| 研究生: |
陳宗霆 Chen, Tzung-Ting |
|---|---|
| 論文名稱: |
整合地電阻影像剖面法與多時序合成孔徑雷達干涉技術判釋滾水坪泥火山活動特徵 Integration of Electrical Resistivity Tomography and Multi-Temporal Interferometric Synthetic Aperture Radar techniques to interpret the activity characteristics of Gunshuiping mud volcano |
| 指導教授: |
樂鍇‧祿璞崚岸
Ling, Ting-Li |
| 共同指導教授: |
陳柔妃
Chen, Rou-Fei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 地球科學系 Department of Earth Sciences |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 124 |
| 中文關鍵詞: | 地電阻影像剖面法 、多時序合成孔徑雷達干涉技術 、滾水坪泥火山 |
| 外文關鍵詞: | Electrical Resistivity Tomography (ERT), Multi Temporal InSAR (MT-InSAR), Gunshuiping mud volcano |
| 相關次數: | 點閱:182 下載:21 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,台灣西南部泥火山研究以構造成因、化學分析及能源探勘等為主,較少針對鄰近泥火山地區之工程安全及其環境影響評估。以中寮隧道北部出口為例,自完工通車以來,持續受到旗山斷層及周遭潛在泥貫入體影響,已產生至少130公分之抬升變形。而滾水坪泥火山之地質概況近似於中寮隧道,且經濟部中央地質調查所亦於2022年公告橫跨泥火山之車瓜林斷層歸類為第一類活動斷層,突顯滾水坪泥火山地下構造與地表變形調查的重要性。本研究採用地電阻影像剖面法(Electrical Resistivity Tomography , ERT),取得滾水坪泥火山地下電性地層分布之特性,繪製電阻率影像剖面圖,進而產製三維地電阻建置泥火山地下構造模型,判釋潛在泥漿地下通道及泥漿庫分布。同時,結合多時序合成孔徑雷達干涉技術(Multi-Temporal Interferometric Synthetic Aperture Radar, MT-InSAR),分析泥火山時空地表變形及變動頻率特性。本研究結果顯示本區現生泥火山噴發口與地下泥漿通道位置一致,其泥漿庫位置位於地下20m至50m處,搭配InSAR長期平均地表變形結果指出地表活動頻繁區域與地下泥漿庫範圍相符。此外,多時序InSAR成果指出美濃地震前後本區地表間隔變形速率差異達 +37 mm/yr,明顯受區域構造應力改變所造成。綜合各成果表明地表陷落區域與地電阻所判釋之地下泥漿庫位置相吻合,且抬升趨勢和泥漿通道構造及泥火山噴發口出露情形一致,以此說明淺地表泥火山地下構造與泥火山地表變動情形存在一定相關性,進一步驗證地球物理方法結合衛星遙測探勘技術之可行性。本研究藉整合地表變形與地下構造探勘調查技術、相輔相成,可協助擬定台灣西南部地區泥火山噴發潛勢區及泥貫入體地質災害敏感區長期監測策略,達成泥火山地區地球物理與衛星遙測之實務應用。
In recent years, most research of mud volcanoes in southwestern Taiwan focuses on tectonic origin, chemical analysis and energy exploration, etc. However, rarely has the research been focused on the engineering safety and the environmental impact assessment in the adjacent areas of mud volcanoes. In order to investigate the activity of Gunshuiping mud volcano, the study adopted the Electrical Resistivity Tomography (ERT) method to obtain the electro-stratigraphic section of the mud volcano, obtain the resistivity profile images, build mud volcano underground structure models, and interpret mud underground channels and spatial distribution of the mud reservoirs. In addition, it is combined with the Multi-Temporal Interferometric Synthetic Aperture Radar (MT-InSAR) technique to analyze the space-time surface deformation and the activity of mud volcano. The overall research results, indicate that the surface subsidence area is consistent with the location of the underground mud reservoir identified by ERT; and the uplift trend thereof is consistent with the mud channel structure and exposure of mud volcanic orifice. This not only points out a certain correlation between the underground mud volcano system and the mud volcano surface deformation, but also verifies the feasibility of combining geophysical and satellite remote sensing methods.
1. 丁權、張正男、邵昀霆、李正兆、何樹根、陳文山(2016)。高雄燕巢地區車瓜林斷層的活動性調查。中華民國地質學會與中華民國地球物理學會105年年會暨學術研討會,台北市,台灣。
2. 中興工程顧問股份有限公司(2020)。南部科學園區橋頭園區開發計畫環境影響評估報告。中興工程顧問股份有限公司。
3. 王子賓(2005)。結合地電阻影像剖面法及透地雷達調查DNPALs之案例研究。國立中央大學應用地質研究所碩士論文。
4. 王廷瑜(2021)。利用地電阻影像法與室內電阻率試驗探討地下構造特性-以臺灣中部初鄉斷層為例。國立中央大學應用地質研究所碩士論文。
5. 台灣世曦工程顧問股份有限公司(2021)。高雄新市鎮第二期發展區開發案區段徵收公共工程規劃設計及監造委託服務作業:委託地球物理探測與地聲調查工作。台灣世曦工程顧問股份有限公司。
6. 石再添(1967)。臺灣活泥火山的調查及其類型與噴泥性質之關係的研究。台灣石油地質,5, 259~311。
7. 交通部高速公路局(2018)。國道3號田寮3號高架橋及中寮隧道長期改善工程。行政院交通部。
8. 何春蓀(1986)。台灣地質概論:台灣地質圖說明書。經濟部中央地質調查所。
9. 林啟文(2013)。經濟部中央地質調查所五萬分之一地質說明書:旗山。經濟部中央地質調查所。
10. 林啟文、游鎮源、洪國騰、周稟珊(2012)。臺灣南部臺南-高雄泥岩區的地質構造研究。經濟部中央地質調查所彙刊,25,143-174。
11. 林瑞騏(2014)。應用地電阻法初勘池上斷層在電光地區地下電性分布。國立成功大學地球科學研究所碩士論文。
12. 柯佳君(2010)。台灣西南海域泥貫入體之活動與演化。國立台灣大學海洋研究所碩士論文。
13. 洪彥豪(2004)。應用地電阻影像剖面法於湖口斷層之研究。國立中央大學應用地質研究所碩士論文。
14. 徐慶雲(1975)。台南縣坑內、龍船及高雄縣小滾水構造地質核查報告。中油內部報告。
15. 張阡肇(2005)。台灣泥火山沉積物之特性、來源與西南部石灰岩體之隱示。國立台灣大學地質研究所碩士論文。
16. 張鴻成(2012)。以多重時間尺度分析古亭坑泥岩區千年來地形變動。國立中央大學地球物理研究所博士論文。
17. 梅興泰、鄭富書、蔡道賜(2006)。地電阻影像剖面法對非均質地下實體之模擬分析,技術學刊,21(4),369-381。
18. 陳太山、石文卿(2013)。臺灣西南部的泥火山分佈與油氣探勘潛能。鑛冶:中國鑛冶工程學會會刊,57(3),65-74。
19. 陳文山、游能悌、楊小青(2012)。斷層活動特性分析與評估(2/4)。經濟部中央地質調查所。
20. 陳松春、許樹坤、王詠絢、劉家瑄(2014)。臺灣西南海域上部高屏斜坡之泥貫入體與活躍泥火山的分布及油氣潛能。鑛冶:中國鑛冶工程學會會刊, 58 (2),30-49。
21. 陳泓幃(2010)。利用二維地電阻探測方法調查彰化地區濁水溪沖積扇頂地下水補注區邊界之研究。國立臺灣海洋大學應用地球科學研究所碩士論文。
22. 陳柔妃、郭志禹(2021)。110年大規模崩塌潛勢區地表觀測活動性評估。行政院水土保持局。
23. 鳥居敬造(1932)。台南州新化油田調查報告。台灣總督府殖產局,609,29。
24. 彭國瑛(2021)。台灣西南褶衝帶增積岩體泥貫入體變形構造分析。國立台灣大學海洋研究所碩士論文。
25. 黃亦青(2008)。應用三維地電阻方法評估汙染物的傳輸及分佈之可行性先導研究。嘉南藥理科技大學環境工程與科學研究所碩士論文。
26. 黃思敬(2005)。利用衛星大地測量資料研究觸口斷層系統之活動構造。國立中央大學地球物理研究所碩士論文。
27. 楊燦堯(2003)。台灣的泥火山。臺大校友雙月刊,第29期雙月刊。
28. 楊燦堯(2006)。泥火山噴氣所帶來地底的訊息。地質,25(2),30-36。
29. 葉高華(2003)。由流體地球化學探討台灣泥火山的成因。國立台灣大學海洋研究所碩士論文。
30. 廖伶榕(2016)。應用地電阻影像剖面法探勘高雄燕巢地區滾水坪泥火山地下通道。國立成功大學地球科學研究所碩士論文。
31. 趙鴻椿(2003)。臺灣地區泥火山氣體成分分析及其對全球甲烷來源的可能影響。國立成功大學地球科學所碩士論文。
32. 齊士崢、任家弘、何立德、林建偉、呂政豪(2012)。高雄市的泥火山地形景觀與變遷。地景保育通訊,38(1),39-43。
33. 戴于恆(2016)。應用合成孔徑雷達差分干涉技術監測山崩之潛移現象-以九份及烏來地區為例。國立中央大學地球科學研究所碩士論文。
34. 顏楠庭(2017)。燕巢滾水坪泥火山地震與降雨前後淺地表地電阻之變化。國立成功大學地球科學研究所碩士論文。
35. Antonielli, B., Monserrat, O., Bonini, M., Righini, G., Sani, F., Luzi, G., ... & Aliyev, C. S. (2014). Pre-eruptive ground deformation of Azerbaijan mud volcanoes detected through satellite radar interferometry (DInSAR). Tectonophysics, 637, 163-177.
36. Aoki, Y., & Sidiq, T. P. (2014). Ground deformation associated with the eruption of Lumpur Sidoarjo mud volcano, east Java, Indonesia. Journal of volcanology and geothermal research, 278, 96-102.
37. Ayolabi, E. A., Enoh, I. J., & Folorunso, A. F. (2013). Engineering site characterisation using 2-D and 3-D electrical resistivity tomography. Earth Science Research, 2(1), 133-142.
38. Bentivenga, M., Bellanova, J., Calamita, G., Capece, A., Cavalcante, F., Gueguen, E., ... & Piscitelli, S. (2021). Geomorphological and geophysical surveys with InSAR analysis applied to the Picerno earth flow (southern Apennines, Italy). Landslides, 18(1), 471-483.
39. Bishop, I., & Koor, N. P. (2000). Integrated geophysical and geotechnical investigations of old masonry retaining walls in Hong Kong. Quarterly Journal of Engineering Geology and Hydrogeology, 33(4), 335-349.
40. Bonini, M. (2012). Mud volcanoes: indicators of stress orientation and tectonic controls. Earth-Science Reviews, 115(3), 121-152.
41. Buckel, J., Reinosch, E., Hördt, A., Zhang, F., Riedel, B., Gerke, M., ... & Mäusbacher, R. (2021). Insights into a remote cryosphere: a multi-method approach to assess permafrost occurrence at the Qugaqie basin, western Nyainqêntanglha Range, Tibetan Plateau. The Cryosphere, 15(1), 149-168.
42. Chang, P. Y., Yang, T. Y., Chyi, L. L., & Hong, W. L. (2010). Electrical resistivity variations before and after the Pingtung earthquake in the Wushanting mud volcano area in southwestern Taiwan. Journal of Environmental & Engineering Geophysics, 15(4), 219-231.
43. Clark, J. A., & Page, R. (2011). Inexpensive geophysical instruments supporting groundwater exploration in developing nations. Journal of Water Resource and Protection, 3(10), 768.
44. Dimitrov, L. I. (2002). Mud volcanoes—the most important pathway for degassing deeply buried sediments. Earth-Science Reviews, 59(1-4), 49-76.
45. Ding, C., Feng, G., Li, Z., Shan, X., Du, Y., & Wang, H. (2016). Spatio-temporal error sources analysis and accuracy improvement in landsat 8 image ground displacement measurements. Remote Sensing, 8(11), 937.
46. Dong, J., Zhang, L., Tang, M., Liao, M., Xu, Q., Gong, J., & Ao, M. (2018). Mapping landslide surface displacements with time series SAR interferometry by combining persistent and distributed scatterers: A case study of Jiaju landslide in Danba, China. Remote sensing of environment, 205, 180-198.
47. Fan, H., Deng, K., Ju, C., Zhu, C., & Xue, J. (2011). Land subsidence monitoring by D-InSAR technique. Mining Science and Technology (China), 21(6), 869-872.
48. Fernández-Álvarez, J. P., Rubio-Melendi, D., Castillo, J. A. Q., González-Quirós, A., & Cimadevilla-Fuente, D. (2017). Combined GPR and ERT exploratory geophysical survey of the Medieval Village of Pancorbo Castle (Burgos, Spain). Journal of Applied Geophysics, 144, 86-93.
49. Ferretti, A., Prati, C., & Rocca, F. (2000). Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Transactions on geoscience and remote sensing, 38(5), 2202-2212.
50. Fujiwara, S., Yarai, H., Kobayashi, T., Morishita, Y., Nakano, T., Miyahara, B., ... & Une, H. (2016). Small-displacement linear surface ruptures of the 2016 Kumamoto earthquake sequence detected by ALOS-2 SAR interferometry. Earth, Planets and Space, 68(1), 1-17.
51. Fukushima, Y., Mori, J., Hashimoto, M., & Kano, Y. (2009). Subsidence associated with the LUSI mud eruption, East Java, investigated by SAR interferometry. Marine and Petroleum Geology, 26(9), 1740-1750.
52. González-Morales, O., Rodríguez-Madrid, A. L., Ríos-Reyes, C. A., & Ojeda-Bueno, G. Y. (2015). Relationship between the mud organic matter content and the maximum height of diapiric domes using analog models. CT&F-Ciencia, Tecnología y Futuro, 6(2), 17-32.
53. Hooper, A. (2008). A multi‐temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophysical Research Letters, 35(16).
54. Hooper, A., Zebker, H., Segall, P., & Kampes, B. (2004). A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophysical research letters, 31(23).
55. Hu, J., Li, Z. W., Ding, X. L., Zhu, J. J., Zhang, L., & Sun, Q. (2012). 3D coseismic displacement of 2010 Darfield, New Zealand earthquake estimated from multi-aperture InSAR and D-InSAR measurements. Journal of Geodesy, 86(11), 1029-1041.
56. Huntley, D., Bobrowsky, P., Hendry, M., Macciotta, R., & Best, M. (2019). Multi-technique geophysical investigation of a very slow-moving landslide near Ashcroft, British Columbia, Canada. Journal of Environmental and Engineering Geophysics, 24(1), 87-110.
57. Huntley, D., Bobrowsky, P., Hendry, M., Macciotta, R., Elwood, D., Sattler, K., ... & Meldrum, P. (2019). Application of multi-dimensional electrical resistivity tomography datasets to investigate a very slow-moving landslide near Ashcroft, British Columbia, Canada. Landslides, 16(5), 1033-1042.
58. Jia, P. Z., & Tao, Z. Z. (1984). Optimal Estimation and Its Applications.
59. Kankaku, Y., Suzuki, S., & Osawa, Y. (2013, July). ALOS-2 mission and development status. In 2013 IEEE International Geoscience and Remote Sensing Symposium-IGARSS (pp. 2396-2399). IEEE.
60. Kneisel, C. (2006). Assessment of subsurface lithology in mountain environments using 2D resistivity imaging. Geomorphology, 80(1-2), 32-44.
61. Kopf, A. J. (2002). Significance of mud volcanism. Reviews of geophysics, 40(2), 2-1.
62. Kristyanto, T. H. W., Indra, T. L., Syahputra, R., & Tempessy, A. S. (2017, May). Determination of the landslide slip surface using electrical resistivity tomography (ERT) technique. In Workshop on World Landslide Forum (pp. 53-60). Springer, Cham.
63. Kwak, Y., Yun, S. H., & Iwami, Y. (2017, July). A new approach for rapid urban flood mapping using ALOS-2/PALSAR-2 in 2015 Kinu River Flood, Japan. In 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (pp. 1880-1883). IEEE.
64. Ling, C., Xu, Q., Zhang, Q., Ran, J., & Lv, H. (2016). Application of electrical resistivity tomography for investigating the internal structure of a translational landslide and characterizing its groundwater circulation (Kualiangzi landslide, Southwest China). Journal of Applied Geophysics, 131, 154-162.
65. Loher, M., Pape, T., Marcon, Y., Römer, M., Wintersteller, P., Praeg, D., ... & Bohrmann, G. (2018). Mud extrusion and ring-fault gas seepage–upward branching fluid discharge at a deep-sea mud volcano. Scientific reports, 8(1), 1-11.
66. Loke, M. H. (1998). Res2dInv. Rapid 2D resistivity and IP inversion using the least-squares method, User Manual, Austin Tex, Advanced Geoscience Inc.
67. Loke, M. H. (2004). Tutorial: 2-D and 3-D electrical imaging surveys.
68. Mahdianpari, M., Salehi, B., Mohammadimanesh, F., & Motagh, M. (2017). Random forest wetland classification using ALOS-2 L-band, RADARSAT-2 C-band, and TerraSAR-X imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 130, 13-31.
69. Martel, R., Castellazzi, P., Gloaguen, E., Trépanier, L., & Garfias, J. (2018). ERT, GPR, InSAR, and tracer tests to characterize karst aquifer systems under urban areas: The case of Quebec City. Geomorphology, 310, 45-56.
70. Merritt, A. J., Chambers, J. E., Murphy, W., Wilkinson, P. B., West, L. J., Gunn, D. A., ... & Dixon, N. (2014). 3D ground model development for an active landslide in Lias mudrocks using geophysical, remote sensing and geotechnical methods. Landslides, 11(4), 537-550.
71. Merryman Boncori, J. P. (2019). Measuring coseismic deformation with spaceborne synthetic aperture radar: A review. Frontiers in Earth Science, 7, 16.
72. Milkov, A. V. (2000). Worldwide distribution of submarine mud volcanoes and associated gas hydrates. Marine Geology, 167(1-2), 29-42.
73. Mora, O., Lanari, R., Mallorqui, J. J., Berardino, P., & Sansosti, E. (2002, June). A new algorithm for monitoring localized deformation phenomena based on small baseline differential SAR interferograms. In IEEE International Geoscience and Remote Sensing Symposium (Vol. 2, pp. 1237-1239). IEEE.
74. Muchingami, I., Hlatywayo, D. J., Nel, J. M., & Chuma, C. (2012). Electrical resistivity survey for groundwater investigations and shallow subsurface evaluation of the basaltic-greenstone formation of the urban Bulawayo aquifer. Physics and Chemistry of the Earth, Parts A/B/C, 50, 44-51.
75. Pathier, E., Fruneau, B., Deffontaines, B., Angelier, J., Chang, C. P., Yu, S. B., & Lee, C. T. (2003). Coseismic displacements of the footwall of the Chelungpu fault caused by the 1999, Taiwan, Chi-Chi earthquake from InSAR and GPS data. Earth and Planetary Science Letters, 212(1-2), 73-88.
76. Perrone, A., Lapenna, V., & Piscitelli, S. (2014). Electrical resistivity tomography technique for landslide investigation: A review. Earth-Science Reviews, 135, 65-82.
77. Pham, T. D., Yoshino, K., Le, N. N., & Bui, D. T. (2018). Estimating aboveground biomass of a mangrove plantation on the Northern coast of Vietnam using machine learning techniques with an integration of ALOS-2 PALSAR-2 and Sentinel-2A data. International Journal of Remote Sensing, 39(22), 7761-7788.
78. Ping-Yu, C., Shu-Kai, C., Hsing-Chang, L., & Wang, S. C. (2011). Using integrated 2D and 3D resistivity imaging methods for illustrating the mud-fluid conduits of the Wushanting Mud Volcanoes in Southwestern Taiwan. TAO: Terrestrial, Atmospheric and Oceanic Sciences, 22(1), 1.
79. Rainone, M. L., Rusi, S., & Torrese, P. (2015). Mud volcanoes in central Italy: Subsoil characterization through a multidisciplinary approach. Geomorphology, 234, 228-242.
80. Rudolph, M. L., Shirzaei, M., Manga, M., & Fukushima, Y. (2013). Evolution and future of the Lusi mud eruption inferred from ground deformation. Geophysical Research Letters, 40(6), 1089-1092.
81. Sarıtaş, H., Çifçi, G., Géli, L., Thomas, Y., Marsset, B., Henry, P., ... & Rochat, A. (2018). Gas occurrence and shallow conduit systems in the Western Sea of Marmara: a review and new acoustic evidence. Geo-Marine Letters, 38(5), 385-402.
82. Sekertekin, A., Marangoz, A. M., & Abdikan, S. (2020). ALOS-2 and Sentinel-1 SAR data sensitivity analysis to surface soil moisture over bare and vegetated agricultural fields. Computers and Electronics in Agriculture, 171, 105303.
83. Seno, T., Stein, S., & Gripp, A. E. (1993). A model for the motion of the Philippine Sea plate consistent with NUVEL‐1 and geological data. Journal of Geophysical Research: Solid Earth, 98(B10), 17941-17948.
84. Talukder, A. R., Bialas, J., Klaeschen, D., Bürk, D., Brückmann, W., Reston, T., & Breitzke, M. (2007). High-resolution, deep tow, multichannel seismic and sidescan sonar survey of the submarine mounds and associated BSR off Nicaragua pacific margin. Marine Geology, 241(1-4), 33-43.
85. Travelletti, J., Sailhac, P., Malet, J. P., Grandjean, G., & Ponton, J. (2012). Hydrological response of weathered clay‐shale slopes: Water infiltration monitoring with time‐lapse electrical resistivity tomography. Hydrological processes, 26(14), 2106-2119.
86. Tsai, J. P., Chang, L. C., Chang, P. Y., Lin, Y. C., Chen, Y. C., Wu, M. T., & Yu, H. L. (2017). Spatial-temporal pattern recognition of groundwater head variations for recharge zone identification. Journal of Hydrology, 549, 351-362.
87. Vafaei, S., Soosani, J., Adeli, K., Fadaei, H., Naghavi, H., Pham, T. D., & Tien Bui, D. (2018). Improving accuracy estimation of Forest Aboveground Biomass based on incorporation of ALOS-2 PALSAR-2 and Sentinel-2A imagery and machine learning: A case study of the Hyrcanian forest area (Iran). Remote Sensing, 10(2), 172.
88. Wiwattanachang, N., & Giao, P. H. (2011). Monitoring crack development in fiber concrete beam by using electrical resistivity imaging. Journal of Applied Geophysics, 75(2), 294-304.
89. Yokoyama, R., Shirasawa, M., & Pike, R. J. (2002). Visualizing topography by openness: a new application of image processing to digital elevation models. Photogrammetric engineering and remote sensing, 68(3), 257-266.
90. Zeyen, H., Pessel, M., Ledésert, B., Hébert, R., Bartier, D., Sabin, M., & Lallemant, S. (2011). 3D electrical resistivity imaging of the near-surface structure of mud-volcano vents. Tectonophysics, 509(3-4), 181-190.
91. Zhang, L., Ding, X., & Lu, Z. (2011). Ground settlement monitoring based on temporarily coherent points between two SAR acquisitions. ISPRS Journal of Photogrammetry and Remote Sensing, 66(1), 146-152.
92. Zhang, L., Ding, X., & Lu, Z. (2011). Modeling PSInSAR time series without phase unwrapping. IEEE Transactions on Geoscience and Remote Sensing, 49(1), 547-556.
93. Zhang, L., Ding, X., Lu, Z., Jung, H. S., Hu, J., & Feng, G. (2014). A novel multitemporal InSAR model for joint estimation of deformation rates and orbital errors. IEEE Transactions on Geoscience and Remote Sensing, 52(6), 3529-3540.
94. Zhang, L., Lu, Z., Ding, X., Jung, H. S., Feng, G., & Lee, C. W. (2012). Mapping ground surface deformation using temporarily coherent point SAR interferometry: Application to Los Angeles Basin. Remote Sensing of Environment, 117, 429-439.
95. Zhu, T., Zhou, J., & Wang, H. (2017). Localization and characterization of the Zhangdian-Renhe fault zone in Zibo city, Shandong province, China, using electrical resistivity tomography (ERT). Journal of Applied Geophysics, 136, 343-352.