簡易檢索 / 詳目顯示

研究生: 高維忱
Kao, Wei-Chen
論文名稱: 以表現真核金屬鍵結蛋白Metallothionein之大腸桿菌開發重金屬生物吸附劑
Development of heavy metal biosorbent using recombinant Escherichia coli expressing eucaryotic metal-binding protein - metallothionein
指導教授: 張嘉修
Chang, Jo-Shu
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 167
中文關鍵詞: 融合蛋白重金屬細胞固定化填充床管柱聚乙烯醇間質表達生物吸附麥芽糖鍵結蛋白金屬硫蛋白
外文關鍵詞: cadmium, Biosorption, cell immobilization, fixed bed column, fusion protein, heavy metals, maltose-binding protein, metallothioneins (MTs), periplasmic expression, polyvinyl alcohol (PVA)
相關次數: 點閱:97下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用在大腸桿菌中表達哺乳動物及魚類的金屬鍵結蛋白質metallothioneins (MTs)的策略,以提升細菌的生物吸附劑對重金屬鉛、銅、鎘及鋅的金屬吸附效率,並將MT蛋白質表現於宿主細胞的細胞質及細胞間質,以探討金屬鍵結蛋白表達位置對金屬吸附的影響。由實驗結果得知,大腸桿菌宿主細胞在表現MT蛋白質後,大幅增加了其對Cd的總生物吸附效率(ηads) (5-210 %)。表達MT在金屬生物吸附的改善上,主要是增加其生物吸附的速率(r2),其效果比增加平衡生物吸附容量(qmax)更為明顯。在細胞間質部分表達MTs,似乎比在細胞質表達時更能促進其對金屬鍵結的能力,並且MT蛋白質的來源對其金屬生物吸附能力有不同程度的影響。和源自於老鼠(MT1)以及魚類的MTs (OmMT)相比,來自人類的MT (MT1A)對大腸桿菌宿主之生物吸附促進效果較為顯著。此外,亦發現表現MT蛋白質的基因重組生物吸附劑的總生物吸附效率(ηads)是和吸附金屬之種類相關,且ηads的大小依次為Cd > Cu > Zn > Pb。
    由上述實驗初步證實,在細胞間質部分表現人類金屬鍵結蛋白質MT的重組大腸桿菌種對鎘之吸附效果極佳,因此以聚乙烯醇將該基因重組生物吸附劑固定化,並以該固定化生物吸附劑來移除水中的重金屬鎘。為評估固定化生物吸附劑的吸附能力以及再使用能力,本研究探討不同的操作條件如吸附的pH值、溫度、起始的鎘濃度、菌體固定量以及吸附/脫附的循環(A/D cycles)對鎘吸附之影響。由實驗結果可知,pH值對吸附能力有很大的影響,且在pH 5.0時有較佳的吸附結果,但在溫度在範圍為20-42oC時,對吸附能力的影響較小。和Pseudo-first order model相比,pseudo-second order model對吸附的動力性質有較好的描述。另外由Langmuir isotherm的分析可知,對菌體固定量為9.71及15.4 wt.%的固定化顆粒而言,其qm及Kd值分別為8.67 mg/g、141.3 mg/l及10.58 mg/g、71.94 mg/l。上述結果和沒有固定菌體的PVA顆粒(qm及Kd分別為6.35 mg/g及229.0 mg/l)相比,皆有較佳的表現。在起始鎘濃度為10-150 mg/l時,有固定化菌體的PVA顆粒和沒有固定菌體的顆粒相比有較佳的鎘移除百分比。但是,鎘移除百分比會隨著起始鎘濃度的增加而減少,並在起始濃度10 mg/l、菌體固定量15.4 wt.%時有最高的移除百分比(82.7%)。當進一步增加菌體含量時,其對鎘的吸附能力也跟著增加。而在起始鎘濃度100 mg/l、菌體固定量為33.0 wt.%時,其吸附能力(4.29 mg/g)和菌體固定量9.71及15.4 wt.%相比,分別提高了73%及7%的吸附能力。再者,當固定化顆粒達飽和吸附後,以0.01 M Na3NTA溶液為脫附劑進行4個吸附/脫附循環(A/D cycles)時有最好的脫附效率(57-89%),且固定化顆粒再生後仍保有51-61%的原始吸附能力。
    接著,本研究亦以表現人類金屬鍵結蛋白質(MT)的重組菌種之PVA固定化細胞進行連續式管柱吸附實驗,並探討不同的程序參數 (如床高、體積流速以及進料金屬濃度) 對填充床生物吸附效率的影響,所使用之吸附效率功能指標包括穿透時間,總吸附量,吸附容量,初始吸附速率等。由實驗結果得知,減少流率(從2.0到0.5 ml/min,20 mg/l進料濃度)及增加進料金屬濃度(從5到20 mg/l,0.5 ml/min)皆可使金屬吸附量增加,但初始吸附速率則與重金屬進料濃度與負載速率有正相關。在所探討的程序參數中,重金屬進料濃度是對連續填充床管柱生物吸附程序效能最重要的影響因子。而生物吸附在突破濃度時所得的曲線,可藉由Bohart-Adams model及Thomas model加以描述。而以串聯填充管柱進行之吸附/脫附程序顯示,該程序可穩定的操作,且穿透時間能有效地延長。以0.01 M Na3NTA對吸附飽和的管柱進行脫附時,鎘濃度最高可濃縮達12.1-15.5倍之多,且脫附後的管柱具有不錯的再生吸附能力。

    In this study, we examined the expression of mammalian and fish metallothioneins (MTs) in E. coli as a strategy to enhance metal biosorption efficiency of bacterial biosorbents for lead (Pb), copper (Cu), cadmium (Cd), and zinc (Zn). In addition, MT proteins were expressed in either the cytoplasmic or periplasmic compartment of host cells to explore the localization effect on metal biosorption. The results showed that MT expression led to a significant increase (5-210 %) in overall biosorption efficiency (ηads), especially for biosorption of Cd. The MT-driven improvement in metal biosorption relied more on the increase in the biosorption rates (r2; a kinetic property) than on the equilibrium biosorption capacities (qmax; a thermodynamic property), despite a 10-45 % and 30-80 % increase in qmax of Cd and Zn, respectively. Periplasmic expression of MTs appeared to be more effective in facilitating the metal-binding ability than the cytoplasmic MT expression. Notably, disparity of the impacts on biosorption ability was observed for the origin of MT proteins, as human MT (MT1A) was the most effective biosorption stimulator than MTs originating from mouse (MT1) and fish (OmMT). Moreover, the overall biosorption efficiency (ηads) of the MT-expressing recombinant biosorbents was found to be adsorbate-dependent: the ηads values decreased in the order of Cd > Cu > Zn > Pb.
    Due to its excellent ability on Cd biosorption, recombinant E. coli strain expressing human metal-binding protein metallothionein (MT) in the periplasmic compartment was immobilized with polyvinyl alcohol (PVA) and used as biosorbent for the removal of cadmium (Cd) in aquatic environment. Investigations were conducted to examine the effect of adsorption pH, temperature, initial Cd concentration, biomass loading, and adsorption/desorption (A/D) cycles on the adsorption ability and reusability of the immobilized biosorbent. The adsorption ability was strongly affected by pH with an optimal performance at pH 5.0, while it was less sensitive to temperature over the range of 20-42oC. The adsorption kinetics was best described by pseudo-second order model. Langmuir isotherm analysis shows a qm and Kd value of (8.67 mg/g, 141.3 mg/l) and (10.58 mg/g, 71.94 mg/l) for PVA-immobilized cells with a biomass loading of 9.71 and 15.4 wt.%, respectively. This performance is much better than biomass-free PVA beads, displaying a qm and Kd value of 6.35 mg/g and 229.0 mg/l, respectively. Over the initial Cd concentrations range of 10 to 150 mg/l, PVA-immobilized cells had better Cd removal percentage than the biomass-free PVA beads, but the removal percentage decreased with an increase in initial Cd concentration, giving the highest Cd removal percentage of 82.7% at an initial concentration of 10 mg/l and a biomass loading of 15.4 wt.%. Further increase in biomass loading resulted in better adsorption ability. With an initial Cd concentration of 100 mg/l, a biomass loading of 33.0 wt.% attained an adsorption capacity of 4.29 mg/g, which is 73 and 7% higher than that obtained from a biomass loading of 9.71 and 15.4 wt.%, respectively. An aqueous solution of 0.01 M Na3NTA was found to display the best desorption efficiency (57-89%) for four A/D cycles, while 51-61% of the original adsorption capacity was retained after regeneration.
    Finally, recombinant E. coli cells expressing human metal-binding protein (metallothionein; MT) were immobilized by polyvinyl alcohol (PVA) and packed into fixed-bed columns to carry out continuous biosorption of cadmium. The effect of various process parameters, such as bed depth, flow rate, and influent metal concentration on the fixed-bed biosorption was investigated. Decrease in flow rate (from 2.0 to 0.5 ml/min, 20 mg/l) and increase in influent metal concentration (from 5 to 20 mg/l, 0.5 ml/min) led to an increase in metal uptake (bed depth = 30 cm) from 1.37 to 2.22 mg/g and 0.53 to 2.22 mg/g, respectively. Other factors such as total capacity, initial adsorption rate and breakthrough bed volume were also discussed. In addition, it is found that among the process parameters discussed (bed depth, flow rate, and influent concentration), the influent concentration is the most critical factor influencing the performance of continuous column biosorption process. The biosorption breakthrough curves were described by Bohart-Adams model and Thomas model with good agreement. Serial adsorption/desorption operations of the fixed-bed columns shows a good stability of repeated uses of the columns, and desorption of loaded Cd2+ ions with 0.01 M Na3NTA could concentrate Cd2+ ions up to 12.1-15.5 fold when compared with the feeding Cd2+ ion concentration. The regenerated column still exhibited good adsorption ability, indicating that the proposed serial column biosorption/regeneration system is feasible and potentially applicable in treating real heavy-metal-polluted effluents.

    Abstract (Chinese)……………………………………………………..…………….……...I Abstract (English)…………………………………………………………………………IV Acknowledgements……………………………………………………………………...VIII Contents………………………………………………………………………………….....X List of Tables…………………………………………………………………………….XVI List of Figures………………………………………………………………………….XVIII Chapter 1 Introduction……………………………………………………………………1 1.1 Background of this study…………………………………………………………..1 1.2 Motivation and purpose……………………………………………………………5 1.3 Content of this dissertation………………………………………………………...6 Chapter 2 Literature review………………………………………………………………9 2.1 Heavy metals pollution………………………………………………………….…9 2.1.1 Definition of heavy metals…………………………………………………9 2.1.2 Source of heavy metals pollution…………………………………………10 2.1.3 Metals and related diseases to human body………………………………12 2.1.4 Methods used to remove heavy metal from the environment…………….15 2.2 Biosorption……………………………………………………………………….17 2.2.1 Definition of biosorption………………………………………………….18 2.2.2 Comparison of biosorption and bioaccumulation………………………...18 2.2.3 Natural and commercial biosorbents……………………………………...22 2.2.4 Development of biosorbent…………………………………………….…24 2.3 Metallothionein (MT)…………………………………………………………….25 2.3.1 Introduction to metallothioneins………………………………………….25 2.3.2 History of metallothioneins……………………………………………….27 2.4 Cell immobilization………………………………………………………………29 2.4.1 Introduction to cell immobilization……………………………………….30 2.4.2 Characteristics of some polymers used for cell immobilization………….31 2.4.3 Polyvinyl alcohol (PVA)………………………………………………….32 2.5 Processes and reactor design for heavy metals biosorption……………………...34 2.5.1 Processes for heavy metals biosorption…………………………………...34 2.5.2 Type of reactors for heavy metals biosorption……………………………34 Chapter 3 Materials and methods………………………………………………………36 3.1 Chemicals and materials………………………………………………………….36 3.2 Equipment………………………………………………………………………..38 3.3 Methods for analysis, preparation and measurement…………………………….40 3.3.1 Plasmids and host strains………………………………………………….40 3.3.2 Strain cultivation and proteins expression in E. coli……………………...41 3.3.3 Preparation of the recombinant bacterial biosorbents…………………….42 3.3.4 Measurements of heavy metals…………………………………………...42 3.3.5 Cell immobilization with polyvinyl alcohol (PVA)………………………43 3.3.6 Total protein concentration analysis………………………………………44 3.3.7 SDS-PAGE analysis………………………………………………………44 3.3.8 Scanning electron microscope (SEM) analysis…………………………...45 3.3.9 Calibration of peristaltic pump……………………………………………46 3.4 Construction of MT-bearing recombinant E. coli strains………………………...46 3.4.1 Molecular cloning of MTs of human, mouse, and Tilapia fish…………...46 3.4.2 Production of cytosolic and periplasmic MBP-MT fusion proteins in E. coli………………………………………………………………………..50 3.5 Free cells biosorption by MT-bearing recombinant E. coli strains………………51 3.5.1 Time-course of biosorption……………………………………………….51 3.5.2 Determination of adsorption isotherms…………………………………...51 3.5.3 Selection of desorption agents…………………………………………….52 3.6 PVA-immobilized cells biosorption by MT-bearing recombinant E. coli strains...53 3.6.1 Biosorption at different pH………………………………………………..53 3.6.2 Biosorption at different temperature……………………………………...53 3.6.3 Determination of adsorption isotherms…………………………………...54 3.6.4 Time-course profile of biosorption………………………………………..54 3.6.5 Biosorption using PVA-immobilized cells with different biomass loading55 3.6.6 Desorption of Cd-loaded immobilized biosorbents……………………….56 3.6.7 Repeated adsorption/desorption operations in shake flasks………………56 3.7 Fixed-bed column biosorption by MT-bearing recombinant E. coli strains……...57 3.7.1 Fixed-bed column biosorption experiments………………………………57 3.7.2 Adsorption/desorption in serial fixed-bed columns……………………….58 3.7.3 Quantitative analysis of fixed-bed column adsorption……………………60 3.7.4 Bohart-Adams model……………………………………………………..62 3.7.5 Thomas model………………………………………………………….…63 Chapter 4 Construction of MT-bearing recombinant E. coli strains………………….64 4.1 Introduction………………………………………………………………………64 4.2 Construction of expression vectors encoding MBP-MT fusion proteins………...64 4.3 Expression of cytosolic and periplasmic MBP-MT fusion proteins……………..67 4.4 Confirmation of human MT expression from X-ray results……………………...68 Chapter 5 Free cells biosorption by MT-bearing recombinant E. coli strains………..72 5.1 Introduction………………………………………………………………………72 5.2 Biosorption capacities of the biosorbents at an identical metal concentration…...73 5.3 Time-course biosorption profile and biosorption rate……………………………76 5.4 Biosorption isotherms…………………………………………………………….81 5.5 Effects of expression and localization of MT proteins on heavy metal biosorption………………………………………………………………………82 5.6 Effect of the origin of MT proteins on biosorption………………………………89 5.7 Effect of the type of metal adsorbates on biosorption……………………………91 Chapter 6 PVA-immobilized cells biosorption by MT-bearing recombinant E. coli strains………………………………………………………………………..93 6.1 Introduction………………………………………………………………………93 6.2 Effect of pH on Cd2+ uptake by PVA-immobilized cells………………………...94 6.3 Effect of temperature on Cd2+ uptake by PVA-immobilized cells……………….97 6.4 Kinetics of biosorption…………………………………………………………...99 6.5 Percentage Cd2+ removal under different initial concentrations………………..102 6.6 Biosorption equilibrium………………………………………………………...104 6.7 Effect of biomass loading on Cd2+ biosorption…………………………………107 6.8 Selection of desorption agents and repeated adsorption/desorption cycles…….109 Chapter 7 Fixed-bed column biosorption by MT-bearing recombinant E. coli strains……………………………………………………………………...114 7.1 Introduction……………………………………………………………………..114 7.2 Effect of bed depth on Cd2+ uptake by PVA-immobilized cell…………………114 7.3 Effect of flow rate on Cd2+ uptake by PVA-immobilized cell…………………..119 7.4 Effect of initial inlet concentrationon Cd2+ uptake by PVA-immobilized cell….123 7.5 Effect of loading rate on Cd2+ uptake by PVA-immobilized cell……………….130 7.6 Model analysis of column biosorption behavior using Bohart-Adams equation.133 7.7 Analysis with Thomas model…………………………………………………...136 7.8 Adsorption/desorption in serial fixed-bed columns…………………………….141 Chapter 8 Conclusions and future work………………………………………………144 8.1 Conclusions……………………………………………………………………..144 8.2 Future work……………………………………………………………………..146 References………………………………………………………………………………..148 Curriculum vitae………………………………………………………………………….165

    Aksu, Z., G. Eğretli, T. Kutsal, A comparative study of copper(II) biosorption on Ca-alginate, agarose and immobilized C. vulgaris in a packed-bed column, Process Biochem. 33, 393-400, 1998
    Aksu, Z., and T. Kutsal, Determination of kinetic parameters in the biosorption of copper(II) on Cladophora sp., in a packed bed column reactor, Process Biochem. 33, 7-13, 1998
    Alimohamadi, M., G. Abolhamd, A. Keshtkar, Pb(II) and Cu(II) biosorption on Rhizopus arrhizus modeling mono- and multi-component systems, Miner. Eng. 18, 1325-1330, 2005
    Amarasinghe, B.M.W.P.K., and R.A. Williams, Tea waste as a low cost adsorbent for the removal of Cu and Pb from wastewater, Chem. Eng. J. 132, 299-309, 2007
    An, H.K., B.Y. Park, D.S. Kim, Crab shell for the removal of heavy metals from aqueous solution, Water Res. 35, 3551-3556, 2001
    Ariga, O., H. Takagi, H. Nishizawa, Y. Sano, Immobilization of microorganisms with PVA hardened by iterative freezing and thawing, J. Ferment. Tech. 65, 651-658, 1987
    Ariga. O., K. Itoh, Y. Sano, M. Nagura, Encapsulation of biocatalysts with PVA capsules, J. Ferment. Bioeng. 78, 74-78, 1994
    Bae, W., W. Chen, A. Mulchandani, R.K. Mehra, Enhanced bioaccumulation of heavy metals by bacterial cells displaying synthetic phytochelatins, Biotechnol. Bioeng. 70, 518-524, 2000
    Bae, W., A. Mulchandani, W. Chen, Cell surface display of synthetic phytochelatins using ice nucleation protein for enhanced heavy metal bioaccumulation, J. Inorg. Biochem. 88, 223-227, 2002
    Bai, R.S., and T.E. Abraham, Studies on chromium(VI) adsorption-desorption using immobilized fungal biomass, Bioresour. Technol. 87, 17-26, 2003
    Basha, S., Z.V.P. Murthy, B. Jha, Isotherm modeling for biosorption of Cu(II) and Ni(II) from wastewater onto brown seaweed, Cystoseira indica, AIChE J. 54, 3291-3302, 2008
    Belliveau, B.H., and J.T. Tevirs, Mercury resistance and detoxification in bacteria, Appl. Organometal. Chem. 3, 283-294, 1989
    Bohart, G.S., and E.Q. Adams, Some aspects of the behaviors of charcoal with respect to chlorine, J. Am. Chem. Soc. 42, 523-544, 1920
    Borba, C.E., E.A. da Silva, M.R.F. Klen, A.D. Kroumov, R. Guirardello, Prediction of the copper(II) ions dynamic removal from a medium by using mathematical models with analytical solution, J. Hazard. Mater. 152, 366-372, 2008
    Boudene, C., Food contamination by metals, in Trace Metals: exposure and health effects, Di Ferrante, E., Ed., Pergamon Press, Oxford, 1979
    Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem. 72, 248-254, 1976
    Brierley, C.L., J.A. Brierley, M.S. Davidson, Applied microbial processes for metals recovery and removal from wastewaters, in “Metal ions and bacteria”, Beveridge, T.J. and Doyle, R.J., (eds.) John Wiley & Sons, N.Y., 359-382, 1989
    Bunluesin, S., M. Kruatrachue, P. Pokethitiyook, S. Upatham, G.R. Lanza, Batch and continuous packed column studies of cadmium biosorption by Hydrilla verticillata biomass, J. Biosci. Bioeng. 103, 509-513, 2007
    Capasso, C., V. Carginale, O. Crescenzi, D.D. Maro, E. Parisi, R. Spadaccini, P.A. Temussi, Solution structure of MT_nc, a novel metallothionein from the antarctic fish Notothenia coriiceps, Structure. 11, 435-443, 2003
    Chan, K. M., Metallothionein: Potential biomarker for monitoring heavy metal pollution in fish around Hong Kong, Mar. Pollut. Bull. 31, 411-415, 1995
    Chang, J.S., and C.C. Chen, Quantitative analysis and equilibrium models of selective adsorption in muiti-metal systems using a bacterial biosorbent, Sep. Sci. Technol. 33, 611-632, 1998
    Chang, J.S., J.C. Huang, C.C. Chang, T.J. Tarn, Removal and recovery of lead fixed-bed biosorption with immobilized bacterial biomass, Water Sci. Tech. 38, 171-178, 1998
    Chen, J.Z., X.C. Tao, J. Xu, T. Zhang, Z.L. Liu, Biosorption of lead, cadmium and mercury by immobilized Microcystis aeruginosa in a column, Process Biochem. 40, 3675-3679, 2005
    Chen, K.C., and Y.F. Lin, Immobilization of microorganism with phosphorylated polyvinyl alcohol (PVA) gel, Enzyme Microb. Technol. 16, 79-83, 1994
    Chen, S.L., and D.B. Wilson, Construction and characterization of Escherichia coli genetically engineered for bioremediation of Hg2+-contaminated environments, Appl. Environ. Microbiol. 63, 2442-2445, 1998
    Cho, D.Y., S.T. Lee, S.W. Park, A.S. Chung, Studies on the biosorption of heavy metals onto Chlorella vulgaris, J. Environ. Sci. Health Part A. A29, 389-409, 1994
    Choi, S.B., Y.S. Yun, Biosorption of cadmium by carious types of dried sludge: an equilibrium study and investigation of mechanisms, J. Hazard. Mater. 138, 378-383, 2006
    Chu, K.H., M.A. Hashim, Copper biosorption on immobilized seaweed biomass: column breakthrough characteristics, J. Environ. Sci. 19, 928-932, 2007
    Collins, Y.E., and Z. Stotzky, Factors affecting the toxicity of heavy metals to microbes, in “Metal ions and bacteria”, Beveridge, T.J. and Doyle, R.J., (eds.) John Wiley & Sons, N.Y., 31-90, 1989
    Congeevaram, S., S. Dhanarani, J. Park, M. Dexilin, K. Thamaraiselvi, Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates, J. Hazard. Mater. 146, 270-277, 2007
    Cornelis, P., Expressing gene in different Escherichia coli compartment, Curr. Opin. Biotechnol. 11, 450-454, 2000
    Dabrio, M., A.R. Rodríguez, G. Bordin, M.J. Bebianno, M. de Ley, I. Šestáková, M. Vašák, M. Nordberg, Recent developments in quantification methods for metallothionein, J. Inorg. Biochem. 88, 123-134, 2002
    Deng, L., Y. Su, H. Su, X. Wang, X. Zhu, Biosorption of copper(II) and lead(II) from aqueous solutions by nonliving green algae Cladophora fascicularis: equilibrium, kinetics and environmental effects, Adsorption. 12, 267-277, 2006
    Deng, X., and D.B. Wilson, Bioaccumulation of mercury from wastewater by genetically engineered Escherichia coli, Appl. Microbiol. Biotechnol. 56, 276-279, 2001
    DeSilva, T.M., G. Veglia, F. Porcelli, A.M. Prantner, S.J. Opella, Selectivity in heavy metal-binding to peptides and proteins, Biopolymers. 64, 189-197, 2002
    Diniz, V., M.E. Weber, B. Volesky, G. Naja, Column biosorption of lanthanum and europium by Sargassum, Water Res. 42, 363-371, 2008
    Fan, T., Y. Liu, B. Feng, G. Zeng, C. Yang, M. Zhou, H. Zhou, Z. Tan, X. Wang, Biosorption of cadmium(II), zinc(II) and lead(II) by Penicillium simplicissimum: isotherms, kinetics and thermodynamics, J. Hazard. Mater. 160, 655-661, 2008
    Fiol, N., I. Villaescusa, M. Martínez, N. Miralles, J. Poch, J. Serarol, Sorption of Pb(II), Ni(II), Cu(II) and Cd(II) from aqueous solution by olive stone waste, Sep. Purif. Technol. 50, 132-140, 2006
    Foster, T.J., The genetics and biochemistry of mercury resistance, CRC Crit. Rev. Microbiol. 15, 117-140, 1987
    Fourest, E., and J.C. Roux, Heavy metal biosorption by fungal mycelial by-products: mechanisms and influence of pH, Appl. Microbiol. Biotechnol. 37, 399-403, 1992
    Gadd, G.M., Accumulation of metals by microorganisms and algae, in “Biotechnology Vol 6b”, Rehm, H.J., and Reed, G., (eds.) VCH Publishers, N.Y., 401-433, 1988
    Garg, V.K., R. Gupta, R. Kumar, R.K. Gupta, Adsorption of chromium from aqueous solution on treated sawdust, Bioresour. Technol. 92, 79-81, 2004
    Goel, J., K. Kadirvelu, C. Rajagopal, V.K. Garg, Removal of lead(II) by adsorption using treated granular activated carbon: batch and column studies, J. Hazard. Mater. 125, 211-220, 2005
    Göksungur, Y., S. Üren, U. Güvenç, Biosorption of cadmium and lead ions by ethanol treated waste baker’s yeast biomass, Bioresour. Technol. 96, 103-109, 2005
    Grill, E., Phytochelatins, the heavy metal binding peptides of plants: characterization and sequence determination, Experientia Suppl. 52, 317-322, 1987
    Gupta, R., P. Ahuja, S. Khan, R.K. Saxena, H. Mohapatra, Microbial biosorbents: meeting challenges of heavy metal pollution in aqueous solutions, Curr. Sci. 78, 967-973, 2000
    Gupta, V.K., and A. Rastogi, Biosorption of lead(II) from aqueous solutions by non-living algal biomass Oedogonium sp. and Nostoc sp. – a comparative study, Colloid Surf. B-Biointerf. 64, 170-179, 2008
    Han, R., J. Zhang, W. Zou, H. Xiao, J. Shi, H. Liu, Biosorption of copper(II) and lead(II) from aqueous solution by chaff in a fixed-bed column, J. Hazard. Mater. 133, 262-268, 2006
    Hashimoto, S., and K. Furukawa, Immobilization of activated sludge by PVA-boric acid method, Biotechnol. Bioeng. 30, 52-59, 1986
    Hernainz, F., M. Calero, G. Blazquez, M.A. Martin-Lara, G. Tenorio, Comparative study of the biosorption of cadmium(II), chromium(III), and lead(II) by olive stone, Environ. Prog. 27, 469-478, 2008
    Ho, Y.S., Citation review of Lagergren kinetic rate equation on adsorption reactions, Scientometrics. 59, 171-177, 2004
    Hu, M.Z.C., and M. Reeves, Biosorption of uranium by Pseudomonas aeruginosa strain CSU immobilized in a novel matrix, Biotechnol. Prog. 13, 60-70, 1997
    Huang, C.C., C.C. Su, J.L. Hsieh, C.P. Tseng, P.L. Lin, J.S. Chang, Polypeptides for heavy-metal biosorption: capacity and specificity of two heterogeneous MerP proteins, Enzyme Microb. Technol. 33, 379-385, 2003
    Imai, K., T. Shiomi, K. Uchida, M. Miya, Immobilization of enzyme into poly(vinyl alcohol) membrane, Biotechnol. Bioeng. 28, 1721-1726, 1985
    Iqbal, M., A. Saeed, S.I. Zafar, Hybrid biosorbent: an innovative matrix to enhance the biosorption of Cd(II) from aqueous solution, J. Hazard. Mater. 148, 47-55, 2007
    Ishibashi, Y., C. Cervantes, S. Silver, Chromium reduction in Pseudomonas putida, Appl. Environ. Microbiol. 56, 2268-2270, 1990
    Iyer, A., K. Mody, B. Jha, Biosorption of heavy metals by a marine bacterium, Mar. Pollut. Bull. 50, 340-343, 2005
    Jarvis, P.J., Heavy metal pollution: an annotated bibliography, Geo books, Norwich, U.K., 1983
    Jen, A.C., C. Wake, A.G. Mikos, Review: Hydrogels for cell immobilization, Biotechnol. Bioeng. 50, 357-364, 1996
    Jeon, C., I.W. Nah, K.Y. Hwang, Adsorption of heavy metals using magnetically modified alginic acid, Hydrometallurgy. 86, 140-146, 2007
    Kaduková, J., and E. Virčíková, Comparison of differences between copper bioaccumulation and biosorption, Environ. Int. 31, 227-232, 2005
    Kägi, J.H.R., Overview of metallothioneins, Methods Enzymol. 205, 613-626, 1991
    Kaikake, K., K. Hoaki, H. Sunada, R.P. Dhakal, Y. Baba, Removal characteristics of metal ions using degreased coffee beans: adsorption equilibrium of cadmium(II), Bioresour. Technol. 98, 2787-2791, 2007
    Kao, W.C., Y.P. Chiu, C.C. Chang, J.S. Chang, Localization effect on the metal biosorption capability of recombinant mammalian and fish metallothioneins in Escherichia coli, Biotechnol. Prog. 22, 1256-1264, 2006
    Kao, W.C., C.C. Huang, J.S. Chang, Biosorption of nickel, chromium and zinc by MerP-expressing recombinant Escherichia coli, J. Hazard. Mater. 158, 100-106, 2008
    Katırcıoğlu, H., B. Aslım, A.R. Türker, T. Atıcı, Y. Beyatlı, Removal of cadmium(II) ions from aqueous system by dry biomass, immobilized live and heat-inactivated Oscillatoria sp. H1 isolated from freshwater (Morgan Lake), Bioresour. Technol. 99, 4185-4191, 2008
    Khoo, K.M., and Y.P. Ting, Biosorption of gold by immobilized fungal biomass, Biochem. Eng. J. 8, 51-59, 2001
    Kiran, B., A. Kaushik, Cyanobacterial biosorption of Cr(VI): application of two parameter and Bohart Adams models for batch and column studies, Chem. Eng. J. 144, 391-399, 2008
    Kratochvil, D., and B. Volesky, Advances in the biosorption of heavy metals, Trends Biotechnol. 16, 291-300, 1998
    Krenkel, P.A., and V. Novotny, Water quality management, Academic Press, N.Y., 1980
    Kubo, K., Y. Sakita, Y. Okazaki, N. Otaki, M. Kimura, T. Minami, Identification of metallothionein isoforms on capillary zone electrophoresis by adding anti-metallothionein antibody, J. Chromatogr. B. 736, 185-190, 1999
    Kumar, U., M. Bandyopadhyay, Fixed bed column study for Cd(II) removal from wastewater using treated rice husk, J. Hazard. Mater. 129, 253-259, 2006
    Kuroda, K., S. Shibasaki, M. Ueda, A. Tanaka, Cell surface-engineered yeast displaying a histidine oilgopeptide (hexa-His) has enhanced adsorption of and tolerance to heavy metal ions, Appl. Microbiol. Biotechnol. 57, 697-701, 2001
    Lee, S.Y., J.H. Choi, Z.H. Xu, Microbial cell-surface display, Trends Biotechnol. 21, 45-52, 2003
    Lester, J.N., Heavy metals in wastewater and sludge treatment process, Boca Raton, Fla., CRC Press, 1987
    Li, Z., and H. Yuan, Characterization of cadmium removal by Rhodotorula sp. Y11, Appl. Microbiol. Biotechnol. 73, 458-463, 2006
    Lund, P.A., and N.L. Brown, Role of the merT and merP gene products of transposon Tn501 in the induction and expression of resistance to mercuric ions, Gene. 52, 207-214, 1987
    Mack, C., B. Wilhelmi, J.R. Duncan, J.E. Burgess, Biosorption of precious metals, Biotechnol. Adv. 25, 264-271, 2007
    Malkoc, E., Y. Nuhoglu, M. Dundar, Adsorption of chromium(VI) on pomace – an olive oil industry waste: Batch and column studies, J. Hazard. Mater. 138, 142-151, 2006
    Malkoc, E., Y. Nuhoglu, Y. Abali, Cr(VI) adsorption by waste acorn of Quercus ithaburensis in fixed beds: prediction of breakthrough curves, Chem. Eng. J. 119, 61-68, 2006
    Margarita, R.C., M.P. da Silva, G.F.L. Selma, V.E. Oscar, Mathematical models applied to the Cr(III) and Cr(VI) breakthrough curves, J. Hazard. Mater. 146, 86-90, 2007
    Margoshes, M., and B.L. Vallee, A cadmium protein from equine kidney cortex, J. Am. Chem. Soc. 79, 4813-4814, 1957
    Marina Š., B. Radetić, Ž. Kevrešan, M. Klašnja, Adsorption of heavy metals from electroplating wastewater by wood sawdust, Bioresour. Technol. 98, 402-409, 2007
    Matthews, P.J., Control of metal application rates from sewage sludge utilization in agriculture, Crit. Rev. Environ. Control, 14, 199-250, 1984
    Mejare, M., and L. Bulow, Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals, Trends Biotechnol. 19, 67-73, 2001
    Minami, T., S. Ichida, K. Kubo, Study of metallothionein using capillary zone electrophoresis, J. Chromatogr. B. 781, 303-311, 2002
    Misra, T.K., Bacterial resistances to inorganic mercury salts and organomercurials, Plasmid, 27, 4-16, 1992
    Mohan, S., and G. Sreelakshmi, Fixed bed column study for heavy metal removal using phosphate treated rice husk, J. Hazard. Mater. 153, 75-82, 2008
    Nieboer, E., and D.H.S. Richardson, The replacement of the nondescript term “heavy metal” by a biologically and chemically significant classification of metal ions, Environ. Pollut. Ser. B. 1, 3-26, 1980
    Nordberg, M., Metallothioneins: historical review and the state of knowledge, Talanta. 46, 243-254, 1998
    Pamukoglu, M.Y., and F. Kargi, Batch kinetics and isotherms for biosorption of copper(II) ions onto pre-treated powdered waste sludge (PWS), J. Hazard. Mater. 138, 479-484, 2006
    Pandey, P.K., Y. Verma, S. Choubey, M. Pandey, K. Chandrasekhar, Biosorptive removal of cadmium from contaminated groundwater and industrial effluents, Bioresour. Technol. 99, 4420-4427, 2008
    Park, J. D., Y. Liu, C.D. Klaassen, Protective effect of metallothionein against the toxicity of cadmium and other metals, Toxicology. 163, 93-100, 2001
    Park, J.K., and H.N. Chang, Microencapsulation of microbial cells, Biotechnol. Adv. 18, 303-319, 2000
    Pattanapipitpaisal, P., N.L. Brown, L.E. Macaskie, Chromate reduction by Microbacterium liquefaciens immobilized in polyvinyl alcohol, Biotechnol. Lett. 23, 61-65, 2001
    Pazirandeh, M., B.M. Wells, R.L. Ryan, Development of bacterium-based heavy metal biosorbents: enhanced uptake of cadmium and mercury by Escherichia coli expressing a metal binding motif, Appl. Environ. Microbiol. 64, 4068-4072, 1998
    Pazirandeh, M., L.A. Chrisey, J.M., Mauro, J.R., Campbell, B.P., Gaber, Expression of the Neurospora crassa metallothionein gene in Escherichia coli and its effect on heavy-metal uptake, Appl. Microbiol. Biotechnol. 43, 1112-1117, 1995
    Roesijadi, G., Metallothionein and its role in toxic metal regulation, Comp. Biochem. Physiol. C. 113, 117-123, 1996
    Rome de L., and G.L. Gadd, Use of pelleted and immobilized yeast and fungal biomass for heavy metal and radionuclide recovery, J. Ind. Microbiol. 7, 97-104, 1991
    Riordan, J.F., and B.L. Vallee, Methods in enzymology, Metallobiochemistry Part B: Metallothionein and related molecules, Academic Press, Vol. 205, CA, 1991
    Ritter, J.A., and J.P. Bibler, Removal of mercury from waste water: large-scale performance of an ion-exchange process, Water Sci. Technol. 25, 165-172, 1992
    Salomons, W., U. Förstner, P. Mader (eds.), Heavy metals: problems and solutions, Springer-Verlag, N.Y., 1995
    Sambrook, J., and D.W. Russell, Molecular cloning: a laboratory manual, 3rd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2001
    Sawalha, M.F., J.R.P. Videa, M.D. Gardea, J.L.G. Torresdey, Removal of copper, lead, and zinc from contaminated water by saltbush biomass: analysis of the optimum binding, stripping, and binding mechanism, Bioresour. Technol. 99, 4438-4444, 2008
    Shumate, S.E., and G.W. Strandberg, Accumulation of metals by microbial cells, in “Comprehensive Biotechnology”, Moo-Young, M. (ed.) Pergamon Press, N.Y., 235-247, 1985
    Silver, S., T.K. Misra, R.A. Laddaga, Bacterial resistance to toxic heavy metals, in “Metal ions and bacteria”, Beveridge, T.J. and Doyle, R.J., (eds.) John Wiley & Sons, N.Y., 121-139, 1989
    Sousa, C., P. Kotrba, T. Ruml, A. Cebolla, V. de Lorenzo, Metalloadsorption by Escherichia coli cells displaying yeast and mammalian metallothioneins anchored to the outer membrane protein LamB, J. Bacteriol. 180, 2280-2284, 1998
    Srinath, T., T. Verma, P.W. Ramteke, S.K. Garg, Chromium (VI) biosorption and bioaccumulation by chromate resistant bacteria, Chemosphere. 48, 427-435, 2002
    Summer, A.O., and S. Silver, Microbial transformations of metals, Ann. Rev. Microbiol. 32, 637-672, 1978
    Thomas, H.C., Chromatography: a problem in kinetics, Ann. NY Acad. Sci. 49, 161-182, 1948
    Tsezos, M., Biosorption of metals. The experience accumulated and the outlook for technology development, Hydrometallurgy. 59, 241–243, 2001
    U.S. Congress, The clean water Act, Washington DC, 1977
    Valls, M., G.D. Roser, S. Atrian, V. de Lorenzo, Bioaccumulation of heavy metals with protein fusions of metallothionein to bacterial OMPs, Biochimie. 80, 855-861, 1998
    Valls, M., S. Atrian, V. de Lorenzo, L.A. Fernández, Engineering a mouse metallothionein on the cell surface of Ralstonia eutropha CH34 for immobilization of heavy metals in soil, Nat. Biotechnol. 18, 661-665, 2000
    Valls, M., V. de Lorenzo, G.D. Roser, S. Atrian, Engineering outer-membrane proteins in Pseudomonas putida for enhanced heavy-metal biosorption, J. Inorg. Biochem. 79, 219-223, 2002
    Vasudevan, P., V. Padmavathy, S.C. Dhingra, Biosorption of monovalent and divalent ions on baker’s yeast, Bioresour. Technol. 82, 285-289, 2002
    Vaughan, T., C.W. Seo, W.E. Marshall, Removal of selected metal ions from aqueous solution using modified corncob, Bioresour. Technol. 78, 133-139, 2001
    Veglio, F., Beolchini, F., Removal of metals by biosorption: a review, Hydrometallurgy. 44, 301-316, 1997
    Veglió, F.A., A. Esposito, A.P. Reverberi, Standardisation of heavy metal biosorption tests: equilibrium and modeling study, Process Biochem. 38, 953-961, 2003
    Volesky, B., Detoxification of metal-bearing effluents: biosorption for the next century, Hydrometallurgy. 59, 203-216, 2001
    Volesky, B., and Z.R. Holan, Biosorption of heavy metals, Biotechnol. Prog. 11, 235-250, 1995
    Vijayaraghavan, K., J. Jegan, K. Palanivelu, M. Velan, Biosorption of copper, cobalt and nickel by marine green alga Ulva reticulate in a packed column, Chemosphere. 60, 419-426, 2005
    Vijayaraghavan, K., and Y.S. Yun, Bacterial biosorbents and biosorption, Biotechnol. Adv. 26, 266-291, 2008
    Wang, J., and C. Chen, Biosorbents for heavy metals removal and their future, Biotechnol. Adv. 27, 195-226, 2009
    Wang. J., W. Hou, Y. Qian, Immobilization of microbial cells using polyvinyl alcohol (PVA) – polyacrylamide gels, Biotechnol. Tech. 9, 203-208, 1995
    Williams, J.W., and S. Silver, Bacterial resistance and detoxification of heavy metals, Enzyme Microb. Technol. 6, 530-537, 1984
    Wood, J.M., and H.K. Wang, Microbial resistance to heavy metals, Environ. Sci. Technol. 17, 582A-590A, 1983
    Wu, J.Y., S.C.J. Huang, C.T. Chen, K.C. Chen, Decolorization of azo dye in a FBR reactor using immobilized bacteria, Enzyme Microb. Technol. 37, 102-112, 2005
    Yan, G., and T. Viraraghavan, Heavy metal removal in a biosorption column by immobilized M. Rouxii biomass, Bioresour. Technol. 78, 243-249, 2001
    Yu, J.X., M. Tong, X.M. Sun, B.H. Li, A simple method to prepare poly(amic acid)-modified biomass for enhancement of lead and cadmium adsorption, Biochem. Eng. J. 33, 126-133, 2007
    Zhou, D., L. Zhang, J. Zhou, S. Guo, Cellulose/chitin beads for adsorption of heavy metals in aqueous solution, Water Res. 38, 2643-2650, 2004
    Zhou, D., L. Zhang, J. Zhou, S. Guo, Development of a fixed-bed column with cellulose/chitin beads to remove heavy-metal ions, J. Appl. Polym. Sci. 94, 684-691, 2004

    無法下載圖示 校內:2108-09-04公開
    校外:2108-09-04公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE