Films for Photoelectrochemical Cells” J. Electrochem. Soc. 128, 1224 (1981)
78. Y. Ueno, H. Minoura, T. Nishikawa and M. Tsuiki, “Electrophoretically Deposited CdS and CdSe Anodes for Photoelectrochemical Cells” J. Electrochem. Soc. 130, 43 (1983)
79. Y. Bessekhouada, M. Mohammedib and M. Trari, “Hydrogen photoproduction from hydrogen sulfide on Bi2S3 catalyst”Sol. Energy Mater. Sol. Cells 73, 339 (2002)
80. S. Licht, “A desription of energy conversion in photoelectrochemical solar cells” Nature 330, 148 (1987)
81. Y. L. Lee and C. H. Chang, “Efficient polysulfide electrolyte for CdS quantum dot-sensitized solar cells” J. Power Sources 185, 584 (2008)
82. R. S. Mane, S. J. Roh, O.S. Joo, C. D. Lokhande, S. H. Han, “Improved Performance of Dense TiO2/CdSe Coupled Thin Films by Low Temperature Process” Electrochim. Acta 50, 2453 (2005)
83. J. V. D. Lagemaat and A. J. Frank, “Nonthermalized Electron Transport in Dye-Sensitized Nanocrystalline TiO2 Films : Transient Photocurrent and Random-Walk Modeling Studies” J. Phys. Chem. B 105, 11194 (2001)
84. A. C. Fisher, L. M. Peter, E. A. Ponomarev, A. B. Walker, and K. G. U. Wijayantha, “Intensity Dependence of the Back Reaction and Transport of Electrons in Dye-Sensitized Nanocrystalline TiO2 Solar Cells” J. Phys. Chem. B 104, 949 (2000)
85. Allen J. Bard Mark S. Wrighton, “Thermodynamic Potential for the Anodic Dissolution of n-Type Semiconductor” J. Electrochem. Soc.124,1706 (1977)
86. H. Metin, R. Esen “Annealing studies on SILARgrown CdS thin films” J. of Crystal Growth 258,141 (2003)
87. Hikmat S. Hilal , Rania M.A. Ismail, Amer El-Hamouz, Ahed Zyoud, Iyad Saadeddin “Effect of cooling rate of pre-annealed CdS thin film electrodes prepared by chemical bath deposition: Enhancement of photoelectrochemical characteristics” Electrochimica Acta 54,3433 (2009)
88. R Jayakrishnan, S R Kumar and R K Pandeyt “Rapid thermal annealing of multiple dip-coated CdS films” Semimnd. Sci. Technoi. 9,97 (1994)
89. 廖士懿, “硫化鎘與硒化鎘敏化TiO2光電極在光電化學系統產氫之研究” 國立成功大學化學工程學系碩士論文 民國98年
90. Zelaya-Angel, O.,“Band-gap shift in CdS: phase transition from cubic to hexagonal on thermal annealing” Vacuum 46,1083 (1995) .
91. Sathish, M. and R.P. Viswanath, “Photocatalytic generation of hydrogen over mesoporous CdS nanoparticle: Effect of particle size, noble metal and support”Catalysis Today 129,421 (2007)
92. Koide, N.; Islam, A.; Chiba, Y.; Han, L. Y., “Improvement of efficiency of dye-sensitized solar cells based on analysis of equivalent circuit”J. Photochem. Photobiol. A-Chem. 182,296 (2006).