| 研究生: |
陳信壅 Chen, Hsin-Yung |
|---|---|
| 論文名稱: |
鏈脲佐菌素誘發糖尿病大鼠在孤立束核心血管神經元控制功能損傷之研究 Studies of Impaired Regulation Function in Cardiovascular Neurons of Nucleus Tractus Solitarii in Streptozotocin-Induced Diabetic Rats |
| 指導教授: |
陳家進
Chen, Jia-Jin |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 醫學工程研究所 Institute of Biomedical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 孤立束核 、糖尿病 、鏈脲佐菌素 、血管感壓反射 |
| 外文關鍵詞: | nucleus tractus solitarii (NTS), diabetes, streptozotocin, baroreflex |
| 相關次數: | 點閱:62 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用多點電極植入於大鼠孤立束核(nucleus tractus solitarii, NTS)中對於心血管之神經元直接記錄的方式,針對鏈脲佐菌素誘發之糖尿病大鼠在孤立束核之神經放電活動與血管感壓反射靈敏度(baroreflex sensitivity, BRS)與對照組間之特性進行探討。針對鏈脲佐菌素誘發之糖尿病大鼠與對照組間之心血管控制功能,於下列的情況進行觀察:1)注射phenylephrine (PE)前後孤立束核中心血管神經元之改變,及2)孤立束核中心血管神經元與前庭交感反射(vestibulosympathetic reflex, VSR)在非垂直軸旋轉(off-vertical axis rotation, OVAR)期間,對於動脈血壓控制之角色。
在控制組大鼠中,孤立束核之放電次數在PE注射前後與動脈血壓間有明顯具統計意義之相關。在鏈脲佐菌素誘發之糖尿病大鼠中,孤立束核之放電次數在PE注射後與動脈血壓正相關。雖然在PE注射前孤立束核之放電次數在鏈脲佐菌素誘發之糖尿病大鼠與控制組間沒有統計上的差異,但在針對血管感壓反射靈敏度調整後,鏈脲佐菌素誘發之糖尿病大鼠孤立束核之放電次數的減少具有統計上的意義。經過血管感壓反射靈敏度調整後,多變異數分析顯示在PE注射後糖尿病與孤立束核之放電次數較間呈現彼此獨立的狀態。先前的生理學及免疫染色研究發現,鏈脲佐菌素誘發之糖尿病大鼠與控制組間孤立束核之資料,僅於PE注射後出現差異。然而,本研究顯示,糖尿病誘發之孤立束核血管感壓敏感神經元之損傷,在PE注射前可以於鏈脲佐菌素誘發之糖尿病大鼠中發現。這個結果顯示,多點電極植入的方式在孤立束核的研究中比先前的研究方法要更為敏感。
研究顯示,在與重力相關之姿勢改變中,孤立束核與前庭反射之整合將對交感神經活動進行調控。為了探討孤立束核心血管神經元與前庭交感反射對於鏈脲佐菌素誘發之糖尿病大鼠在動脈壓控制上的角色,我們藉由非垂直軸旋轉對於耳石及身體重力覺沿著大鼠頭部之冠狀面軸線提供選擇刺激,並且記錄血管感壓反射靈敏度與動脈血壓作為交感神經輸出活動之資訊。所有的參數均於非垂直軸旋轉的過程中,在旋轉艙中以0.16轉/秒(60/秒)的旋轉速度中進行記錄。在本研究中控制組動脈壓訊號,由於鼻子向上的位置時所造成的向前線性加速度的作用而增加訊號,而在鼻子向下的位置產生減少的現象。然而,相較於控制組,鏈脲佐菌素誘發之糖尿病大鼠在動脈壓的活動明顯較小且具統計上的差異。相對地,鏈脲佐菌素誘發之糖尿病大鼠所造成之血管感壓反射靈敏度損傷在正向線性加速度在鼻枕軸向中為最大時,將造成心血管調控上的改變。因此,在鏈脲佐菌素誘發之糖尿病大鼠所產生之孤立束核心血管神經元的改變,將在向前線性加速度期間對於維持動脈血壓的能力造成損傷。這樣在孤立束核心血管神經元的損傷,可能是在糖尿病患者姿勢改變時,動脈血壓受到影響的早期機轉之一。本研究顯示在施以PE與重力改變後,經由孤立束核與血管感壓反射靈敏度的結果,支持孤立束核心血管神經元損傷對於鏈脲佐菌素誘發之糖尿病大鼠之心血管的控制將造成影響。
This study characterizes neural firing activity of the nucleus tractus solitarii (NTS) and baroreflex sensitivity (BRS) in streptozotocin (STZ)-induced diabetic rats relative to control rats by implantation of multi-wire electrode into rat NTS for direct monitoring of cardiovascular NTS neurons. The cardiovascular regulation function for both control and diabetic rats were observed under the conditions of 1) the changes of cardiovascular neurons of NTS in the conditions before and after baroreflex system challenged by phenylephrine (PE) injection and 2) the roles of cardiovascular neurons of NTS and vestibulosympathetic reflex (VSR) in controlling the arterial blood pressure during off-vertical axis rotation (OVAR).
In control rats, NTS firing rate and systolic arterial pressure correlate significantly with both pre-PE (baseline) and post-PE. In STZ-induced diabetic rats, positive correlation is observed only after PE injection. NTS firing rate was significantly reduced in STZ-induced diabetic rats with adjustment for BRS. After PE injection, NTS firing rate is significantly lower in diabetic rats relative to control rats. With adjustment for BRS, multivariate analysis shows that diabetes is independently associated with NTS firing rate after PE injection. Prior physiological and immunofluorescent studies found differing NTS data for control and diabetic rat only after PE challenge, but our data show diabetes-induced barosensitive NTS impairment in the baseline condition for STZ-induced diabetic rats. This latter finding suggests greater sensitivity of multi-wire electrode study of NTS relative to earlier methods.
Research has shown that the integration of NTS and vestibular reflex modulates sympathetic activity during the changes in posture with respect to gravity. To investigate the changes in the roles of NTS cardiovascular neurons and VSR in controlling the arterial blood pressure in STZ-induced diabetic rats, we selectively stimulated otolith and body graviceptors sinusoidally along the rat’s head axis in the coronal plane with OVAR and recorded sympathetic efferent activity in the BRS and blood pressure. All parameters were entrained during OVAR performed in a rotation chamber at 0.16 revolution/second (60/second) rotation speed. Our data indicated that the blood pressure increased in nose up positions during forward linear acceleration and decreased when nose down in the control groups. Compared to the control group, however, significant attenuation increase in blood pressure was observed in STZ-induced diabetic rats in the nose up position. Impairment of BRS, coefficients, contributes to the alternations of cardiovascular modulation when positive linear acceleration was maximal along the naso-ocipital axis, on STZ-induced diabetic rats. The alternation of NTS cardiovascular neurons in STZ-induced diabetes might contribute to the impairment of blood pressure maintenance during forward linear acceleration. This impaired regulation function in cardiovascular neurons of NTS maybe one of the earliest mechanisms to affect the regulation of blood pressure during the posture change in diabetes. In conclusion, the changes observed in NTS cardiovascular neuronal activity and BRS results from PE administration and gravitational stress support the notion that there are impairments of cardiovascular regulation function in STZ-induced diabetic rats.
[1] Consensus statement on the definition of orthostatic hypotension, pure autonomic failure, and multiple system atrophy, Neurology 46 (1996) 1470.
[2] M.S. Abdel-Rahman, F.I. Elrakhawy, F.A. Iskander, Protection of B cells against the effect of alloxan, Toxicol Lett 63 (1992) 155-164.
[3] S.C. Apfel, J.C. Arezzo, M. Brownlee, H. Federoff, J.A. Kessler, Nerve growth factor administration protects against experimental diabetic sensory neuropathy, Brain Res 634 (1994) 7-12.
[4] J. Baker, Supra descending control: the medial 'postural' system, Academic Press, San Diego, 1999, 913-930 pp.
[5] C.D. Balaban, Vestibular nucleus projections to the parabrachial nucleus in rabbits: implications for vestibular influence on the autonomic nervous system, Exp Brain Res 108 (1996) 367-381.
[6] C.D. Balaban, G. Beryozkin, Vestibular nucleus projections to nucleus tractus solitarius and the dorsal motor nucleus of the vagus nerve: potential substrates for vestibulo-autonomic interactions, Exp Brain Res 98 (1994) 200-212.
[7] D. Bilkey, G. Muir, A low cost, high precision subminiature microdrive for extracellular unit recording in behaving animals, J Neurosci Methods 92 (1999) 87-90.
[8] D. Bilkey, N. Russell, M. Colombo, A lightweight microdrive for single-unit recording in freely moving rats and pigeons, Methods 30 (2003) 152-158.
[9] A.J. Boulton, Diabetic neuropathy: classification, measurement and treatment, Curr Opin Endocrinol Diabetes Obes 14 (2007) 141-145.
[10] J.G. Bradley, K.A. Davis, Orthostatic hypotension, Am Fam Physician 68 (2003) 2393-2398.
[11] M. Brownlee, Glycation products and the pathogenesis of diabetic complications, Diabetes Care 15 (1992) 1835-1843.
[12] Y.L. Cai, W.L. Ma, M. Li, J.S. Guo, Y.Q. Li, L.G. Wang, W.Z. Wang, Glutamatergic vestibular neurons express Fos after vestibular stimulation and project to the NTS and the PBN in rats, Neurosci Lett 417 (2007) 132-137.
[13] N.E. Cameron, M.A. Cotter, Metabolic and vascular factors in the pathogenesis of diabetic neuropathy, Diabetes 46 (1997) S31-37.
[14] R.K. Chan, E.V. Jarvina, P.E. Sawchenko, Effects of selective sinoaortic denervations on phenylephrine-induced activational responses in the nucleus of the solitary tract, Neuroscience 101 (2000) 165-178.
[15] D. Chen, M.W. Wang, Development and appllication of rodent models for type 2 diabetes, Diabetes Obes Metab 7 (2005) 307-317.
[16] H.Y. Chen, J.S. Wu, J.J. Chen, J.T. Cheng, Impaired regulation function in cardiovascular neurons of nucleus tractus solitarii in streptozotocin-induced diabetic rats, Neurosci Lett in press (2007).
[17] J.A. Clarke, B. Daly Mde, H.W. Ead, E.M. Hennessy, The carotid body of the spontaneous insulin-dependent diabetic rat, Braz J Med Biol Res 32 (1999) 85-91.
[18] H. Cohen, Special sense 2: the vestibular system, Lippincott, Philadelphia, 1999.
[19] F. Costa, P. Lavin, D. Robertson, I. Biaggioni, Effect of neurovestibular stimulation on autonomic regulation, Clin Auton Res 5 (1995) 289-293.
[20] P. Dall'Ago, T. Fernandes, U. Machado, A. Bello, M. Irigoyen, Baroreflex and chemoreflex dysfunction in streptozotocin-diabetic rats, Braz J Med Biol Res 30 (1997) 119-124.
[21] P. Dall'Ago, V. Silva, K. De Angelis, M. Irigoyen, R.J. Fazan, H. Salgado, Reflex control of arterial pressure and heart rate in short-term streptozotocin diabetic rats, Braz J Med Biol Res 35 (2002) 843-849.
[22] C. Darlot, P. Denise, J. Droulez, B. Cohen, A. Berthoz, Eye movements induced by off-vertical axis rotation (OVAR) at small angles of tilt, Exp Brain Res 73 (1988) 91-105.
[23] K. De Angelis, B.D. Schaan, C.Y. Maeda, P. Dall'Ago, R.B. Wichi, M.C. Irigoyen, Cardiovascular control in experimental diabetes, Braz J Med Biol Res 35 (2002) 1091-1100.
[24] M. de Kanter, B. Lilja, S. Elmståhl, K.F. Eriksson, G. Sundkvist, A prospective study of orthostatic blood pressure in diabetic patients, Clin Auton Res 8 (1998) 189-193.
[25] P. Denise, C. Darlot, J. Droulez, B. Cohen, A. Berthoz, Motion perceptions induced by off-vertical axis rotation (OVAR) at small angles of tilt, Exp Brain Res 73 (1988) 106-114.
[26] M. Di Rienzo, P. Castiglioni, G. Parati, G. Mancia, A. Pedotti, Effects of sino-aortic denervation on spectral characteristics of blood pressure and pulse interval variability: a wide-band approach, Med Biol Eng Comput 34 (1996) 133-141.
[27] S.E. DiCarlo, V.S. Bishop, Onset of exercise shifts operating point of arterial baroreflex to higher pressures, Am J Physiol 262 (1992) H303-307.
[28] D.L. Eckberg, S.W. Harkins, J.M. Fritsch, G.E. Musgrave, D.F. Gardner, Baroreflex control of plasma norepinephrine and heart period in healthy subjects and diabetic patients, J Clin Invest 78 (1986) 366-374.
[29] M. Elsner, B. Guldbakke, M. Tiedge, R. Munday, S. Lenzen, Relative importance of transport and alkylation for pancreatic beta-cell toxicity of streptozotocin, Diabetologia 43 (2000) 1528-1533.
[30] R. Fazan, G. Ballejo, M.C. Salgado, M.F. Moraes, H.C. Salgado, Heart rate variability and baroreceptor function in chronic diabetic rats, Hypertension 30 (1997) 632-635.
[31] R.J. Fazan, V.J. Dias da Silva, G. Ballejo, H.C. Salgado, Power spectra of arterial pressure and heart rate in streptozotocin-induced diabetes in rats, J Hypertens 17 (1999) 489-495.
[32] V.P. Fazan, H.C. Salgado, A.A. Barreira, Aortic depressor nerve myelinated fibers in acute and chronic experimental diabetes, Am J Hypertens 19 (2006) 153-160.
[33] R.A. Frankel, P.J. Metting, S.L. Britton, Evaluation of spontaneous baroreflex sensitivity in conscious dogs, J Physiol 462 (1993) 31-45.
[34] A. Frattola, G. Parati, P. Gamba, F. Paleari, G. Mauri, M. Di Rienzo, P. Castiglioni, G. Mancia, Time and frequency domain estimates of spontaneous baroreflex sensitivity provide early detection of autonomic dysfunction in diabetes mellitus, Diabetologia 40 (1997) 1470-1475.
[35] J. Gerritsen, J.M. Dekker, B.J. TenVoorde, F.W. Bertelsmann, P.J. Kostense, C.D. Stehouwer, R.J. Heine, G. Nijpels, R.M. Heethaar, L.M. Bouter, Glucose tolerance and other determinants of cardiovascular autonomic function: the Hoorn Study, Diabetologia 43 (2000) 561-570.
[36] J.M. Goldberg, C. Fernandez, Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. I. Resting discharge and response to constant angular accelerations, J Neurophysiol 34 (1971) 635-660.
[37] D.S. Goldstein, D. Robertson, M. Esler, S.E. Straus, G. Eisenhofer, Dysautonomias: clinical disorders of the autonomic nervous system, Ann Intern Med 137 (2002) 753-763.
[38] T.M. Gotoh, N. Fujiki, T. Matsuda, S. Gao, H. Morita, Roles of baroreflex and vestibulosympathetic reflex in controlling arterial blood pressure during gravitational stress in conscious rats, Am J Physiol Regul Integr Comp Physiol 286 (2004) R25-30.
[39] S. Gouty, J. Regalia, F. Cai, C.J. Helke, alpha-Lipoic acid treatment prevents the diabetes-induced attenuation of the afferent limb of the baroreceptor reflex in rats, Auton Neurosci 108 (2003) 32-44.
[40] S. Gouty, J. Regalia, C.J. Helke, Attenuation of the afferent limb of the baroreceptor reflex in streptozotocin-induced diabetic rats, Auton Neurosci 89 (2001) 86-95.
[41] D.A. Greene, S.A. Lattimer, A.A. Sima, Are disturbances of sorbitol, phosphoinositide, and Na+-K+-ATPase regulation involved in pathogenesis of diabetic neuropathy? Diabetes 37 (1988) 688-693.
[42] P.A. Gruppuso, J.M. Boylan, B.I. Posner, R. Faure, D.L. Brautigan, Hepatic protein phosphotyrosine phosphatase. Dephosphorylation of insulin and epidermal growth factor receptors in normal and alloxan diabetic rats, J Clin Invest 85 (1990) 1754-1760.
[43] F.E.J. Guedry, Orientation of the rotation-axis relative to gravity: its influence on nystagmus and the sensation of rotation, Acta Otolaryngol (1965) 30-48.
[44] K.K. Hicks, E. Seifen, J.R. Stimers, R.H. Kennedy, Effects of streptozotocin-induced diabetes on heart rate, blood pressure and cardiac autonomic nervous control, J Auton Nerv Syst 69 (1998) 21-30.
[45] F.C. Howarth, M. Jacobson, O. Naseer, E. Adeghate, Short-term effects of streptozotocin-induced diabetes on the electrocardiogram, physical activity and body temperature in rats, Exp Physiol 90 (2005) 237-245.
[46] H.V. Huikuri, T. Makikallio, K.E. Airaksinen, R. Mitrani, A. Castellanos, R.J. Myerburg, Measurement of heart rate variability: a clinical tool or a research toy? J Am Coll Cardiol 34 (1999) 1878-1883.
[47] S. Islas-Andrade, M.C.R. Revilla Monsalve, J.E. de la Pena, A.C. Polanco, M.A. Palomina, A.F. Velasco, Streptozotocin and alloxan in experimental diabetes: comparison of the two models in rats, Acta Histochem Cytochem 33 (2000) 201-208.
[48] G. Jacob, F. Costa, I. Biaggioni, Spectrum of autonomic cardiovascular neuropathy in diabetes, Diabetes Care 26 (2003) 2174-2180.
[49] A. Junod, A.E. Lambert, W. Stauffacher, A.E. Renold, Diabetogenic action of streptozotocin: relationship of dose to metabolic response, J Clin Invest 48 (1969) 2129-2139.
[50] A. Kamiya, T. Kawada, K. Yamamoto, D. Michikami, H. Ariumi, K. Uemura, C. Zheng, S. Shimizu, T. Aiba, T. Miyamoto, M. Sugimachi, K. Sunagawa, Resetting of the arterial baroreflex increases orthostatic sympathetic activation and prevents postural hypotension in rabbits, J Physiol 566 (2005) 237-246.
[51] K. Kandulska, T. Szkudelski, L. Nogowski, Lipolysis induced by alloxan in rat adipocytes is not inhibited by insulin, Phsiol Res 48 (1999) 113-117.
[52] K. Katsumata, K.J. Katsumata, Y. Katsumata, Protective effect of diltiazem hydrochloride on the occurrence of alloxan- or streptozotocin-induced diabetes in rats, Horm Metab Res 24 (1992) 508-510.
[53] H. Kaufmann, I. Biaggioni, A. Voustianiouk, A. Diedrich, F. Costa, R. Clarke, M. Gizzi, T. Raphan, B. Cohen, Vestibular control of sympathetic activity. An otolith-sympathetic reflex in humans, Exp Brain Res 143 (2002) 463-469.
[54] I.A. Kerman, R.M. McAllen, B.J. Yates, Patterning of sympathetic nerve activity in response to vestibular stimulation, Brain Res Bull 53 (2000) 11-16.
[55] J.R. Levick, Cardivascular Receptors, Reflexes and Central Control, Arnolod, London, 2003, 278-297 pp.
[56] W.C. Lo, M. Hsiao, C.S. Tung, C.J. Tseng, The cardiovascular effects of nitric oxide and carbon monoxide in the nucleus tractus solitarii of rats, J Hypertens 22 (2004) 1182-1190.
[57] W.C. Lo, H.C. Lin, L.P. Ger, C.S. Tung, C.J. Tseng, Cardiovascular effects of nitric oxide and N-methyl-D-aspartate receptors in the nucleus tractus solitarii of rats, Hypertension 30 (1997) 1499-1503.
[58] P.A. Low, J.C. Walsh, C.Y. Huang, J.G. McLeod, The sympathetic nervous system in diabetic neuropathy. A clinical and pathological study, Brain 98 (1975) 341-356.
[59] C.Y. Maeda, T.G. Fernandes, F. Lulhier, M.C. Irigoyen, Streptozotocin diabetes modifies arterial pressure and baroreflex sensitivity in rats, Braz J Med Biol Res 28 (1995) 497-501.
[60] C.Y. Maeda, T.G. Fernandes, H.B. Timm, M.C. Irigoyen, Autonomic dysfunction in short-term experimental diabetes, Hypertension 26 (1995) 1100-1104.
[61] T. Mano, S. Iwase, Sympathetic nerve activity in hypotension and orthostatic intolerance, Acta Physiol Scand 177 (2003) 359-365.
[62] G.P. Martinelli, V.L.J. Friedrich, G.D. Prell, G.R. Holstein, Vestibular neurons in the rat contain imidazoleacetic acid-ribotide, a putative neurotransmitter involved in blood pressure regulation, J Comp Neurol 501 (2007) 568-581.
[63] P. McDermott-Wells, What is Bluetooth? IEEE Potentials 23 (2005) 33- 35.
[64] C. Miwa, Y. Sugiyama, T. Mano, T. Matsukawa, S. Iwase, T. Watanabe, F. Kobayashi, Effects of aging on cardiovascular responses to gravity-related fluid shift in humans, J Gerontol A Biol Sci Med Sci 55 (2000) M329-335.
[65] K.D. Monahan, C.A. Ray, Vestibulosympathetic reflex during orthostatic challenge in aging humans, Am J Physiol Regul Integr Comp Physiol 283 (2002) R1027.
[66] M.S. Olufsen, H.T. Tran, J.T. Ottesen, R.E.f.U. Program, L.A. Lipsitz, V. Novak, Modeling baroreflex regulation of heart rate during orthostatic stress, Am J Physiol Regul Integr Comp Physiol 291 (2006) R1355-1368.
[67] World Health Organization, Definition and diagnosis of diabetes mellitus and intermediate hyperglycaemia: Report of a WHO/IDF Consultation. 2007.
[68] G. Parati, M. Di Rienzo, G. Mancia, How to measure baroreflex sensitivity: from the cardiovascular laboratory to daily life, J Hypertens 18 (2000) 7-19.
[69] I. Perlstein, N. Sapir, J. Backon, D. Sapoznikov, R. Karasik, S. Havlin, A. Hoffman, Scaling vs. nonscaling methods of assessing autonomic tone in streptozotocin-induced diabetic rats, Am J Physiol Heart Circ Physiol 283 (2002) H1142-1149.
[70] G. Piccirillo, M. Cacciafesta, E. Viola, E. Santagada, M. Nocco, M. Lionetti, C. Bucca, A. Moisè, S. Tarantini, V. Marigliano, Influence of aging on cardiac baroreflex sensitivity determined non-invasively by power spectral analysis, Clin Sci (Lond) 100 (2001) 267-274.
[71] J.D. Porter, C.D. Balaban, Connections between the vestibular nuclei and brain stem regions that mediate autonomic function in the rat, J Vestib Res 7 (1997) 63-76.
[72] G. Raffai, L. Kocsis, M. Mészáros, E. Monos, L. Dézsi, Inverse-orthostasis may induce elevation of blood pressure due to sympathetic activation, J Cardiovasc Pharmacol 47 (2006) 287-294.
[73] C.A. Ray, Interaction of the vestibular system and baroreflexes on sympathetic nerve activity in humans, Am J Physiol Heart Circ Physiol 279 (2000) H2399-2404.
[74] C.A. Ray, K.D. Monahan, The vestibulosympathetic reflex in humans: neural interactions between cardiovascular reflexes, Clin Exp Pharmacol Physiol 29 (2002) 98-102.
[75] D.A. Rees, J.C. Alcolado, Animal models of diabetes mellitus, Diabet Med 22 (2005) 359-370.
[76] D.A. Ruggiero, E.P. Mtui, K. Otake, M. Anwar, Vestibular afferents to the dorsal vagal complex: substrate for vestibular-autonomic interactions in the rat, Brain Res 743 (1997) 294-302.
[77] B.D. Schaan, P. Dall'Ago, C.Y. Maeda, E. Ferlin, T.G. Fernandes, H. Schmid, M.C. Irigoyen, Relationship between cardiovascular dysfunction and hyperglycemia in streptozotocin-induced diabetes in rats, Braz J Med Biol Res 37 (2004) 1895-1902.
[78] R. Shepherd, Bluetooth wireless technology in the home, Electron. Comm. Eng. J. 13 (2001) 195-203.
[79] D.D. Sheriff, I.H. Nådland, K. Toska, Hemodynamic consequences of rapid changes in posture in humans, J Appl Physiol 103 (2007) 452-458.
[80] J.P. Singh, M.G. Larson, C.J. O'Donnell, P.F. Wilson, H. Tsuji, D.M. Lloyd-Jones, D. Levy, Association of hyperglycemia with reduced heart rate variability (The Framingham Heart Study), Am J Cardiol 86 (2000) 309-312.
[81] K.M. Spyer, Annual review prize lecture: Central nervous mechanisms contributing to cardiovascular control, J Physiol 474 (1994) 1-19.
[82] A.F. Sved, Cardiovascular system, Academic Press, San Diego, 1999, 1051-1062 pp.
[83] T. Szkudelski, The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas, Phsiol Res 50 (2001) 537-546.
[84] T. Szkudelski, K. Kandulska, M. Okulicz, Alloxan in vivo does not only exert deleterious effects on pancreatic B cells, Phsiol Res 47 (1998) 343-346.
[85] K. Tanaka, T.M. Gotoh, C. Awazu, H. Morita, Roles of the vestibular system in controlling arterial pressure in conscious rats during a short period of microgravity, Neurosci Lett 397 (2006) 40-43.
[86] J. Thulesen, C. Orskov, J.J. Holst, S.S. Poulsen, Short-term insulin treatment prevents the diabetogenic action of streptozotocin in rats, Endocrinology 138 (1997) 62-68.
[87] A.J. Verberne, N.C. Owens, Cortical modulation of the cardiovascular system, Prog Neurobiol 54 (1998) 149-168.
[88] A. Veves, G.L. King, Can VEGF reverse diabetic neuropathy in human subjects? J Clin Invest 107 (2001) 1215-1218.
[89] A.I. Vinik, M.T. Holland, J.M. LeBeau, F.J. Liuzzi, K.B. Stansberry, L.B. Colen, Diabetic neuropathies, Diabetes Care 15 (1992) 1925-1975.
[90] A.I. Vinik, R.E. Maser, B.D. Mitchell, R. Freeman, Diabetic autonomic neuropathy, Diabetes Care 26 (2003) 1553-1579.
[91] A.I. Vinik, D. Ziegler, Diabetic cardiovascular autonomic neuropathy, Circulation 115 (2007) 387-397.
[92] W. Weiling, J.J. VanLieshout, Maintenance of postural normotension in humans, Little, Brown, Boston, 1993, 69-77 pp.
[93] P.J. Weston, M.A. James, R.B. Panerai, P.G. McNally, J.F. Potter, H. Thurston, Evidence of defective cardiovascular regulation in insulin-dependent diabetic patients without clinical autonomic dysfunction, Diabetes Res Clin Pract 42 (1998) 141-148.
[94] B.H. Wolffenbuttel, C.M. Boulanger, F.R. Crijns, M.S. Huijberts, P. Poitevin, G.N. Swennen, S. Vasan, J.J. Egan, P. Ulrich, A. Cerami, B.I. Lévy, Breakers of advanced glycation end products restore large artery properties in experimental diabetes, Proc Natl Acad Sci USA 95 (1998) 4630-4634.
[95] J.S. Wu, F.H. Lu, Y.C. Yang, C.J. Chang, Postural hypotension and postural dizziness in patients with non-insulin-dependent diabetes, Arch Intern Med 159 (1999) 1350-1356.
[96] B.J. Yates, Vestibular influences on the autonomic nervous system, Ann N Y Acad Sci 781 (1996) 458.
[97] B.J. Yates, A.M. Bronstein, The effects of vestibular system lesions on autonomic regulation: observations, mechanisms, and clinical implications, J Vestib Res 15 (2005) 119-129.
[98] B.J. Yates, L. Grélot, I.A. Kerman, C.D. Balaban, J. Jakus, A.D. Miller, Organization of vestibular inputs to nucleus tractus solitarius and adjacent structures in cat brain stem, Am J Physiol 267 (1994) R974-983.
[99] B.J. Yates, A.D. Miller, Properties of sympathetic reflexes elicited by natural vestibular stimulation: implications for cardiovascular control, J Neurophysiol 71 (1994) 2087-2092.
[100] J. Zhang, S.W. Mifflin, Responses of aortic depressor nerve-evoked neurones in rat nucleus of the solitary tract to changes in blood pressure, J Physiol 529 (2000) 431-443.
[101] Y. Zhang, L.A. Critchley, Y.H. Tam, B. Tomlinson, Short-term postural reflexes in diabetic patients with autonomic dysfunction, Diabetologia 47 (2004) 304-311.