| 研究生: |
杜育任 Du, Yu-Ren |
|---|---|
| 論文名稱: |
(Cu2Ge)x/3Zn1-xSe奈米晶液相合成及可調控能隙研究 Solution-phase synthesis and tunable bandgap of (Cu2Ge)x/3Zn1-xSe nanocrystals |
| 指導教授: |
林文台
Lin, Wen-Tai |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 119 |
| 中文關鍵詞: | (Cu2Ge)x/3Zn1-xSe奈米晶 、核殼結構 、濕式化學合成 、能隙調控 |
| 外文關鍵詞: | (Cu2Ge)x/3Zn1-xSe nanocrystals, core-shell structure, wet-chemical synthesis, tunable bandgap |
| 相關次數: | 點閱:69 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗以液相法於單一反應系統中(one-pot system)利用Cu2GeSe3 (CGSe)奈米晶為模板,在270℃反應18-36小時,並以不同Zn濃度為參數合成(Cu2Ge)x/3Zn1-xSe (0.75≦x<1)奈米晶。隨著Zn前驅物濃度及反應時間的增加,由Raman光譜儀分析,CGSe模板依序轉換成(1)CGSe與CGSe-ZnSe固溶體,(2)CGSe、CGSe-ZnSe與Cu2ZnGeSe4(CZGSe),(3)CZGSe。由穿透式電子顯微鏡分析(Cu2Ge)x/3Zn1-xSe奈米晶,其Zn濃度由外往內逐漸降低的CGSe/(CGSe-ZnSe)/CZGSe之單晶核殼(core-shell)結構,而其CGSe、CGSe-ZnSe與CZGSe的相對量取決於Zn的濃度與反應時間。本實驗(Cu2Ge)x/3Zn1-xSe奈米晶的能隙調控範圍達1.09-1.46 eV,此值涵蓋可見光及近紅外光的區域,顯示此(Cu2Ge)x/3Zn1-xSe奈米晶在太陽能電池之應用上是有益的。
(Cu2Ge)x/3Zn1-xSe (0.75≦x<1) nanocrystals were synthesized at 270°C for 18-36 h as a function of the Zn concentration in a one-pot system via the solution-phase route by using the Cu2GeSe3 (CGSe) nanocrystals as the templates. With increasing the concentration of Zn precursor and growth time the CGSe templates sequentially transformed to (1)CGSe and CGSe-ZnSe solid solution, (2)CGSe, CGSe-ZnSe, and Cu2ZnGeSe4 (CZGSe), and (3)CZGSe from Raman spectroscopy analyses. From transmission electron microscopy analyses for (Cu2Ge)x/3Zn1-xSe nanocrystals, a core-shell structure of CGSe/(CGSe-ZnSe)/CZGSe with an inward decrease in the Zn concentration was observed in the single crystal, where the relative amount of CGSe, CGSe-ZnSe, and CZGSe depended on the Zn concentration and growth time. In the present study, the band gap of (Cu2Ge)x/3Zn1-xSe nanocrystals can be tuned in the range of 1.09-1.46 eV, which are over the visible and near-infrared region, showing that they may be beneficial for photovoltaic applications.
[1] B. Li, L. D. Wang, B. N. Kang, P. Wang, and Y. Qiu, "Review of recent progress in solid-state dye-sensitized solar cells," Solar Energy Materials and Solar Cells, vol. 90, pp. 549-573, 2006.
[2] G. Michael, "Photoelectrochemical cells," Nature, vol. 414, pp. 338-344, 2001.
[3] 林明獻, 太陽電池入門技術. 台北: 全華圖書股份有限公司, 2007.
[4] D. M. Chapin, C. S. Fuller, and G. L. Pearson, "A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power," Journal of Applied Physics, vol. 25, pp. 676-677, 1954.
[5] C. D. Grant, A. M. Schwartzberg, G. P. Smestad, J. Kowalik, L. M. Tolbert, and J. Z. Zhang, "Characterization of nanocrystalline and thin film TiO2 solar cells with poly(3-undecyl-2,2-bithiophene) as a sensitizer and hole conductor," Journal of Electroanalytical Chemistry, vol. 522, pp. 40-48, 2002.
[6] 蔡進譯, "超高效率太陽電池--從愛因斯坦的光電效應談起," 物理, vol. 27, pp. 701-719, 2005.
[7] M. A. Green, Third Generation Photovoltaics: Advanced Solar Energy Conversion: Springer, 2003.
[8] 顧鴻濤, 太陽能電池元件導論-材料、元件、製程、系統. 台北: 全威圖書有限公司, 2008.
[9] A. Martí and G. L. Araújo, "Limiting efficiencies for photovoltaic energy conversion in multigap systems," Solar Energy Materials and Solar Cells, vol. 43, pp. 203-222, 1996.
[10] A. D. Vos, "Detailed balance limit of the efficiency of tandem solar cells," Journal of Physics D: Applied Physics, vol. 13, p. 839, 1980.
[11] W. Ma, J. M. Luther, H. Zheng, Y. Wu, and A. P. Alivisatos, "Photovoltaic Devices Employing Ternary PbSxSe1-x Nanocrystals," Nano Letters, vol. 9, pp. 1699-1703, 2009.
[12] J. J. Buckley, F. A. Rabuffetti, H. L. Hinton, and R. L. Brutchey, "Synthesis and Characterization of Ternary SnxGe1-xSe Nanocrystals," Chemistry of Materials, vol. 24, pp. 3514-3516, 2012.
[13] J. Sharma, G. Singh, A. Thakur, G. Saini, N. Goyal, and S. Tripathi, "Preparation and characterization of SnSe nanocrystalline thin films," Journal of Optoelectronics and Advanced Materials, vol. 7, pp. 2085-2094, 2005.
[14] B. Pejova and I. Grozdanov, "Chemical synthesis, structural and optical properties of quantum sized semiconducting tin(II) selenide in thin film form," Thin Solid Films, vol. 515, pp. 5203-5211, 2007.
[15] M. A. Franzman, C. W. Schlenker, M. E. Thompson, and R. L. Brutchey, "Solution-Phase Synthesis of SnSe Nanocrystals for Use in Solar Cells," Journal of the American Chemical Society, vol. 132, pp. 4060-4061, 2010.
[16] W. J. Baumgardner, J. J. Choi, Y.-F. Lim, and T. Hanrath, "SnSe Nanocrystals: Synthesis, Structure, Optical Properties, and Surface Chemistry," Journal of the American Chemical Society, vol. 132, pp. 9519-9521, 2010.
[17] X. Zhong, Y. Feng, W. Knoll, and M. Han, "Alloyed ZnxCd1-xS Nanocrystals with Highly Narrow Luminescence Spectral Width," Journal of the American Chemical Society, vol. 125, pp. 13559-13563, 2003.
[18] S. Coe-Sullivan, W.-K. Woo, J. S. Steckel, M. Bawendi, and V. Bulović, "Tuning the performance of hybrid organic/inorganic quantum dot light-emitting devices," Organic Electronics, vol. 4, pp. 123-130, 2003.
[19] T. Kuykendall, P. Ulrich, S. Aloni, and P. Yang, "Complete composition tunability of InGaN nanowires using a combinatorial approach," Nature materials, vol. 6, pp. 951-956, 2007.
[20] P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, et al., "New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%," Progress in Photovoltaics: Research and Applications, vol. 19, pp. 894-897, 2011.
[21] W. N. Shafarman, R. Klenk, and B. E. McCandless, "Device and material characterization of Cu(InGa)Se2 solar cells with increasing band gap," Journal of Applied Physics, vol. 79, pp. 7324-7328, 1996.
[22] J. Tang, S. Hinds, S. O. Kelley, and E. H. Sargent, "Synthesis of Colloidal CuGaSe2, CuInSe2, and Cu(InGa)Se2 Nanoparticles," Chemistry of Materials, vol. 20, pp. 6906-6910, 2008.
[23] H. Nakamura, W. Kato, M. Uehara, K. Nose, T. Omata, S. Otsuka-Yao-Matsuo, et al., "Tunable Photoluminescence Wavelength of Chalcopyrite CuInS2-Based Semiconductor Nanocrystals Synthesized in a Colloidal System," Chemistry of Materials, vol. 18, pp. 3330-3335, 2006.
[24] D. Pan, X. Wang, Z. H. Zhou, W. Chen, C. Xu, and Y. Lu, "Synthesis of Quaternary Semiconductor Nanocrystals with Tunable Band Gaps," Chemistry of Materials, vol. 21, pp. 2489-2493, 2009.
[25] H. Wei, Z. Ye, M. Li, Y. Su, Z. Yang, and Y. Zhang, "Tunable band gap Cu2ZnSnS4xSe4(1-x) nanocrystals: experimental and first-principles calculations," Crystengcomm, vol. 13, pp. 2222-2226, 2011.
[26] Z. Q. Li, J. H. Shi, Q. Q. Liu, Y. W. Chen, Z. Sun, Z. Yang, et al., "Large-scale growth of Cu2ZnSnSe4 and Cu2ZnSnSe4/Cu2ZnSnS4 core/shell," Nanotechnology, vol. 22, pp. 265615, 2011.
[27] P. Dai, X. Shen, Z. Lin, Z. Feng, H. Xu, and J. Zhan, "Band-gap tunable (Cu2Sn)(x/3)Zn(1-x)S nanoparticles for solar cells," Chemical Communications, vol. 46, pp. 5749-5751, 2010.
[28] Q. Liu, Z. Zhao, Y. Lin, P. Guo, S. Li, D. Pan, et al., "Alloyed (ZnS)(x)(Cu2SnS3)(1-x) and (CuInS2)(x)(Cu2SnS3)(1-x) nanocrystals with arbitrary composition and broad tunable band gaps," Chemical Communications, vol. 47, pp. 964-966, 2011.
[29] G. M. Ford, Q. Guo, R. Agrawal, and H. W. Hillhouse, "Earth Abundant Element Cu2Zn(Sn1-xGex)S4 Nanocrystals for Tunable Band Gap Solar Cells: 6.8% Efficient Device Fabrication," Chemistry of Materials, vol. 23, pp. 2626-2629, 2011.
[30] L. K. Samanta, "On some properties of I2-IV-VI3 compounds," physica status solidi (a), vol. 100, pp. K93-K97, 1987.
[31] L. I. Berger, In Ternary Diamond-like Semiconductors. New York: Consultants Bureau, 1969.
[32] R. Echeverría, L. Nieves, and G. Marcano, "Temperature Dependence of the Optical Properties of Manganese-Doped Cu2GeSe3," physica status solidi (b), vol. 220, pp. 285-288, 2000.
[33] G. Marcano and L. Nieves, "Temperature dependence of the fundamental absorption edge in Cu2GeSe3," Journal of Applied Physics, vol. 87, pp. 1284-1286, 2000.
[34] L. S. Palatnik, V. M. Koshkin, L. P. Galchinetskii, V. I. Kolesnikov, Y. F. Komnik, and F. Tverd, TELA, vol. 4, p. 1430, 1962.
[35] M. Ibáñez, R. Zamani, W. Li, D. Cadavid, S. Gorsse, N. A. Katcho, et al., "Crystallographic Control at the Nanoscale To Enhance Functionality: Polytypic Cu2GeSe3 Nanoparticles as Thermoelectric Materials," Chemistry of Materials, vol. 24, pp. 4615-4622, 2012.
[36] H. Hahn, W. Klingen, P. Ness, and H. Schulze, "Ternäre Chalkogenide mit Silicium, Germanium und Zinn," Naturwissenschaften, vol. 53, pp. 18-18, 1966.
[37] E. Parthé and J. Garin, "Zinkblende- und Wurtzitüberstrukturen bei ternären Chalkogeniden der Zusammensetzung 12463," Monatshefte für Chemie / Chemical Monthly, vol. 102, pp. 1197-1208, 1971.
[38] B. K. Sarkar, A. S. Verma, and P. S. Deviprasad, "Temperature induced band gap shrinkage in Cu2GeSe3: Role of electron–phonon interaction," Physica B: Condensed Matter, vol. 406, pp. 2847-2850, 2011.
[39] G. Marcano, C. Rincón, G. Marín, G. E. Delgado, A. J. Mora, J. L. Herrera-Pérez, et al., "Raman scattering and X-ray diffraction study in Cu2GeSe3," Solid State Communications, vol. 146, pp. 65-68, 2008.
[40] R. Nitsche, D. F. Sargent, and P. Wild, "Crystal growth of quaternary 122464 chalcogenides by iodine vapor transport," Journal of Crystal Growth, vol. 1, pp. 52-53, 1967.
[41] E. Parthé, K. Yvon, and R. H. Deitch, "The crystal structure of Cu2CdGeS4 and other quaternary normal tetrahedral structure compounds," Acta Crystallogr. B, vol. 25, pp. 1164-1174, 1969.
[42] D. M. Schleich and A. Wold, "Optical and electrical properties of quarternary chalcogenides," Materials Research Bulletin, vol. 12, pp. 111-114, 1977.
[43] W. Schäfer and R. Nitsche, "Tetrahedral quaternary chalcogenides of the type Cu2 II IV S4(Se4)," Materials Research Bulletin, vol. 9, pp. 645-654, 1974.
[44] T. M. Friedlmeier, H. Dittrich, and H. W. Schock, "Growth and characterization of Cu2ZnSnS4 and Cu2ZnSnSe4 thin films for photovoltaic applications," The 11th Conference on Ternary and Multinary Compounds, ICTMC-11, pp. 345-348, 1997.
[45] L. Guen, W. S. Glaunsinger, and A. Wold, "Physical properties of the quarternary chalcogenides Cu2IBIICIVX4 (BII = Zn, Mn, Fe, Co; CIV = Si, Ge, Sn; X = S, Se)," Materials Research Bulletin, vol. 14, pp. 463-467, 1979.
[46] L. Guen and W. S. Glaunsinger, "Electrical, magnetic, and EPR studies of the quaternary chalcogenides Cu2AIIBIVX4 prepared by iodine transport," Journal of Solid State Chemistry, vol. 35, pp. 10-21, 1980.
[47] B. Shin, O. Gunawan, Y. Zhu, N. A. Bojarczuk, S. J. Chey, and S. Guha, "Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber," Progress in Photovoltaics: Research and Applications, vol. 21, pp. 72-76, 2013.
[48] I. Repins, C. Beall, N. Vora, C. DeHart, D. Kuciauskas, P. Dippo, et al., "Co-evaporated Cu2ZnSnSe4 films and devices," Solar Energy Materials and Solar Cells, vol. 101, pp. 154-159, 2012.
[49] D. A. R. Barkhouse, O. Gunawan, T. Gokmen, T. K. Todorov, and D. B. Mitzi, "Device characteristics of a 10.1% hydrazine-processed Cu2ZnSn(Se,S)4 solar cell," Progress in Photovoltaics: Research and Applications, vol. 20, pp. 6-11, 2012.
[50] M. Ibáñez, R. Zamani, A. LaLonde, D. Cadavid, W. Li, A. Shavel, et al., "Cu2ZnGeSe4 Nanocrystals: Synthesis and Thermoelectric Properties," Journal of the American Chemical Society, vol. 134, pp. 4060-4063, 2012.
[51] O. V. Parasyuk, L. D. Gulay, Y. E. Romanyuk, and L. V. Piskach, "Phase diagram of the Cu2GeSe3–ZnSe system and crystal structure of the Cu2ZnGeSe4 compound," Journal of Alloys and Compounds, vol. 329, pp. 202-207, 2001.
[52] S. Nakamura, T. Maeda, and T. Wada, "Phase Stability and Electronic Structure of In-Free Photovoltaic Materials: Cu2ZnSiSe4, Cu2ZnGeSe4, and Cu2ZnSnSe4," Japanese Journal of Applied Physics, vol. 49, pp. 121203, 2010.
[53] H. Matsushita, T. Maeda, A. Katsui, and T. Takizawa, "Thermal analysis and synthesis from the melts of Cu-based quaternary compounds Cu-III-IV-VI4 and Cu2-II-IV-VI4 (II = Zn, Cd; III = Ga, In; IV = Ge, Sn; VI = Se)," Journal of Crystal Growth, vol. 208, pp. 416-422, 2000.
[54] S. Chen, X. G. Gong, A. Walsh, and S.-H. Wei, "Electronic structure and stability of quaternary chalcogenide semiconductors derived from cation cross-substitution of II-VI and I-III-VI2 compounds," Physical Review B, vol. 79, p. 165211, 2009.
[55] P. Uday Bhaskar, G. Suresh Babu, Y. B. Kishore Kumar, and V. Sundara Raja, "Preparation and characterization of co-evaporated Cu2ZnGeSe4 thin films," Thin Solid Films, vol. 534, pp. 249-254, 2013.
[56] G. S. Babu, Y. B. K. Kumar, P. U. Bhaskar, and V. S. Raja, "Growth and characterization of co-evaporated Cu2ZnSnSe4 thin films for photovoltaic applications," Journal of Physics D-Applied Physics, vol. 41, p. 205305, 2008.
[57] R. Adhi Wibowo, E. Soo Lee, B. Munir, and K. Ho Kim, "Pulsed laser deposition of quaternary Cu2ZnSnSe4 thin films," physica status solidi (a), vol. 204, pp. 3373-3379, 2007.
[58] H. Katagiri, K. Jimbo, W. S. Maw, K. Oishi, M. Yamazaki, H. Araki, et al., "Development of CZTS-based thin film solar cells," Thin Solid Films, vol. 517, pp. 2455-2460, 2009.
[59] T. K. Todorov, K. B. Reuter, and D. B. Mitzi, "High-Efficiency Solar Cell with Earth-Abundant Liquid-Processed Absorber," Advanced Materials, vol. 22, pp. E156-E159, 2010.
[60] M. Grossberg, J. Krustok, K. Timmo, and M. Altosaar, "Radiative recombination in Cu2ZnSnSe4 monograins studied by photoluminescence spectroscopy," Thin Solid Films, vol. 517, pp. 2489-2492, 2009.
[61] H. Katagiri, K. Saitoh, T. Washio, H. Shinohara, T. Kurumadani, and S. Miyajima, "Development of thin film solar cell based on Cu2ZnSnS4 thin films," Solar Energy Materials and Solar Cells, vol. 65, pp. 141-148, 2001.
[62] C. Steinhagen, M. G. Panthani, V. Akhavan, B. Goodfellow, B. Koo, and B. A. Korgel, "Synthesis of Cu2ZnSnS4 Nanocrystals for Use in Low-Cost Photovoltaics," Journal of the American Chemical Society, vol. 131, pp. 12554-12555, 2009.
[63] Q. Guo, H. W. Hillhouse, and R. Agrawal, "Synthesis of Cu2ZnSnS4 Nanocrystal Ink and Its Use for Solar Cells," Journal of the American Chemical Society, vol. 131, pp. 11672-11673, 2009.
[64] A. Shavel, J. Arbiol, and A. Cabot, "Synthesis of Quaternary Chalcogenide Nanocrystals: Stannite Cu2ZnxSnySe(1+x+2y)," Journal of the American Chemical Society, vol. 132, pp. 4514-4515, Apr 7 2010.
[65] H. Katagiri, "Cu2ZnSnS4 thin film solar cells," Thin Solid Films, vol. 480, pp. 426-432, 2005.
[66] S. Chen, X. G. Gong, A. Walsh, and S.-H. Wei, "Crystal and electronic band structure of Cu2ZnSnX4 (X=S and Se) photovoltaic absorbers: First-principles insights," Applied Physics Letters, vol. 94, pp. 041903, 2009.
[67] M.-L. Liu, I. W. Chen, F.-Q. Huang, and L.-D. Chen, "Improved Thermoelectric Properties of Cu-Doped Quaternary Chalcogenides of Cu2CdSnSe4," Advanced Materials, vol. 21, pp. 3808-3812, 2009.
[68] H. Yoon, J. E. Granata, P. Hebert, R. R. King, C. M. Fetzer, P. C. Colter, et al., "Recent advances in high-efficiency III-V multi-junction solar cells for space applications: Ultra triple junction qualification," Progress in Photovoltaics, vol. 13, pp. 133-139, 2005.
[69] Y.-T. Zhai, S. Chen, J.-H. Yang, H.-J. Xiang, X.-G. Gong, A. Walsh, et al., "Structural diversity and electronic properties of Cu2SnX3 (X = S, Se): A first-principles investigation," Physical Review B, vol. 84, p. 075213, 2011.
[70] 汪建民等人, "材料分析," 中國材料科學學會, 1998.
[71] R. L. Weiher and R. P. Ley, "Optical Properties of Indium Oxide," Journal of Applied Physics, vol. 37, pp. 299-302, 1966.
[72] C. V. Raman, "A change of wave-length in light scattering," Nature, vol. 121, p. 619, 1928.
[73] A. Myers Kelley, "Resonance Raman and Resonance Hyper-Raman Intensities: Structure and Dynamics of Molecular Excited States in Solution," The Journal of Physical Chemistry A, vol. 112, pp. 11975-11991, 2008.
[74] L. Cristiano Santos, F. Carlos Eugênio, S. Francisco Carlos, J. Pedro Rodrigues, J. Alcione Roberto, J. Jorge Luiz Pimentel, et al., "Raman spectroscopy of highly oriented FeSe0.5Te0.5 superconductor," Superconductor Science and Technology, vol. 25, p. 025014, 2012.
[75] S. H. Tolbert, A. B. Herhold, C. S. Johnson, and A. P. Alivisatos, "Comparison of Quantum Confinement Effects on the Electronic Absorption Spectra of Direct and Indirect Gap Semiconductor Nanocrystals," Physical Review Letters, vol. 73, pp. 3266-3269, 1994.
[76] G. Suresh Babu, Y. B. Kishore Kumar, P. Uday Bhaskar, and S. Raja Vanjari, "Effect of Cu/(Zn+Sn) ratio on the properties of co-evaporated Cu2ZnSnSe4 thin films," Solar Energy Materials and Solar Cells, vol. 94, pp. 221-226, 2010.