簡易檢索 / 詳目顯示

研究生: 田俊介
Tien, Chun-Chieh
論文名稱: 三極導電原子力顯微鏡探針之設計、製造及其功能測試
Design, fabrication, and characterization of three-electrode conductive atomic force microscope probe
指導教授: 劉浩志
Liu, Bernard HaoChih
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 81
中文關鍵詞: 原子力顯微鏡導電式原子力顯微鏡多極探針微區氧化MOSMOSOM穿隧能障Fowler - Nordheim
外文關鍵詞: Atomic force microscopy, CAFM, multi-probes, local anodic oxidation, MOS, MOSOM, tunneling barrier, Fowler–Nordheim tunneling
相關次數: 點閱:137下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的主要目的在於設計、製造與測試新式三極導電原子力顯微鏡探針。此三極導電探針具備奈米級掃描及定位之能力,可藉由控制電流流經之路徑以量測顯微組織 (晶界、晶粒、奈米級電子元件…等) 的電性。
    本研究利用微機電系統製程製作三極導電探針,探針針長約為3.5 μm,而針尖的曲率半徑則在30~50 nm之間與一般商用探針相當。另外,三極導電探針俱備兩間距為13~20 μm 的導電針尖,可跨接於顯微組織上控制電流之路徑,以量測此顯微組織的電性。並在探針的製程中加入絕緣溝槽的設計,讓三極導電探針於濺鍍導電鍍層後各電極間能夠自然絕緣,減少使用光罩的數量,降低探針製作成本與製程複雜度。
    三極導電探針製作完成後,我們將其用於變異鏈球菌 (Streptococcus mutans)、聚左乳酸 (poly L-lactic acid) 與氧化鋁燒結塊材表面形貌的掃描,配合矽晶圓表面的氧化加工與電性分析,測試此探針表面形貌掃描、加工及電性量測等三項主要功能。測試結果,在表面形貌的掃瞄的測試上,取得一般商用探針接近的結果。而在氧化加工的測試,成功的利用此三極導電探針在矽晶圓表面生成長度約為15 μm的線狀氧化層,並以此探針通以直流偏壓量測探針、氧化層與矽基板所形成的MOS與MOSOM結構的Fowler - Nordheim穿隧電流,由此穿隧電流可計算其穿隧能障。在MOS結構中,當氧化層厚度在15~2.2 nm之間時其能障約為0.4~1.8 eV,隨厚度增加而下降。而在MOSOM結構中,當氧化層厚度為3 nm時,穿隧能障約為2.63 eV。透過穿隧電流的量測能夠證實此探針可用於奈米級電子元件的電性量測。
    另外,此三極導電探針能夠裝載於一般常見的AFM機台,期望藉此降低三極導電探針量測分析技術使用之門檻,可更容易的將此技術推廣至其他研究領域;如生物電性分析、離子電池電化學分析、陶瓷燒結機構探討等。

    In this study a three-electrode conductive atomic force microscope probe (CAFM) was made. Based on the original abilities, surface scanning and nanoscale localization, of AFM probe, a nanoscale feature could be found, and the extra two probes on the three-electrode probe could be used to measure the electrical properties by controlling the current path.
    Finite element analysis software, ABAQUS and Intellisuite, were conducted to design the mechanical performance and the fabrication process. Three-electrode CAFM probes were manufactured by micro electro mechanical system process. On the three-electrode probe a 3.5 μm height tip was made with a radius of curvature 30~50 nm, and two of the tips were set apart in 13~20 μm. An insulation trench was also designed on the probe to insulate the tips from one to another. The design of the insulation trench can not only reduce the use of the photomask, but also lower the costs and simplify the fabrication process
    The electrode probe was used to do the local anodic oxidation on a silicon wafer, and a MOS and MOSOM structure were formed of the tips, silicon oxide, and silicon. The Fowler-Nordheim tunneling (F-N tunneling) current was measured by applying a DC bias to MOS and MOSOM structures. The tunneling barriers of the MOS were within the range of 0.4 to 1.8 eV with the oxide thickness from 15 nm to 2.2 nm And in the MOSOM structure, the tunneling barrier is about 2.63 eV with the oxide thickness 3 nm. Through these tests, we could prove that the three-electrode probe had the functions of scanning, nano machining and electrical measuring.
    Furthermore, the size of the three-electrode probe was the same as general commercial probes so that the probe could be operated in commercial AFM. With this design, we expected that we could simplify the three-electrode measurement process, and applied this measured technique to other research category; for instance, bioelectrical analysis, electrochemical analysis of ion battery and study of ceramic sintered mechanism.

    中文摘要 I ABSTRACT XI 致謝 XIII 總目錄 XIV 圖目錄 XVI 表目錄 XIX 第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 3 第二章 文獻回顧 5 2-1 文獻回顧 5 2-1-1 探針量測顯微結構的電性 5 2-1-2 導電原子力顯微鏡量測顯微結構的電性 7 2-1-3 導電原子力顯微鏡應用於矽基板氧化加工 15 第三章 三電極導電原子力顯微鏡之設計與製造 17 3-1 研究方法與架構 17 3-2 三極導電探針之設計及其功能 19 3-2-1 三極導電探針量測技術 20 3-2-1 針頭絕緣技術 21 3-3 三極導電探針結構與製程設計 23 3-3-1 三極導電探針結構設計 23 3-3-1-1 針頭設計 24 3-3-1-2 懸臂樑設計 26 3-3-1-3 絕緣溝槽上部設計 28 3-3-1-4 絕緣溝槽中部設計 31 3-3-1-5 電極設計 33 3-3-2 三極導電探針製程設計 35 3-3-2-1 薄膜成長沉積 35 3-3-2-2 黃光微影 35 3-3-2-3 蝕刻 37 3-4 製程藥品與分析儀器 38 3-4-1 儀器介紹 38 3-4-2 使用藥品 39 第四章 實驗結果與討論 40 4-1 三極導電探針MEMS製程 40 4-1-1 探針針尖與懸臂樑的微影製程 40 4-1-2 懸臂樑的製程模擬與蝕刻 44 4-1-3 探針針尖的製程模擬與蝕刻 46 4-2 三極導電探針裝載與掃描功能測試 51 4-2-1 三極導電探針之裝載 51 4-2-2 三極導電探針之掃描功能測試 52 4-3 三極導電探針之氧化加工及電性分析測試 56 4-3-1 三極導電探針的氧化加工測試 56 4-3-2 三極導電探針的電性分析測試 59 4-3-2-1 單電極電性分析測試 59 4-3-2-2 雙電極電性分析測試 65 第五章 結論與未來展望 69 5-1 結論 69 5-2 未來展望 71 第六章 參考文獻 73 附錄一 80 附錄二 81

    [1]G. Binnig and C. F. Quate, "Atomic Force Microscope," Physical Review Letters, vol. 56, pp. 930-933, 1986.
    [2]V. J. Morris, A. R. Kirby, and A. P. Gunning, Atomic force microscopy for biologists vol. 57: Imperial College Press London, 2010.
    [3]S. Kalinin and A. Gruverman, Scanning probe microscopy: Springer Science+ Business Media, 2006.
    [4]P.-J. Su and B. H. Liu, "Ion-beam-sputter deposited titanium nitride thin films for conductive atomic force microscope probes," Thin Solid Films, vol. 529, pp. 317-321, 2013.
    [5]L. Zhang, T. Sakai, N. Sakuma, T. Ono, and K. Nakayama, "Nanostructural conductivity and surface-potential study of low-field-emission carbon films with conductive scanning probe microscopy," Applied Physics Letters, vol. 75, pp. 3527-3529, 11/29/ 1999.
    [6]K. C. Morton, M. A. Derylo, and L. A. Baker, "Conductive Atomic Force Microscopy Probes from Pyrolyzed Parylene," Journal of the Electrochemical Society, vol. 159, pp. H662-H667, 2012.
    [7]Y. H. Liau, N. F. Scherer, and K. Rhodes, "Nanoscale electrical conductivity and surface spectroscopic studies of indium-tin oxide," Journal of Physical Chemistry B, vol. 105, pp. 3282-3288, Apr 26 2001.
    [8]S. J. Oshea, R. M. Atta, M. P. Murrell, and M. E. Welland, "Conducting atomic force microscopy study of silicon dioxide breakdown," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 13, pp. 1945-1952, 1995.
    [9]P. Avouris, T. Hertel, and R. Martel, "Atomic force microscope tip-induced local oxidation of silicon: Kinetics, mechanism, and nanofabrication," Applied Physics Letters, vol. 71, pp. 285-287, Jul 14 1997.
    [10]K. Morimoto, K. Araki, K. Yamashita, K. Morita, and M. Niwa, "Si nanofabrication using AFM field enhanced oxidation and anisotropic wet chemical etching," Applied Surface Science, vol. 117, pp. 652-659, Jun 1997.
    [11]R. Garcia, M. Calleja, and F. Perez-Murano, "Local oxidation of silicon surfaces by dynamic force microscopy: Nanofabrication and water bridge formation," Applied Physics Letters, vol. 72, pp. 2295-2297, May 4 1998.
    [12]M. Calleja, J. Anguita, R. Garcia, K. Birkelund, F. Perez-Murano, and J. A. Dagata, "Nanometre-scale oxidation of silicon surfaces by dynamic force microscopy: reproducibility, kinetics and nanofabrication," Nanotechnology, vol. 10, pp. 34-38, Mar 1999.
    [13]F. S. S. Chien, C. L. Wu, Y. C. Chou, T. T. Chen, S. Gwo, and W. F. Hsieh, "Nanomachining of (110)-oriented silicon by scanning probe lithography and anisotropic wet etching," Applied Physics Letters, vol. 75, pp. 2429-2431, Oct 18 1999.
    [14]P. E. Sheehan, L. J. Whitman, W. P. King, and B. A. Nelson, "Nanoscale deposition of solid inks via thermal dip pen nanolithography," Applied Physics Letters, vol. 85, pp. 1589-1591, Aug 30 2004.
    [15]J. H. Bae, T. Ono, and M. Esashi, "Boron-doped diamond scanning probe for thermo-mechanical nanolithography," Diamond and Related Materials, vol. 12, pp. 2128-2135, Dec 2003.
    [16]T. W. Kelley, E. Granstrom, and C. D. Frisbie, "Conducting Probe Atomic Force Microscopy: A Characterization Tool for Molecular Electronics," Advanced Materials, vol. 11, pp. 261-264, 1999.
    [17]Y. Martin, D. W. Abraham, and H. K. Wickramasinghe, "High‐resolution capacitance measurement and potentiometry by force microscopy," Applied Physics Letters, vol. 52, pp. 1103-1105, 1988.
    [18]C. Schönenberger and S. F. Alvarado, "Observation of single charge carriers by force microscopy," Physical Review Letters, vol. 65, pp. 3162-3164, 12/17/ 1990.
    [19]C. Schönenberger, "Charge flow during metal-insulator contact," Physical Review B, vol. 45, pp. 3861-3864, 02/15/ 1992.
    [20]D. Rugar and P. Hansma, "Atomic force microscopy," Phys. Today, vol. 43, pp. 23-30, 1990.
    [21]B. H. Liu, P.-J. Su, C.-H. Lee, and J.-L. Huang, "Linking microstructure evolution and impedance behaviors in spark plasma sintered Si3N4/TiC and Si3N4/TiN ceramic nanocomposites," Ceramics International, vol. 39, pp. 4205-4212, 2013.
    [22]R. Shao, S. V. Kalinin, and D. A. Bonnell, "Local impedance imaging and spectroscopy of polycrystalline ZnO using contact atomic force microscopy," Applied Physics Letters, vol. 82, p. 1869, 2003.
    [23]R. O'Hayre, Scanning Probe Microscope, 2007.
    [24]V. Bucher, B. Brunner, C. Leibrock, M. Schubert, and W. Nisch, "Electrical properties of a light-addressable microelectrode chip with high electrode density for extracellular stimulation and recording of excitable cells," Biosens Bioelectron, vol. 16, pp. 205-10, May 2001.
    [25]F. M. Smits, "Measurement of sheet resistivities with the four-point probe," Bell Syst. Tech. J, vol. 37, pp. 711-718, 1958.
    [26]S. Yoshimoto, Y. Murata, K. Kubo, K. Tomita, K. Motoyoshi, T. Kimura, et al., "Four-Point Probe Resistance Measurements Using PtIr-Coated Carbon Nanotube Tips," Nano Letters, vol. 7, pp. 956-959, 2007/04/01 2007.
    [27]A. Bietsch, M. A. Schneider, M. E. Welland, and B. Michel, "Electrical testing of gold nanostructures by conducting atomic force microscopy," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 18, pp. 1160-1170, 05/00/ 2000.
    [28]A. Bietsch and B. Michel, "Size and grain-boundary effects of a gold nanowire measured by conducting atomic force microscopy," Applied Physics Letters, vol. 80, p. 3346, 2002.
    [29]L. J. Yang and Y. B. Li, "AFM and impedance spectroscopy characterization of the immobilization of antibodies on indium-tin oxide electrode through self-assembled monolayer of epoxysilane and their capture of Escherichia coli O157 : H7," Biosensors & Bioelectronics, vol. 20, pp. 1407-1416, Jan 2005.
    [30]A. E. Pelling, S. Sehati, E. B. Gralla, J. S. Valentine, and J. K. Gimzewski, "Local nanomechanical motion of the cell wall of Saccharomyces cerevisiae," Science, vol. 305, pp. 1147-50, Aug 20 2004.
    [31]M. B. Schulte, D. Zhuxin, S. Tung, J.-W. Kim, U. Wejinya, M. Hyung-Mo, et al., "Impedance spectroscopy of Chicken Infectious Laryngotracheitis Virus Based on atomic force microscopy," in Nano/Molecular Medicine and Engineering (NANOMED), 2009 IEEE International Conference on, 2009, pp. 249-252.
    [32]S. M. Watson, J. H. Hedley, M. A. Galindo, S. A. Al-Said, N. G. Wright, B. A. Connolly, et al., "Synthesis, characterisation and electrical properties of supramolecular DNA-templated polymer nanowires of 2,5-(bis-2-thienyl)-pyrrole," Chemistry, vol. 18, pp. 12008-19, Sep 17 2012.
    [33]H. Shuji, S. Ichiro, T. Takehiro, L. P. Christian, M. H. Torben, B. Peter, et al., "Direct measurement of surface-state conductance by microscopic four-point probe method," Journal of Physics: Condensed Matter, vol. 14, p. 8379, 2002.
    [34]C. L. Petersen, T. M. Hansen, P. Bøggild, A. Boisen, O. Hansen, T. Hassenkam, et al., "Scanning microscopic four-point conductivity probes," Sensors and Actuators A: Physical, vol. 96, pp. 53-58, 1/31/ 2002.
    [35]M. A. McCord and R. F. W. Pease, "LIFT-OFF METALLIZATION USING POLY(METHYL METHACRYLATE) EXPOSED WITH A SCANNING TUNNELING MICROSCOPE," Journal of Vacuum Science & Technology B, vol. 6, pp. 293-296, Jan-Feb 1988.
    [36]M. A. McCord and R. F. W. Pease, "EXPOSURE OF CALCIUM-FLUORIDE RESIST WITH THE SCANNING TUNNELING MICROSCOPE," Journal of Vacuum Science & Technology B, vol. 5, pp. 430-433, Jan-Feb 1987.
    [37]M. A. McCord and R. F. W. Pease, "LITHOGRAPHY WITH THE SCANNING TUNNELING MICROSCOPE," Journal of Vacuum Science & Technology B, vol. 4, pp. 86-88, Jan-Feb 1986.
    [38]M. A. McCord and R. F. W. Pease, "HIGH-RESOLUTION, LOW-VOLTAGE PROBES FROM A FIELD-EMISSION SOURCE CLOSE TO THE TARGET PLANE," Journal of Vacuum Science & Technology B, vol. 3, pp. 198-201, 1985 1985.
    [39]U. F. Keyser, H. W. Schumacher, U. Zeitler, R. J. Haug, and K. Eberl, "Fabrication of a single-electron transistor by current-controlled local oxidation of a two-dimensional electron system," Applied Physics Letters, vol. 76, pp. 457-459, 2000.
    [40]H. C. Day and D. R. Allee, "SELECTIVE AREA OXIDATION OF SILICON WITH A SCANNING FORCE MICROSCOPE," Applied Physics Letters, vol. 62, pp. 2691-2693, May 24 1993.
    [41]T. Baumgaertel and H. Graaf, "Local anodic oxidation nanolithography on silicon-chemical routes to function nanostructures," in Lithography: Peinciple, Process and Material, T. C. Hennessy, Ed., ed: Nova Science Publishers, Inc., 2011, pp. 175-193.
    [42]D. Stievenard and B. Legrand, "Silicon surface nano-oxidation using scanning probe microscopy," Progress in Surface Science, vol. 81, pp. 112-140, 2006 2006.
    [43]R. O’Hayre, G. Feng, W. D. Nix, and F. B. Prinz, "Quantitative impedance measurement using atomic force microscopy," Journal of Applied Physics, vol. 96, p. 3540, 2004.
    [44]A. N. Morozovska, E. A. Eliseev, N. Balke, and S. V. Kalinin, "Local probing of ionic diffusion by electrochemical strain microscopy: Spatial resolution and signal formation mechanisms," Journal of Applied Physics, vol. 108, pp. 053712-053712-21, 2010.
    [45]N. Balke, S. Jesse, A. N. Morozovska, E. Eliseev, D. W. Chung, Y. Kim, et al., "Nanoscale mapping of ion diffusion in a lithium-ion battery cathode," Nature nanotechnology, vol. 5, pp. 749-754, 2010.
    [46]A. C. Lee, P.-J. Su, B. H. Liu, and W. Lee, "Probing the Conductance and Microstructure Heterogeneity of Si3N4/TiC-Based Nanocomposite at the Nanoscale by Scanning Impedance Microscopy," Journal of the American Ceramic Society, pp. n/a-n/a, 2013.
    [47]J. M. Gere, "Mechanics of Materials. Vol. 2, 6E," Brooks Cole, vol. 2, 2004.
    [48]S. Jegadesan, R. C. Advincula, and S. Valiyaveettil, "Nanolithographic electropolymerization of a precursor polymer film to form conducting nanopatterns," Advanced Materials, vol. 17, pp. 1282-1285, 2005.
    [49]T. Vijaykumar, "Conducting AFM based Lithography for Patterning and Electrical Characterization of Nanomaterials," 2008.
    [50]F. S. S. Chien, Y. C. Chou, T. T. Chen, W. F. Hsieh, T. S. Chao, and S. Gwo, "Nano-oxidation of silicon nitride films with an atomic force microscope: Chemical mapping, kinetics, and applications," Journal of Applied Physics, vol. 89, pp. 2465-2472, Feb 15 2001.
    [51]P. Avouris, R. Martel, T. Hertel, and R. Sandstrom, "AFM-tip-induced and current-induced local oxidation of silicon and metals," Applied Physics A: Materials Science & Processing, vol. 66, pp. S659-S667, 1998.
    [52]D. Stiévenard and B. Legrand, "Silicon surface nano-oxidation using scanning probe microscopy," Progress in surface science, vol. 81, pp. 112-140, 2006.
    [53]O. De Abril, A. Gündel, F. Maroun, P. Allongue, and R. Schuster, "Single-step electrochemical nanolithography of metal thin films by localized etching with an AFM tip," Nanotechnology, vol. 19, p. 325301, 2008.
    [54]K. Hu, S. Wu, M. Huang, X. Hu, and Q. Wang, "Effect of the tip-sample contact force on the nanostructure size fabricated by local oxidation nanolithography," Ultramicroscopy, vol. 115, pp. 7-13, 4// 2012.
    [55]J.-C. Huang, "Fabricating Nanostructures Through a Combination of Nano-Oxidation and Wet Etching on Silicon Wafers With Different Surface Conditions," Scanning, vol. 34, pp. 264-270, 2012.
    [56]P. A. Fontaine, E. Dubois, and D. Stievenard, "Characterization of scanning tunneling microscopy and atomic force microscopy-based techniques," Journal of Applied Physics, vol. 84, p. 1776, 1998.
    [57]W. Frammelsberger, G. Benstetter, J. Kiely, and R. Stamp, "C-AFM-based thickness determination of thin and ultra-thin SiO2 films by use of different conductive-coated probe tips," Applied Surface Science, vol. 253, pp. 3615-3626, Jan 30 2007.
    [58]L. Zhang, Y. Mitani, and H. Satake, "Visualization of progressive breakdown evolution in gate dielectric by conductive atomic force microscopy," Ieee Transactions on Device and Materials Reliability, vol. 6, pp. 277-282, Jun 2006.
    [59]L. Zhang, Y. Mitani, and Ieee, A new insight into the breakdown mechanism in ultrathin gate oxides by conductive atomic force microscopy, 2006.
    [60]W. Frammelsberger, G. Benstetter, T. Schweinboeck, R. J. Stamp, and J. Kiely, "Characterization of thin and ultra-thin SiO2 films and SiO2/Si interfaces with combined conducting and topographic atomic force microscopy," Microelectronics Reliability, vol. 43, pp. 1465-1470, 2003.
    [61]W. Frammelsberger, G. Benstetter, R. Stamp, J. Kiely, and T. Schweinboeck, "Simplified tunnelling current calculation for MOS structures with ultra-thin oxides for conductive atomic force microscopy investigations," Materials Science and Engineering: B, vol. 116, pp. 168-174, 2005.
    [62]李嗣涔, 管傑雄, and 孫台平, "半導體元件物理," 1995.
    [63]劉傳璽 and 陳進來, 半導體元件物理與製程:理論與實務, Third edition ed. Taipei, Taiwan (R.O.C.): 五南圖書出版公司, 2011.
    [64]施敏 and 黃調元, 半導體元件物理與製作技術: 國立交通大學出版社, 2006.
    [65]M. Lanza, L. Aguilera, M. Porti, M. Nafria, and X. Aymerich, "Improving the electrical performance of a CAFM for gate oxide reliability measurements," in Electron Devices, 2009. CDE 2009. Spanish Conference on, 2009, pp. 234-237.
    [66]W. Frammelsberger, G. Benstetter, J. Kiely, and R. Stamp, "Thickness determination of thin and ultra-thin SiO2 films by C-AFM IV-spectroscopy," Applied Surface Science, vol. 252, pp. 2375-2388, Jan 15 2006.
    [67]P. Delcroix, S. Blonkowski, and M. Kogelschatz, "Pre-breakdown negative differential resistance in thin oxide film: Conductive-atomic force microscopy observation and modelling," Journal of Applied Physics, vol. 110, Aug 1 2011.
    [68]Z. A. Weinberg, "Tunneling of electrons from Si into thermally grown SiO2," Solid-State Electronics, vol. 20, pp. 11-18, 1// 1977.
    [69]G. Eftekhari, "Characterization of Thin Sio2 Grown by Rapid Thermal-Processing as Influenced by Processing Parameters," Journal of the Electrochemical Society, vol. 140, pp. 787-789, Mar 1993.
    [70]M. Lenzlinger and E. H. Snow, "Fowler‐Nordheim Tunneling into Thermally Grown SiO 2," Journal of Applied Physics, vol. 40, pp. 278-283, 1969.
    [71]R. Moazzami and C. Hu, "Stress-induced current in thin silicon dioxide films," pp. 139-142.
    [72]C. M. Osburn and D. W. Ormond, "Dielectric breakdown in silicon dioxide films on silicon I. Measurement and interpretation," Journal of The Electrochemical Society, vol. 119, pp. 591-597, 1972.
    [73]G. Eftekhari, "Effects of Oxide Thickness and Oxidation Parameters on the Electrical Characteristics of Thin Oxides Grown by Rapid Thermal Oxidation of Si in N 2 O," Journal of The Electrochemical Society, vol. 141, pp. 3222-3225, 1994.
    [74]N. V. Klimova, "The dynamics of the optical recording of data in MOSOM structures," Mikroelektronika, vol. 10, pp. 457-459, 1981.
    [75]K. S. Cover, "The Fluxgate Electric Field Meter A Feasibility Study," 1986.
    [76]V. Postoyalko, A. E. D. Heylen, and A. E. Guile, "Classical interpretation of single electron emission rates (SEERS) at the origin, from oxide covered cathodes in compressed gas and vacuo insulation," Dielectrics and Electrical Insulation, IEEE Transactions on, vol. 10, pp. 1032-1041, 2003.
    [77]M.-S. Kwon, "Theoretical Investigation of CMOS-Compatible Metal-Oxide-Silicon-Oxide-Metal Waveguides," 2011.

    下載圖示 校內:2024-09-01公開
    校外:2024-09-01公開
    QR CODE