簡易檢索 / 詳目顯示

研究生: 林宏軒
Lin, Hung-Hsuan
論文名稱: 錳-鑭系混金屬之合成及磁性研究
Syntheses and magnetic studies of manganese-lanthanide complexes
指導教授: 蔡惠蓮
Tsai, Hui-Lien
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 138
中文關鍵詞: 錳-鑭系混金屬磁異向能單分子磁鐵
外文關鍵詞: manganese-lanthanide complexes, magnetic anisotropy, Single Molecule Magnets
相關次數: 點閱:104下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文分三部分,第一部分利用Mn(NO3)2∙4H2O 和 Dy(NO3)3∙6H2O和配位基(Hnppd)反應得到一維鍊狀聚合物 {[MnIIDy-III(nppd)2(NO3)3(MeOH)]•2MeOH∙2H2O}∞ (1•Dy),利用單晶X-ray繞射確認其結構。從直流磁化率(direct current susceptibility, dc)測量,顯示化合物1•Dy分子內金屬間存有順鐵磁(ferromagnetic)作用力。從交流磁化率(alternating current susceptibility, ac)的虛數訊號,顯示化合物1•Dy具有磁緩現象。第二部分利用H2saph、Mn(OAc)2∙4H2O以及Ln(OAc)3反應,得到一系列四核混金屬錯化合物[MnIII2LnIII2(saph)2(OAc)6(OMe)2] (Ln = Tb (2•Tb), Dy (3•Dy), Ho (4•Ho)),,皆利用單晶X-ray繞射確認其結構。施加不同外加磁場下化合物2•Tb~4•Ho的交流磁化率,探討抑制量子穿隧效應(quantum tunneling of magnetization, QTM)的現象。第三部分利用 Hpyp、Mn(OAc)2∙4H2O以及Ln(OAc)3反應,得到一系列四核混金屬錯化合物 [MnII2LnIII2(pyp)2(OAc)6(OMe)2(MeOH)2] (Ln = Gd (5•Gd), Tb (6•Tb), Dy (7•Dy), Ho (8•Ho), Er (9•Er)),利用單晶X-ray繞射確認其結構。從直流磁化率測量,顯示化合物5•Gd−9•Er分子內金屬間存有反鐵磁(antiferromagnetic)作用力。

    This thesis consists of three parts. The first part, the 1-D chain complex {[MnIIDyIII(nppd)2(NO3)3(MeOH)]•2MeOH∙2H2O}∞ (1•Dy) was synthesized from the reaction of Mn(NO3)2∙4H2O and Dy(NO3)3∙6H2O with Hnppd ligand. The struc-ture of complex 1•Dy was determined by single crystal X-ray crystallography. Di-recting current (dc) magnetic susceptibility of the complex 1•Dy indicates the exhibition of intramolecular ferromagnetic interactions between the metal ions. The complex exhibits frequency-dependent out-of-phase signals in alternating current (ac) magnetic susceptibility measurement, indicating the slow magnetic relaxation behaviors. The second part, the isostructural series of tetranuclear complexes [MnIII2LnIII2(saph)2(OAc)6(OMe)2] (Ln = Tb (2•Tb), Dy (3•Dy), Ho (4•Ho)), were synthesized from the reactions of H2saph with lanthanide acetate salts and Mn(OAc)2∙4H2O. The structures of these complexes were determined by single crystal X-ray crystallography. The various magnetic properties of complexes 2•Tb−4•Ho were studied, and the elimination of QTM was measured by the ac magnetic susceptibility under different applied fields. The third part, the isostructural series of tetranuclear complexes [MnII2LnIII2(pyp)2(OAc)6(OMe)2(MeOH)2] (Ln = Gd (5•Gd), Tb (6•Tb), Dy (7•Dy), Ho (8•Ho), Er (9•Er)), were synthesized from the reactions of Hpyp with lanthanide acetate salts and Mn(OAc)2∙4H2O. The structures of these complexes were determined by single crystal X-ray crystallography. Directing current (dc) magnetic susceptibilities of the complexes 5•Gd−9•Er indicate the exhibition of intramolecular antiferromagnetic interactions between the metal ions.

    Contents Abstract in Chinese 中文摘要 I Abstract II 誌謝 III Chapter 1 Synthesis, Structure and Magnetic Properties of a 3d-4f MnIIDyIII Complex: {[MnIIDyIII(nppd)2(NO3)3(MeOH)]•2MeOH∙2H2O}∞ 1 I. Introduction 2 II. Experimental 6 II. 1. Synthesis 6 II. 2. X-ray crystallography 7 II. 3. Physical measurements 9 III. Results and discussion 9 III. 1. Synthesis 9 III. 2. Description of structures 11 III. 3. Magnetic properties 19 IV. Conclusion 27 V. References 28 Chapter 2 Syntheses, Structures and Magnetic Properties of 3d-4f MnIII2LnIII2 Complexes: [MnIII2LnIII2(saph)2(OAc)6(OMe)2] (Ln = Tb, Dy, and Ho) 32 I. Introduction 33 II. Experimental 39 II. 1. Synthesis 39 II. 2. X-ray crystallography 41 II. 3. Physical measurements 44 III. Results and discussion 44 III. 1. Synthesis 44 III. 2. Description of structures 46 III. 3. Magnetic properties 54 IV. Conclusion 71 V. References 72 Chapter 3 Syntheses, Structures and Magnetic Properties of 3d-4f MnII2LnIII2 Complexes: [MnII2LnIII2(pyp)2(OAc)6(OMe)2(MeOH)2] (Ln = Gd, Tb, Dy, Ho, and Er) 79 I. Introduction 80 II. Experimental 84 II. 1. Synthesis 84 II. 2. X-ray crystallography 87 II. 3. Physical measurements 91 III. Results and discussion 92 III. 1. Synthesis 92 III. 2. Description of structures 93 III. 3. Magnetic properties 102 IV. Conclusion 123 V. References 124 Appendix 129 List of Tables Chapter 1 Table 1.1. The Mn-Ln Coordination Polymers 4 Table 1.2. Crystallographic Data for 1•Dy 8 Table 1.3. Selected Bond Lengths[Å] and Angles[°] for Complex 1•Dy 12 Table 1.4. Bond Valence Sum Caculations of Metal Atoms for Complex 1•Dy 17 Table 1.5 Bond Valence Sum Calculations of Oxygen Atom in Complex 1•Dya. 17 Table 1.6. Other Cases Use the Bartolomé et al Method to Calculate the Energy Barrier. 23 Chapter 2 Table 2.1. The Mn2Ln2 Clusters in Literatures. 35 Table 2.2. Crystallographic Data for 2•Tb−4•Ho 42 Table 2.3. Selected Bond Lengths[Å] and Angles[°] for Complexes 2•Tb−4•Ho 49 Table 2.4. The Bond Valence Sum Calculations of Metal Atoms in Complexes 2•Tb−4•Ho. 53 Chapter 3 Table 3.1. The Mn2Ln2 Clusters with Defect-dicubane Core Structure in Literatures. 82 Table 3.2. Crystallographic Data for 5•Gd−9•Er 88 Table 3.3. Selected Bond Lengths [Å] and Angles [°] for Complexes 5•Gd−9•Er 97 Table 3.4. The Bond Valence Sum Calculations of Metal Atoms in Complexes 5•Gd−9•Er. 101 List of Figures Chapter 1 Figure 1.1. Simulated and measured XRPD patterns of complex 1•Dy. 10 Figure 1.2. A heterometallic dinuclear unit of 1•Dy. 13 Figure 1.3. A view of showing the coordination environments around Mn(1) and Dy(1) and edge-sharing of the two contiguous polyhedrons. 13 Figure 1.4. View of the double-layered 1-D chain along the a axis. 14 Figure 1.5. View of the double-layered 1-D chain along the b axis. 14 Figure 1.6. (a) Distorted octahedral geometry around MnII ion. (b) Distorted monocapped square antiprismatic geometry around DyIII ion. 15 Figure 1.7. Intramolecular hydrogen bonding interactions (dashed lines) in complex 1•Dy. 18 Figure 1.8. Plot of χMT vs. T for complex 1•Dy. 21 Figure 1.9. Plots of the reduced magnetization (M/Nβ) vs. H/T for complex 1•Dy at 0-70 kOe and at 2.0-4.0 K. 21 Figure 1.10. (a) Plots of χM'T and (b) χM” vs. temperature for a microcrystalline sample of complex 1•Dy under a zero dc field in a 3.5 Oe ac field oscillating at the indicated frequency. 25 Figure 1.11. Plots of χM” vs. frequency for 1•Dy under 0-10 kOe at 1.8 K 26 Figure 1.12. Plot of ln(χ"/χ') vs 1/T for 1•Dy at different frequencies of the 3.5 G oscillating ac field. The solid lines are the best-fit curves. 26   Chapter 2 Figure 2.1. Simulated and measured XRPD patterns of complexes 2•Tb−4•Ho. 45 Figure 2.2. (a) Molecular structure of 2•Tb; hydrogen atoms and solvent molecules were omitted for clarity. (b) A view of showing the edge-sharing of the four contiguous polyhedra. 48 Figure 2.3. Distorted square pyramidal geometry around Mn(1). 50 Figure 2.4. A hula-hoop-like geometry around Ln(1) (Ln = Tb, Dy and Ho). 50 Figure 2.5. Lanthanide contraction for complexes 2•Tb−4•Ho. 52 Figure 2.6. Cation–π interactions between MnIII ions and benzenes in complexes 2•Tb−4•Ho to form a 1D polymeric chain. 52 Figure 2.7. Plots of χM T vs. T for complexes 2•Tb−4•Ho. 56 Figure 2.8. Plots of χM-1 vs. T (solid lines are linear fit to Curie-Weiss law in the temperature range of 50-300 K) for complexes 2•Tb−4•Ho. 56 Figure 2.9. Plots of the reduced magnetization (M/Nβ) vs. H/T for complex 2•Tb at 0−70 kOe and at 2.0−4.0 K. 58 Figure 2.10. Plots of the reduced magnetization (M/Nβ) vs. H/T for complex 3•Dy at 0−70 kOe and at 2.0−4.0 K. 58 Figure 2.11. Plots of the reduced magnetization (M/Nβ) vs. H/T for complex 4•Ho at 0−70 kOe and at 2.0−4.0 K. 59 Figure 2.12. (a) Plots of χM'T and (b) χM' vs. temperature for a microcrystalline sample of complex 2•Tb under a zero dc field in a 3.5 Oe ac field oscillating at the indicated frequency. 63 Figure 2.13. Plots of χM” vs. frequency for 2•Tb under 0-10 kOe at 1.8 K 64 Figure 2.14. (a) Plots of χM'T and (b) χM' vs. temperature for a microcrystalline sample of complex 2•Tb under a applied 3000 Oe dc field in a 3.5 Oe ac field oscillating at the indicated frequency. 65 Figure 2.15. Plot of ln(χ"/χ') vs 1/T for 2•Tb at different frequencies of the 3.5 G oscillating ac field. The solid lines are the best-fit curves. 66 Figure 2.16. (a) Plots of χM'T and (b) χM' vs. temperature for a microcrystalline sample of complex 3•Dy under a zero dc field in a 3.5 Oe ac field oscillating at the indicated frequency. 67 Figure 2.17. Plots of χM' vs. frequency for 3•Tb under 0-10 kOe at 1.8 K 68 Figure 2.18. Plot of ln(χ"/χ') vs 1/T for 3•Dy at different frequencies of the 3.5 G oscillating ac field. The solid lines are the best-fit curves. 68 Figure 2.19. (a) Plots of χM'T and (b) χM' vs. temperature for a microcrystalline sample of complex 4•Ho under a zero dc field in a 3.5 Oe ac field oscillating at the indicated frequency. 69 Figure 2.20. Plots of χM' vs. frequency for 4•Ho under 0-10 kOe at 1.8 K 70 Figure 2.21. Plot of ln(χ"/χ') vs 1/T for 4•Ho at different frequencies of the 3.5 G oscillating ac field. The solid lines are the best-fit curves. 70   Chapter 3 Figure 3.1. Simulated and measured XRPD patterns of complexes 5•Gd−9•Er. 92 Figure 3.2. (a) Molecular structure of 5•Gd; hydrogen atoms and solvent molecules were omitted for clarity. (b) A defect dicubane [MnII2Gd2] central core of [MnII2GdIII2(pyp)2(OAc)6(OMe)2(MeOH)2] 96 Figure 3.3. The view of the coordination environments around Mn(1) and Ln(1) in complexes 5•Gd−9•Er 98 Figure 3.4. Lanthanide contraction for complexes 5•Gd−9•Er. 100 Figure 3.5. The intramolecular hydrogen bonding interactions (dashed lines) in complexes 5•Gd−9•Er 101 Figure 3.6. Plots of χM T vs. T for complexes 5•Gd−9•Er. The solid line is the best fitting to the experimental data, see text for fitting parameters. 105 Figure 3.7. Plots of χM-1 vs. T (solid lines are linear fit to Curie-Weiss law in the temperature range of 50-300 K) for complexes 5•Gd−9•Er 105 Figure 3.8. Diagram shows the definition of atom number and magnetic exchange parameters for the complex 5•Gd. 106 Figure 3.9. Plots of the reduced magnetization (M/Nβ) vs. H/T for complex 5•Gd at 0−70 kOe and at 2.0−4.0 K. 108 Figure 3.10. Plots of the reduced magnetization (M/Nβ) vs. H/T for complex 6•Tb at 0−70 kOe and at 2.0−4.0 K. 108 Figure 3.11. Plots of the reduced magnetization (M/Nβ) vs. H/T for complex 7•Dy at 0−70 kOe and at 2.0−4.0 K 109 Figure 3.12. Plots of the reduced magnetization (M/Nβ) vs. H/T for complex 8•Ho at 0−70 kOe and at 2.0−4.0 K 109 Figure 3.13. Plots of the reduced magnetization (M/Nβ) vs. H/T for complex 9•Er at 0−70 kOe and at 2.0−4.0 K 110 Figure 3.14. (a) Plots of χM'T and (b) χM' vs. temperature for a microcrystalline sample of complex 5•Gd under a zero dc field in a 3.5 Oe ac field oscillating at the indicated frequency 113 Figure 3.15. Plots of χM' vs. frequency for 5•Gd under 0-10 kOe at 1.8 K 114 Figure 3.16. (a) Plots of χM'T and (b) χM' vs. temperature for a microcrystalline sample of complex 6•Tb under a zero dc field in a 3.5 Oe ac field oscillating at the indicated frequency 115 Figure 3.17. Plots of χM' vs. frequency for 6•Tb under 0-10 kOe at 1.8 K 116 Figure 3.18. (a) Plots of χM'T and (b) χM' vs. temperature for a microcrystalline sample of complex 7•Dy under a zero dc field in a 3.5 Oe ac field oscillating at the indicated frequency. 117 Figure 3.19. Plots of χM' vs. frequency for 7•Dy under 0-10 kOe at 1.8 K 118 Figure 3.20. (a) Plots of χM'T and (b) χM' vs. temperature for a microcrystalline sample of complex 8•Ho under a zero dc field in a 3.5 Oe ac field oscillating at the indicated frequency. 119 Figure 3.21. Plots of χM' vs. frequency for 8•Ho under 0-10 kOe at 1.8 K 120 Figure 3.22. (a) Plots of χM'T and (b) χM' vs. temperature for a microcrystalline sample of complex 9•Er under a zero dc field in a 3.5 Oe ac field oscillating at the indicated frequency. 121 Figure 3.23. Plots of χM' vs. frequency for 9•Er under 0-10 kOe at 1.8 K. 122 Appendix Figure A1. The IR spectrum of 1•Dy. 130 Figure A2. The IR spectrum of 2•Tb. 131 Figure A3. The IR spectrum of 3•Dy. 132 Figure A4. The IR spectrum of 4•Ho. 133 Figure A5. The IR spectrum of 5•Gd. 134 Figure A6. The IR spectrum of 6•Tb. 135 Figure A7. The IR spectrum of 7•Dy. 136 Figure A8. The IR spectrum of 8•Ho. 137 Figure A9. The IR spectrum of 9•Er. 138

    Chapter 1
    (1) Leuenberger, M. N.; Loss, D., Nature 2001, 410, 789.
    (2) Hill, S.; Edwards, R. S.; Aliaga-Alcalde, N.; Christou, G., Science 2003, 302, 1015.
    (3) Sessoli, R.; Tsai, H. L.; Schake, A. R.; Wang, S. Y.; Vincent, J. B.; Folting, K.; Gatteschi, D.; Christou, G.; Hendrickson, D. N., J. Am. Chem. Soc. 1993, 115, 1804.
    (4) Christou, G.; Gatteschi, D.; Hendrickson, D. N.; Sessoli, R., Mrs Bull 2000, 25, 66.
    (5) Chen, Y.; She, S.; Zheng, L.; Hu, B.; Chen, W.; Xu, B.; Chen, Z.; Zhou, F.; Li, Y., Polyhedron, 2011, 30, 3010.
    (6) Peng, G.; Ma, L.; Liang, L.; Ma, Y. Z.; Yang, C. F.; Deng H., CrystEngComm, 2013, 15, 922.
    (7) Zhang, C.; Zhang, D.; Ma, H.; Chen, Y.; Liu, B., J. Mol. Struct. 2013, 53.
    (8) Chen, M. S.; Deng, Y. F.; Nie, X.; Zhang, C. H., Synth. React. Inorg. Metal-Org nano-Met. Chem., 2014, 44, 868.
    (9) Yang, T. H.; Silva, A. R.; Shi, F. N., Dalton Trans., 2013, 42, 13997.
    (10) Fang, M.; Shi, P. F.; Zhao, B.; Jiang, D.X.; Cheng, P.; Shi, W., Dalton Trans., 2012, 41, 6820.
    (11) Sun, Y.; Wang, S.; Li, K.; Gao, E. J.; Xiong, G., Inorg. Chem. Commun., 2013, 28, 1.
    (12) Dang, D. B.; An, B.; Bai, Y.; Zheng, G. S.; Niu, J. Y., Chem. Commun., 2013, 49, 2243.
    (13) Liang, L.; Peng, G.; Ma, L.; Sun, L.; Deng, H.; Li, H.; Li, W. S., Cryst. Growth Des., 2012, 12, 1151.
    (14) Zhang, J. J.; Hu, S. M.; Zheng, L.M.; Wu, X. T.; Fu, Z. Y.; Dai, J. C.; Du, W. X.; Zhang, H. H.; Sun, R. Q., Chem. Eur. J. 2002, 8, 5742.
    (15) Zaleski, C. M.; Depperman, E. C.; Kampf, J. W.; Kirk, M. L.; Pecoraro, V. L., An-gew. Chem., Int. Ed. 2004, 43, 3912.
    (16) Winpenny, R. E. P., Chem. Soc. Rev., 1998, 27, 447.
    (17) Andrews, P. C.; Deacon, G. B.; Frank, R.; Fraser, B. H.; Junk, P. C.; MacLellan, J. G.; Massi, M.; Moubaraki, B.; Murray, K. S.; Silberstein, M., Eur. J. Inorg. Chem., 2009, 6, 744.
    (18) Alexandropoulos, D. I.; Nguyen, T. N.; Cunha-Silva, L.; Zafiropoulos, T. F.; Escuer, A.; Christou, G.; Stamatatos, T. C., Inorg. Chem., 2013, 52, 1179.
    (19) Cristovao, B.; Klak, J.; Pelka, R.; Miroslaw, B.; Hnatejko, Z., Polyhedron, 2014, 68, 180.
    (20) Wang, H.; Ke, H.; Lin, S. Y.; Guo, Y.; Zhao, L.; Tang, J.; Li, Y.-H. Dalton Trans. 2013, 42, 5298.
    (21) Mondal, K. C.; Sundt, A.; Lan, Y.; Kostakis, G. E.; Waldmann, O.; Ungur, L.; Chibotaru, L. F.; Anson, C. E.; Powell, A. K., Angew. Chem. Int. Ed .2012, 51, 7550.
    (22) Nemec, I.; Machata, M.; Herchel, R.; Boča, R.; Trávníček, Z. Dalton Trans. 2012, 41, 14603.
    (23) Mondal, K. C.; Kostakis, G. E.; Lan, Y.; Wernsdorfer, W.; Anson, C. E.; Powell, A. K., Inorg. Chem. 2011, 50, 11604.
    (24) Ke, H.; Zhao, L.; Guo, Y.; Tang, J., Inorg. Chem. 2012, 51, 2699.
    (25) Lin, S. Y.; Zhao, L.; Ke, H. S.; Guo, Y. N.; Tang, J. K.; Guo, Y.; Dou, J. M. Dalton Trans. 2012, 41, 3248.
    (26) Yang, C. I.; Wernsdorfer, W.; Tsai, Y. J.; Chung, G.; Kuo, T. S.; Lee, G. H.; Shieh, M.; Tsai, H. L., Inorg. Chem. 2008, 47, 1925.
    (27) Langley, S. K.; Chilton, N. F.; Massi, M.; Moubaraki, B.; Berry, K. J.; Murray, K. S., Dalton Trans. 2010, 39, 7236.
    (28) Andrews, P. C.; Deacon, G. B.; Frank, R.; Fraser, B. H.; Junk, P. C.; MacLellan, J. G.; Massi, M.; Moubaraki, B.; Murray, K. S.; Silberstein, M., Eur. J. Inorg. Chem., 2009, 744.
    (29) Sheldrick, G. M.; SHELXL-97, University of Gottingen, Gottingen. Germany, 1997.
    (30) Boudreaux, E. A.; Mulay, L. N., In Theory and Application of Molecular Para-magnetism, J. Wiely & Sons. New York, 1976.
    (31) Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P. A., J. Appl. Crys-tallogr. 2008, 41, 466.
    (32) Brown, I. D.; Altermatt, D., Acta Crystallogr., Sect. B 1985, 41, 244.
    (33) Brown, I. D., Solid State Chem. 1989, 82, 122.
    (34) Thorp, H. H., Inorg. Chem. 1992, 31, 1585.
    (35) Benelli, C.; Gatteschi, D., Chem. Rev. 2002, 102, 2369.
    (36) Bartolome, J.; Filoti, G.; Kuncser, V.; Schinteie, G.; Mereacre, V.; Anson, C. E.; Powell, A. K.; Prodius, D.; Turta, C., Phys. Rev. B 2009, 80, 14430.
    (37) Liu, R.; Zhang, C.; Li, L.; Liao, D.; Sutter, J. P., Dalton Trans. 2012, 41, 12139.
    (38) Lin, S. Y.; Xu, G. F.; Zhao, L.; Guo, Y. N.; Guo, Y.; Tang, J. K., Dalton Trans. 2011, 40, 8213.
    (39) Zhang, L.; Zhang, P.; Zhao, L.; Lin, S. Y.; Xue, S.; Tang, J.; Liu, Z., Eur. J. Inorg. Chem., 2013, 1351.
    (40) Lin, S. Y.; Zhao, L.; Guo, Y. N.; Zhang, P.; Guo, Y.; Tang, J., Inorg. Chem. 2012, 51, 10522.
    (41) Miao, Y. L.; Liu, J. L.; Li, J. Y.; Leng, J. D.; Ou, Y. C.; Tong, M. L., Dalton Trans. 2011, 40, 10229.
    (42) Mazarakioti, E. C.; Poole, K. M.; Cunha-Silva, L.; Christou, G.; Stamatatos, T. C., Dalton Transactions 2014, DOI: 10.1039/c4dt00976b.
    (43) Chesman, A. S. R.; Turner, D. R.; Moubaraki, B.; Murray, K. S.; Deacon, G. B.; Batten, S. R., Dalton Trans., 2012, 41, 3751.
    (44) Osa, S.; Kido, T.; Matsumoto, N.; Re, N.; Pochaba, A.; Mrozinski, J., J. Am. Chem. Soc. 2004, 126, 420.

    Chapter 2
    (1) Osa, S.; Kido, T.; Matsumoto, N.; Re, N.; Pochaba, A.; Mrozinski, J. J. Am. Chem. Soc. 2004, 126, 420
    (2) Zaleski, M; Depperman, E. C.; Kampf, J. W.; Kirk, M.-L.;Pecoraro, V. L. Angew. Chem., Int. Ed. 2004, 43, 3912
    (3) Chandrasekhar, V.; Pandian, B. M.; Azhakar, R.; Vittal, J. J.; Clerac, R., Inorg. Chem., 2007, 46, 5140
    (4) Chandrasekhar, V.; Pandian, B. M.; Vittal, J. J.; Clerac, R., Inorg. Chem., 2009, 48, 1148
    (5) Zou, L. F.; Zhao, L.; Guo, Y. N.; Yu, G. M.; Guo, Y.; Tang, J. K.; Li, Y. H., Chem. Commun., 2011, 47, 8659.
    (6) Costes, J. P.; Dahan, F.; Wernsdorfer, W., Inorg. Chem., 2006, 45, 5
    (7) Aronica, C.; Pilet, G.; Chastanet, G.; Wernsdorfer, W.; Jacquot, J. F.; Luneau, D., Angew. Chem.,Int. Ed., 2006, 45, 4659
    (8) Mori, F.; Nyui, T.; Ishida, T.; Nogami, T.; Choi, K. Y.; Nojiri, H., J. Am. Chem. Soc., 2006, 128, 1440
    (9) Baskar, V.; Gopal, K.; Helliwell, M.; Tuna, F.; Wernsdorfer, W.; Winpenny, R. E. P., Dalton Trans., 2010, 39, 4747
    (10) Feltham, H. L. C.; Clerac, R.; Powell, A. K.; Brooker, S., Inorg. Chem., 2011, 50, 4232
    (11) Kajiwara, T.; Nakano, M.; Takahashi, K.; Takaishi, S.; Yamashita, M., Chem. Eur. J., 2011, 17, 196
    (12) Langley, S. K.; Ungur, L.; Chilton, N. F.; Moubaraki, B.; Chibotaru, L. F.; Murray, K. S., Chem. Eur. J., 2011, 17, 9209.
    (13) Chandrasekhar, V.; Pandian, B. M.; Boomishankar, R.; Steiner, A.; Viftal, J. J.; Houri, A.; Clerac, R., Inorg. Chem., 2008, 47, 4918.
    (14) Papatriantafyllopoulou, C.; Estrader, M.; Efthymiou, C. G.; Dermitzaki, D.; Gkotsis, K.; Terzis, A.; Diaz, C.; Perlepes, S. P., Polyhedron, 2009, 28, 1652.
    (15) C. G. Efthymiou, T. C. Stamatatos, C. Papatriantafyllopoulou, A. J. Tasiopoulos, W. Wernsdorfer, S. P. Perlepes and G. Christou, Inorg. Chem., 2010, 49, 9737.
    (16) Colacio, E.; Ruiz, J.; Mota, A. J.; Palacios, M. A.; Cremades, E.; Ruiz, E.; White, F. J.; Brechin, E. K., Inorg. Chem., 2012, 51, 5857.
    (17) Ferbinteanu, M.; Kajiwara, T.; Choi, K. Y.; Nojiri, H.; Nakamoto, A.; Kojima, N.; Cimpoesu, F.; Fujimura Y.,; Takaishi, S.; Yamashita, M., J. Am. Chem. Soc., 2006, 128, 9008.
    (18) Zeng, Y. F.; Xu, G. C.; Hu, X.; Chen, Z.; Bu, X. H.; Gao, S.; Sanudo, E. C., Inorg. Chem., 2010, 49, 9734.
    (19) Mishra, A.; Wernsdorfer, W.; Abboud, K. A.; Christou, G., J. Am. Chem. Soc., 2004, 126, 15648.
    (20) Zaleski, C. M.; Depperman, E. C.; Kampf, J. W.; Kirk, M. L.; Pecoraro, V. L., An-gew. Chem., Int. Ed., 2004, 43, 3912.
    (21) Mishra, A.; Wernsdorfer, W.; Parsons, S.; Christou, G.; Brechin, E. K., Chem. Commun., 2005, 2086.
    (22) Mereacre, V. M.; Ako, A. M.; Clerac, R.; Wernsdorfer, W.; Filoti, G.; Bartolome, J.; Anson, C. E.; Powell, A. K., J. Am. Chem. Soc., 2007, 129, 9248.
    (23) Mereacre, V.; Ako, A. M.; Clerac, R.; Wernsdorfer, W.; Hewitt, I. J.; Anson, C. E.; Powell, A. K., Chem. Eur. J., 2008, 14, 3577.
    (24) Powell, A. K.; Li, M. Y.; Lan, Y. H.; Ako, A. M.; Wernsdorfer, W.; Anson, C. E.; Buth, G.; Wang, Z. M.; Gao, S., Inorg. Chem., 2010, 49, 11587.
    (25) Benelli, C.; Murrie, M.; Parsons, S.; Winpenny, R. E. P., J. Chem. Soc.,Dalton Trans. 1999, 4125.
    (26) Mishra, A.; Wernsdorfer, W.; Parsons, S.; Christou, G.; Brechin, E. K., Chem. Commun. 2005, 2086.
    (27) Murugesu, M.; Mishra, A.; Wernsdorfer, W.; Abboud, K. A.; Christou, G., Polyhedron 2006, 25, 613.
    (28) Bi, Y. F.; Li, Y. L.; Liao, W. P.; Zhang, H. J.; Li, D. Q., Inorg. Chem. 2008, 47, 973.
    (29) Akhtar, M. N.; Lan, Y. H.; Mereacre, V.; Clerac, R.; Anson, C. E.; Powell, A. K., Polyhedron 2009, 28, 1698.
    (30) Mereacre, V.; Lan, Y. H.; Clerac, R.; Ako, A. M.; Hewitt, I. J.; Wernsdorfer, W.; Buth, G.; Anson, C. E.; Rowell, A. K., Inorg. Chem. 2010, 49, 5293.
    (31) Papatriantafyllopoulou, C.; Abboud, K. A.; Christou, G., Inorg. Chem. 2011, 50, 8959.
    (32) Chesman, A. S. R.; Turner, D. R.; Berry, K. J.; Chilton, N. F.; Moubaraki, B.; Murray, K. S.; Deacon, G. B.; Batten, S. R., Dalton Trans. 2012, 41, 11402.
    (33) Shiga, T.; Hoshino, N.; Nakano, M.; Nojiri, H.; Oshio, H., Inorg. Chem. Acta. 2008, 361, 4113.
    (34) Saha, A.; Thompson, M.; Abboud, K. A.; Wernsdorfer, W.; Christou, G., Inorg. Chem. 2011, 50, 10476.
    (35) Ke, H. S.; Zhao, L.; Guo, Y.; Tang, J. K., Dalton Trans. 2012, 41, 2314.
    (36) Liu, J. Y.; Ma, C. B.; Chen, H.; Hu, M. Q.; Wen, H. M.; Cui, H. H.; Song, X. W.; Chen, C. N., Dalton Trans. 2013, 42, 2423.
    (37) Liu, C. M.; Zhang, D. Q.; Zhu, D. B., Dalton Trans. 2010, 39, 11325.
    (38) Alexandropoulos, D. I.; Nguyen, T. N.; Cunha-Silva, L.; Zafiropoulos, T. F.; Escu-er, A.; Christou, G.; Stamatatos, T. C., Inorg. Chem. 2013, 52, 1179.
    (39) Khan, A.; Lan, Y. H.; Kostakis, G. E.; Anson, C. E.; Powell, A. K., Dalton Trans. 2012, 41, 8333.
    (40) Mereacre, V.; Akhtar, M. N.; Lan, Y. H.; Ako, A. M.; Clerac, R.; Anson, C. E.; Powell, A. K., Dalton Trans. 2010, 39, 4918.
    (41) Li, M. Y.; Lan, Y. H.; Ako, A. M.; Wernsdorfer, W.; Anson, C. E.; Buth, G.; Powell, A. K.; Wang, Z. M.; Gao, S., Inorg. Chem. 2010, 49, 11587.
    (42) Li, M. Y.; Ako, A. M.; Lan, Y. H.; Wernsdorfer, W.; Buth, G.; Anson, C. E.; Powell, A. K.; Wang, Z. M.; Gao, S., Dalton Trans. 2010, 39, 3375.
    (43) Karotsis, G.; Kennedy, S.; Teat, S. J.; Beavers, C. M.; Fowler, D. A.; Morales, J. J.; Evangelisti, M.; Dalgarno, S. J.; Brechin, E. K., J. Am. Chem. Soc. 2010, 132, 12983.
    (44) Mereacre, V.; Ako, A. M.; Clerac, R.; Wernsdorfer, W.; Hewitt, I. J.; Anson, C. E.; Powell, A. K., Chem. Eur. J. 2008, 14, 3577.
    (45) Holynska, M.; Premuzic, D.; Jeon, I. R.; Wernsdorfer, W.; Clerac, R.; Dehnen, S., Chem. Eur. J. 2011, 17, 9605.
    (46) Rigaux, G.; Inglis, R.; Morrison, S.; Prescimone, A.; Cadiou, C.; Evangelisti, M.; Brechin, E. K., Dalton Trans. 2011, 40, 4797.
    (47) Langley, S. K.; Moubaraki, B.; Murray, K. S., Dalton Trans. 2010, 39, 5066.
    (48) Mereacre, V.; Prodius, D.; Ako, A. M.; Kaur, N.; Lipkowski, J.; Simmons, C.; Dalal, N.; Geru, I.; Anson, C. E.; Powell, A. K.; Turta, C., Polyhedron. 2008, 27, 2459.
    (49) Mereacre, V.; Lan, Y. H.; Clerac, R.; Ako, A. M.; Wernsdorfer, W.; Buth, G.; Anson, C. E.; Powell, A. K., Inorg. Chem. 2011, 50, 12001.
    (50) Mereacre, V. M.; Ako, A. M.; Clerac, R.; Wernsdorfer, W.; Filoti, G.; Bartolome, J.; Anson, C. E.; Powell, A. K., J. Am. Chem. Soc. 2007, 129, 9248.
    (51) Stamatatos, T. C.; Teat, S. J.; Wernsdorfer, W.; Christou, G., Angew. Chem., Int. Ed. 2009, 48, 521.
    (52) Liu, J. L.; Guo, F. S.; Meng, Z. S.; Zheng, Y. Z.; Leng, J. D.; Tong, M. L.; Ungur, L.; Chibotaru, L. F.; Heroux, K. J.; Hendrickson, D. N., Chem. Sci. 2011, 2, 1268.
    (53) Ako, A. M.; Mereacre, V.; Clerac, R.; Wernsdorfer, W.; Hewitt, I. J.; Anson, C. E.; Powell, A. K., Chem. Commun. 2009, 544.
    (54) Papatriantafyllopoulou, C.; Wernsdorfer, W.; Abboud, K. A.; Christou, G., Inorg. Chem. 2011, 50, 421.
    (55) Chandrasekhar, V.; Bag, P.; Speldrich, M.; Leusen, J.; Kögerler, P. Inorg. Chem. 2013, 52, 5035.
    (56) Tan, X.; Y.; Che, X.; Zheng, J. M., Inorg. Chem. Commun. 2013, 37, 17.
    (57) Mereacre, V.; Lan, Y.; Clerac, R.; Ako, A. M.; Hewitt, I. J.; Wernsdorfer, W.; Buth, G.; Anson, C. E.; Powell, A. K. Inorg. Chem. 2010, 49, 5293.
    (58) Chesman, A. S. R.; Turner, D. R.; Berry, K. J.; Chilton, N. F.; Moubaraki, B.; Murray, K. S.; Deacon, G. B.; Batten, S. R., Dalton Trans., 2012, 41, 11402.
    (59) Guedes, G. P.; Soriano, S.; Mercante, L. A.; Speziali, N. L.; Novak, M. A.; Andruh, M.; Vaz, M. G. F. Inorg. Chem. 2013, 52, 8309.
    (60) Mukherjee, S., Daniels, M. R., Bagai, R., Abboud, K. A., Christou, G. and Lam-propoulos, C. Polyhedron 2010, 29, 54.
    (61) Murugesu, M., Mishra, A., Wernsdorfer, W., Abboud, K. A., and Christou, G. Pol-yhedron 2006, 25, 613.
    (62) Akhtar, M. N.; Lan, Y. V.; Clérac, R.; Anson, C. E.; Powell, A. K., Polyhedron 2009, 28, 1698.
    (63) Gavrilenko, K. S.; Punln, S. V.; Cador, O.; Golhen, S.; Ouahab, L.; Pavlishchuk, V. V., Inorg. Chem. 2005, 44, 5903.
    (64) Sheldrick, G. M.; SHELXL-97, University of Gottingen, Gottingen. Germany, 1997.
    (65) Boudreaux, E. A.; Mulay, L. N., In Theory and Application of Molecular Para-magnetism, J. Wiely & Sons. New York, 1976.
    (66) Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P. A., J. Appl. Crys-tallogr. 2008, 41, 466.
    (67) Brown, I. D.; Altermatt, D., Acta Crystallogr., Sect. B 1985, 41, 244.
    (68) Brown, I. D., Solid State Chem. 1989, 82, 122.
    (69) Thorp, H. H., Inorg. Chem. 1992, 31, 1585.
    (70) Janiak, C., J. Chem. Soc., Dalton Trans., 2000, 3885
    (71) Benelli, C.; Gatteschi, D., Chem. Rev. 2002, 102, 2369.
    (72) Chesman, A. S. R.; Turner, D. R.; Moubaraki, B.; Murray, K. S.; Deacon, G. B.; Batten, S. R., Dalton Trans., 2012, 41, 3751.
    (73) Tang, J. K.; Hewitt, I.; Madhu, N. T.; Chastanet, G.; Wernsdorfer, W.; Anson, C. E.; Benelli, C.; Sessoli, R.; Powell, A. K., Angew. Chem., Int. Ed. 2006, 45, 1729.
    (74) Zheng, Y. Z.; Lan, Y.; Anson, C. E.; Powell, A. K., Inorg. Chem. 2008, 47, 10813.
    (75) Osa, S.; Kido, T.; Matsumoto, N.; Re, N.; Pochaba, A.; Mrozinski, J., J. Am. Chem. Soc. 2004, 126, 420.
    (76) Bartolome, J.; Filoti, G.; Kuncser, V.; Schinteie, G.; Mereacre, V.; Anson, C. E.; Powell, A. K.; Prodius, D.; Turta, C., Phys. Rev. B 2009, 80, 14430.
    (77) Gatteschi, D.; Sessoli, R.; Villain, J., Molecular Nanomagnets. Oxford University Press; Oxford, U.K., 2006.

    Chapter 3
    (1) Osa, S.; Kido, T.; Matsumoto, N.; Re, N.; Pochaba, A.; Mrozinski, J. J. Am. Chem. Soc. 2004, 126, 420.
    (2) Zaleski, M; Depperman, E. C.; Kampf, J. W.; Kirk, M.-L.; Pecoraro, V. L. Angew. Chem., Int. Ed. 2004, 43, 3912.
    (3) Benelli, C.; Murrie, M.; Parsons, S.; Winpenny, R. E. P., J. Chem. Soc., Dalton Trans. 1999, 4125.
    (4) Mishra, A.; Wernsdorfer, W.; Parsons, S.; Christou, G.; Brechin, E. K., Chem. Commun. 2005, 2086.
    (5) Murugesu, M.; Mishra, A.; Wernsdorfer, W.; Abboud, K. A.; Christou, G., Polyhedron 2006, 25, 613.
    (6) Bi, Y. F.; Li, Y. L.; Liao, W. P.; Zhang, H. J.; Li, D. Q., Inorg. Chem. 2008, 47, 9733.
    (7) Akhtar, M. N.; Lan, Y. H.; Mereacre, V.; Clerac, R.; Anson, C. E.; Powell, A. K., Polyhedron 2009, 28, 1698.
    (8) Mereacre, V.; Lan, Y. H.; Clerac, R.; Ako, A. M.; Hewitt, I. J.; Wernsdorfer, W.; Buth, G.; Anson, C. E.; Rowell, A. K., Inorg. Chem. 2010, 49, 5293.
    (9) Papatriantafyllopoulou, C.; Abboud, K. A.; Christou, G., Inorg. Chem. 2011, 50, 8959.
    (10) Chesman, A. S. R.; Turner, D. R.; Berry, K. J.; Chilton, N. F.; Moubaraki, B.; Murray, K. S.; Deacon, G. B.; Batten, S. R., Dalton Trans. 2012, 41, 11402.
    (11) Guedes, G. P.; Soriano, S.; Mercante, L. A.; Speziali, N. L.; Novak, M. A.; Andruh, M.; Vaz, M. G. F. Inorg. Chem. 2013, 52, 8309.
    (12) Feuersenger, J.; Prodius, D.; Mereacre, V.; Clerac, R.; Anson, C. E.; Powell, A. K., Inorg. Chem. Commun., 2011, 14, 1851
    (13) Bi, Y. F.; Wang, X. T.; Wang, B. W.; Liao, W. P.; Wang, X. F.; Zhang, H. J.; Gao, S.; Li, D. Q., Dalton Trans., 2009, 2250.
    (14) Liu, J. Y.; Ma, C. B.; Chen, H.; Hu, M. Q.; Wen, H. M.; Cui, H. H.; Chen, C. N., Dalton Trans., 2013, 42, 3787.
    (15) Shiga, T.; Hoshino, N.; Nakano, M.; Nojiri, H.; Oshio, H., Inorg. Chim. Acta 2008, 361, 4113.
    (16) Saha, A.; Thompson, M.; Abboud, K. A.; Wernsdorfer, W.; Christou, G., Inorg. Chem. 2011, 50, 10476.
    (17) Ke, H. S.; Zhao, L.; Guo, Y.; Tang, J. K., Dalton Trans. 2012, 41, 2314.
    (18) Liu, J. Y.; Ma, C. B.; Chen, H.; Hu, M. Q.; Wen, H. M.; Cui, H. H.; Song, X. W.; Chen, C. N., Dalton Trans. 2013, 42, 2423.
    (19) Liu, C. M.; Zhang, D. Q.; Zhu, D. B., Dalton Trans. 2010, 39, 11325.
    (20) Alexandropoulos, D. I.; Nguyen, T. N.; Cunha-Silva, L.; Zafiropoulos, T. F.; Escu-er, A.; Christou, G.; Stamatatos, T. C., Inorg. Chem. 2013, 52, 1179.
    (21) Khan, A.; Lan, Y. H.; Kostakis, G. E.; Anson, C. E.; Powell, A. K., Dalton Trans. 2012, 41, 8333.
    (22) Mereacre, V.; Akhtar, M. N.; Lan, Y. H.; Ako, A. M.; Clerac, R.; Anson, C. E.; Powell, A. K., Dalton Trans. 2010, 39, 4918.
    (23) Li, M. Y.; Lan, Y. H.; Ako, A. M.; Wernsdorfer, W.; Anson, C. E.; Buth, G.; Powell, A. K.; Wang, Z. M.; Gao, S., Inorg. Chem. 2010, 49, 11587.
    (24) Li, M. Y.; Ako, A. M.; Lan, Y. H.; Wernsdorfer, W.; Buth, G.; Anson, C. E.; Powell, A. K.; Wang, Z. M.; Gao, S., Dalton Trans. 2010, 39, 3375.
    (25) Karotsis, G.; Kennedy, S.; Teat, S. J.; Beavers, C. M.; Fowler, D. A.; Morales, J. J.; Evangelisti, M.; Dalgarno, S. J.; Brechin, E. K., J. Am. Chem. Soc. 2010, 132, 12983.
    (26) Majeed, Z.; Mondal, K. C.; Kostakis, G. E.; Lan, Y. H.; Anson, C. E.; Powell, A. K., Dalton Trans., 2010, 39, 4740.
    (27) Mereacre, V.; Ako, A. M.; Clerac, R.; Wernsdorfer, W.; Hewitt, I. J.; Anson, C. E.; Powell, A. K., Chem.-Eur. J. 2008, 14, 3577.
    (28) Hallier, K.; Holynska, M.; Rouzieres, M.; Clerac, R.; Dehnen, S., Inorg. Chem., 2012, 51, 3929.
    (29) Shiga, T.; Onuki, T.; Matsumoto, T.; Nojiri, H.; Newton, G. N.; Hoshino, N.; Oshio, H., Chem. Commun., 2009, 3568.
    (30) Holynska, M.; Premuzic, D.; Jeon, I. R.; Wernsdorfer, W.; Clerac, R.; Dehnen, S., Chem.-Eur. J. 2011, 17, 9605.
    (31) Rigaux, G.; Inglis, R.; Morrison, S.; Prescimone, A.; Cadiou, C.; Evangelisti, M.; Brechin, E. K., Dalton Trans. 2011, 40, 4797.
    (32) Zheng, Y.; Kong, X. J.; Long, L. S.; Huang, R. B.; Zheng, L. S., Dalton Trans., 2011, 40, 4035.
    (33) Zaleski, C. M.; Kampf, J. W.; Mallah, T.; Kirk, M. L.; Pecoraro, V. L., Inorg. Chem., 2007, 46, 1954.
    (34) Zaleski, C. M.; Depperman, E. C.; Kampf, J. W.; Kirk, M. L.; Pecoraro, V. L., An-gew. Chem., Int. Ed., 2004, 43, 3912
    (35) Langley, S. K.; Moubaraki, B.; Murray, K. S., Dalton Trans. 2010, 39, 5066.
    (36) Mereacre, V.; Prodius, D.; Ako, A. M.; Kaur, N.; Lipkowski, J.; Simmons, C.; Dalal, N.; Geru, I.; Anson, C. E.; Powell, A. K.; Turta, C., Polyhedron. 2008, 27, 2459.
    (37) Mereacre, V.; Lan, Y. H.; Clerac, R.; Ako, A. M.; Wernsdorfer, W.; Buth, G.; Anson, C. E.; Powell, A. K., Inorg. Chem. 2011, 50, 12001.
    (38) Mereacre, V. M.; Ako, A. M.; Clerac, R.; Wernsdorfer, W.; Filoti, G.; Bartolome, J.; Anson, C. E.; Powell, A. K., J. Am. Chem. Soc. 2007, 129, 9248.
    (39) Mereacre, V.; Prodius, D.; Ako, A. M.; Kaur, N.; Lipkowski, J.; Simmons, C.; Dalal, N.; Geru, I.; Anson, C. E.; Powell, A. K.; Turta, C., Polyhedron, 2008, 27, 2459.
    (40) Stamatatos, T. C.; Teat, S. J.; Wernsdorfer, W.; Christou, G., Angew. Chem., Int. Ed. 2009, 48, 521.
    (41) Liu, J. L.; Guo, F. S.; Meng, Z. S.; Zheng, Y. Z.; Leng, J. D.; Tong, M. L.; Ungur, L.; Chibotaru, L. F.; Heroux, K. J.; Hendrickson, D. N., Chem. Sci. 2011, 2, 1268.
    (42) Ako, A. M.; Mereacre, V.; Clerac, R.; Wernsdorfer, W.; Hewitt, I. J.; Anson, C. E.; Powell, A. K., Chem. Commun. 2009, 544.
    (43) Papatriantafyllopoulou, C.; Wernsdorfer, W.; Abboud, K. A.; Christou, G., Inorg. Chem. 2011, 50, 421.
    (44) Mukherjee, S., Daniels, M. R., Bagai, R., Abboud, K. A., Christou, G. and Lam-propoulos, C. Polyhedron 2010, 29, 54.
    (45) Brown, I. D.; Altermatt, D., Acta Crystallogr., Sect. B 1985, 41, 244.
    (46) Brown, I. D., Solid State Chem. 1989, 82, 122.
    (47) Thorp, H. H., Inorg. Chem. 1992, 31, 1585.
    (48) Benelli, C.; Gatteschi, D., Chem. Rev. 2002, 102, 2369.
    (49) Abtab, S. M. T.; Maity, M.; Bhattacharya, K.; Sanudo, E. C.; Chaudhury, M., Inorg. Chem. 2012, 51, 10211.
    (50) Costes, J. P.; Auchel, M.; Dahan, F.; Peyrou, V.; Shova, S.; Wernsdorfer, W., Inorg. Chem. 2006, 45, 1924.
    (51) Boudreaux, E. A.; Mulay, L. N., In Theory and Application of Molecular Para-magnetism, J. Wiely & Sons. New York, 1976.
    (52) Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P. A., J. Appl. Crys-tallogr. 2008, 41, 466.
    (53) Chesman, A. S. R.; Turner, D. R.; Moubaraki, B.; Murray, K. S.; Deacon, G. B.; Batten, S. R., Dalton Trans., 2012, 41, 3751.

    無法下載圖示 校內:2029-09-12公開
    校外:2029-09-12公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE