簡易檢索 / 詳目顯示

研究生: 張淳欽
Chang, Chun-Chin
論文名稱: 創傷弧菌螢光蛋白基因bfgV的分子研究
MOLECULAR STUDIES OF FLUORESCENT PROTEIN GENE bfgV FROM Vibrio Vulnificus CKM-1
指導教授: 張敏政
Chang, Ming-Chung
學位類別: 博士
Doctor
系所名稱: 醫學院 - 基礎醫學研究所
Institute of Basic Medical Sciences
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 118
中文關鍵詞: 定向演化螢光短鏈去氫/氧化酵素創傷弧菌
外文關鍵詞: Vibrio vulnificus, SDR, fluorescence, directed evolution
相關次數: 點閱:48下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要

      我們由一株非螢光性創傷弧菌CKM-1基因庫內找到一個螢光蛋白基因命名為bfgV,它所轉譯出來的蛋白(BfgV)含有239個氨基酸,經序列分析比對後發現是屬於SDR (short chain dehydrogenase/reductase)家族。將BfgV大量製造並純化後,測其螢光光譜,得知該蛋白主要的激發波峰為352 nm,另有一較小的激發波峰在283 nm; 而其最大的放射波峰出現在456 nm。高效液態層析法(HPLC)與L-glutamic dehydrogenase反應法,證明NADPH與BfgV結合在一起並且與BfgV的螢光有密切的關係,其後的分析結果也顯示,NADPH結合到BfgV後,其內生性螢光會被放大10倍左右。另外,在進行序列分析比對時,我們發現有兩個與bfgV很像的基因分別存在於Vibrio cholera El Tor N16961和 Shewanella oneidensis MR-1,比較這三個基因周邊的基因組態後,我們發現在他們的上游區都緊鄰著一個轉譯調節基因,為了求證bfgV與其上游調節基因(bfgR)的關係,我們設法將bfgR破壞掉,結果發現這種變異株內BfgV蛋白的表現量會增加;而凝膠泳動位移分析(EMSA)也證明純化的BfgR蛋白會與bfgR-bfgV間的啟動子區進行特異性的結合。由這些實驗結果得知bfgV受到上游bfgR的負向調控。另外,我們也用PCR隨機突變以及DNA重排技術對bfgV基因進行定向演化。最後得到一個突變基因D7,此基因產物所表現的螢光指數為野生型的4倍,而其放射波長為440 nm較BfgV的456 nm要短,激發波長則無變化。D7總共有8個氨基酸與BfgV不同,其中7個對螢光增強有實質貢獻,將這些突變標示在BfgV立體分子模型後發現其中有3個突變集中在構成NADPH結合位的loop 4 和loop 6上。因為這些突變非常靠近NADPH,因而推測這個區域在影響BfgV的螢光強度上扮演重要的角色。另外,我們發現不論在有氧或無氧狀況下,D7的大腸桿菌轉型體在蛋白質合成與螢光的出現上幾乎是同步發生,這個特性與綠螢光蛋白(GFP)明顯不同。

    Abstract

     Blue fluorescent protein BfgV, belonging to the SDR family, was found in non-bioluminescent pathogen Vibrio vulnificus CKM-1. This protein had two excitation peaks at 283 nm and 352 nm respectively, and one emission peak at 456 nm. The results of HPLC analysis and L-glutamic dehydrogenase reaction indicated that BfgV fluoresced through augmenting 10 times the intrinsic fluorescence of NADPH binding on it. Comparison of gene organizations around bfgV and two analogues in Vibrio cholera El Tor N16961 and Shewanella oneidensis MR-1 revealed that each of them had a transcriptional regulatory gene located at the vicinal upstream region. Insertional disruption of the upstream regulatory gene bfgR and electrophoretic mobility shift assay proved that bfgV was negatively regulated by bfgR. In the directed evolution process, wild type bfgV gene was subjected to three cycles of error-prone PCR and one cycle of DNA shuffling. A prominent mutant D7 displayed 4 times the fluorescent intensity of BfgV. The emission peak of D7 was at 440 nm, 16 nm shorter than that of BfgV, but the excitation peaks of these two proteins were the same. D7 possessed eight amino acid substitutions while only seven contributed positive influence on it. After assigning these mutations to the modeled 3D-structure of BfgV, we found three of them appeared at loop 4 and loop 6, which comprised the NADPH binding site. This unusual mutant cluster suggested these regions played a key role on fluorescent intensity of BfgV. In addition, D7 synthesis and fluorescent expression in E. coli transformants were nearly synchronic. This property was quite different from that of GFP.

    目錄 摘要 中文摘要 …………………………………………………………………………… v 英文摘要 …………………………………………………………………………… vi 緒論 ………………………………………………………………………………… 1 材料與方法 ……………………………………………………………………… 6 一、使用之菌株、載體及培養基 ………………………………………………… 6 二、bfgV基因的次選殖 …………………………………………………………… 6 三、利用電穿孔將pFP21送入大腸桿菌BL21(DE3) …………………………… 7 四、觀察菌落螢光 ………………………………………………………………… 8 五、BfgV蛋白的製造與純化 ……………………………………………………… 8 六、探討BfgV螢光蛋白的激發與放射波光譜…………………………………… 9 七、利用膠體過濾法探討BfgV螢光蛋白聚合狀態……………………………… 9 八、利用HPLC和L-Glutamic dehydrogenase分析BfgV蛋白的螢光是否與 NAD(P)H有關 ……………………………………………………………………… 10 九、利用菌落雜交法找出bfgV周邊的DNA片段 ……………………………… 11 十、利用S17-1/pSVI001系統對V. vulnificus CKM-1的bfgR 進行插入性 破壞……………………………………………………………………………… 14 十一、利用電穿孔的方式將載體送入V. vulnificus CKM-1 ………………… 16 十二、利用西方墨點法偵測在CKM-1與URD101菌體內BfgV表現的差異…… 17 十三、BfgR-(His)6融合蛋白的製造與純化 …………………………………… 18 十四、BfgR融合蛋白與bfgV上游的啟動子進行凝膠泳動位移試驗 …………… 20 十五、載體DNA之抽取…………………………………………………………… 21 十六、由電泳膠分離純化DNA片段……………………………………………… 22 十七、接合反應…………………………………………………………………… 22 十八、載體構築…………………………………………………………………… 23 十九、大腸桿菌的轉型…………………………………………………………… 23 二十、SDS-聚丙烯醯胺膠體電泳………………………………………………… 24 二十一、測試BL21轉型體螢光及BfgV蛋白表現情形………………………… 25 二十二、測試螢光指數的線性範圍……………………………………………… 25 二十三、對bfgV進行隨機突變 (error-prone PCR) ………………………… 26 二十四、對bfgV突變基因進行DNA重排技術 (DNA shuffling) …………… 26 二十五、篩選使大腸桿菌轉型體螢光增強的bfgV突變基因 ………………… 27 二十六、利用NADPH滴定法探討BfgV與變種D7螢光蛋白NADPH複合物解離 常數Kd的變化…………………………………………………………… 28 二十七、BfgV蛋白3D-立體結構模擬…………………………………………… 29 二十八、變種D7與野生型GFP發螢光模式比較 ……………………………… 29 二十九、DNA定序 ………………………………………………………………… 30 三十、GenBank 登錄編號………………………………………………………… 30 實驗結果 ………………………………………………………………………… 31 一、bfgV序列比對結果…………………………………………………………… 31 二、BfgV的螢光光譜與聚合度分析……………………………………………… 32 三、BfgV發光原因探討…………………………………………………………… 33 四、BfgV具有放大NADPH內生性螢光的能力…………………………………… 34 五、解析V. vulnificus CKM-1染色體內bfgV的周邊序列與基因組態 …… 34 六、比較bfgV和其類似基因周邊的基因組態 ………………………………… 35 七、製造bfgR變異株 …………………………………………………………… 36 八、比較野生型CKM-1與bfgR變異株URD101內BfgV蛋白表現情形 ……… 36 九、BfgR重組蛋白的製造與純化 ……………………………………………… 37 十、凝膠泳動位移試驗(EMSA)…………………………………………………… 37 十一、以error-prone PCR的方法對野生型的bfgV基因進行第一回合的隨機 突變與篩選………………………………………………………………… 38 十二、以A48為母基因進行第二回合的隨機突變與篩選……………………… 40 十三、以B-系列突變基因為為母基因群進行DNA重排 ……………………… 41 十四、以C-系列突變基因進行第三回合的隨機突變與篩選…………………… 42 十五、DNA定序與分析 …………………………………………………………… 43 十六、野生型BfgV與D7突變蛋白螢光特性比較……………………………… 44 十七、BfgV蛋白分子的立體結構模擬…………………………………………… 45 十八、比較D7與GFP在有氧與無氧狀態下的螢光表現 ……………………… 46 討論 ……………………………………………………………………………… 49 圖目錄 圖一、bfgV的序列分析與其對應蛋白的二級結構預測………………………… 55 圖二、重組載體pFP21構築過程與各成分DNA電泳分析圖…………………… 56 圖三、用SDS-PAGE分析純化過的BfgV蛋白…………………………………… 57 圖四、分析大腸桿菌BL21轉型體表現BfgV時所發出的螢光光譜…………… 58 圖五、BfgV螢光蛋白激發和放射波光譜分析 ………………………………… 59 圖六、利用膠體過濾法做校正曲線求出BfgV的聚合度 ……………………… 60 圖七、用鹼性法萃取純化的BfgV螢光蛋白再經HPLC所得的分析圖………… 61 圖八、BfgV粗蛋白液經過管柱純化後,各收集瓶的分析圖 ………………… 62 圖九、純化的BfgV經GLDH處理後相對螢光的變化…………………………… 63 圖十、純化後的BfgV蛋白溶液與由該蛋白溶液經HPLC分析所得相同濃度的 游離態NADPH的相對螢光強度比較……………………………………… 64 圖十一、菌落雜交試驗所得的輻射曝光顯影圖………………………………… 65 圖十二、單向遠距PCR實驗所得的bfgV上游DNA片段電泳圖……………… 66 圖十三、bfgV及其周邊共4946 bp DNA序列…………………………………… 68 圖十四、bfgV與其類似基因bfgVVc和bfgVSo上下游的基因組態比較………… 69 圖十五、BfgV與另外兩個BfgV類似蛋白氨基酸序列比對 …………………… 70 圖十六、利用定位插入突變法構築bfgR缺失突變株 ………………………… 71 圖十七、用西方墨點法分析BfgR在CKM-1和URD101表現的情形…………… 72 圖十八、BfgR的生產與純化……………………………………………………… 73 圖十九、BfgR融合蛋白與bfgR-bfgV啟動子區的凝膠泳動位移試驗………… 74 圖二十、菌體濃度(OD600)與螢光強度的關係 …………………………………… 75 圖二十一、轉型體BL21/pFP21的生長曲線圖 ………………………………… 76 圖二十二、BL21/pFP21和BL21/p21A48螢光與蛋白表現時程分析圖………… 77 圖二十三、bfgV, A48與A25突變基因的比較 ………………………………… 78 圖二十四、Mg2+和Mn2+對DNaseI切割DNA的影響 ……………………………… 79 圖二十五、DNaseI在含Mg2+ 的buffer內對bfgV DNA片段進行切割 ……… 80 圖二十六、DNA重排實驗 ………………………………………………………… 81 圖二十七、利用定位突變所培育的D7與各突變基因演化相關性 …………… 83 圖二十八、D7變異基因與其直屬變異基因螢光指數變化情形………………… 84 圖二十九、表現野生型bfgV基因與其突變基因D7的大腸桿菌轉型體菌落螢 光表現情形…………………………………………………………… 85 圖三十、比較BfgV和D7蛋白在大腸桿菌表現時螢光光譜的差異…………… 86 圖三十一、利用滴定法求出D7與BfgV 的NADPH複合物的解離常數Kd …… 87 圖三十二、BfgV 與 meso-2,3-butanediol dehydrogenase (m-BD)氨基酸序 列比對………………………………………………………………… 88 圖三十三、BfgV-NADPH複合物部分模擬圖……………………………………… 89 圖三十四、D7的突變點在BfgV分子立體結構上的位置 ……………………… 90 圖三十五、大腸桿菌轉型體表現D7或GFP與其對應螢光的動態變化比較 … 91 圖三十六、BL21/pD719與BL21/pGFP在有氧與無氧條件下培養時螢光表現情形……………………………………………………………………… 92 圖三十七、推測符合人類細胞表現的D7基因序列 …………………………… 93 圖三十八、推測符合斑馬魚細胞表現的D7基因 ……………………………… 94 表目錄 表一、D7與其前代基因所發現的突變位置……………………………………… 82 參考文獻 ………………………………………………………………………… 95 附錄 一、實驗所用的菌株與載體 …………………………………………………… 105 二、載體pET-21b圖譜 ………………………………………………………… 106 三、載體pGFP圖譜……………………………………………………………… 107 四、人類高表現基因密碼頻譜表 ……………………………………………… 108 五、斑馬魚基因密碼頻譜表 …………………………………………………… 109 六、縮寫檢索表 ………………………………………………………………… 110

    1.Adams, M. J., G. H. Ellis, S. Gover, C. E. Naylor, and C. Phillips. 1994. Crystallographic study of coenzyme, coenzyme analogue and substrate binding in 6-phosphogluconate dehydrogenase: implications for NADP specificity and the enzyme mechanism. Structure. 2:651-668.

    2.Anderson, J. M., and M. J. Cormier. 1973. Lumisomes, the cellular site of bioluminescence in coelenterates. J Biol Chem. 248:2937-2943.

    3.Baldwin, T. O., M. M. Ziegler, and D. A. Powers. 1979. Covalent structure of subunits of bacterial luciferase: NH2-terminal sequence demonstrates subunit homology. Proc Natl Acad Sci U S A. 76:4887-4889.

    4.Bassler, B. L., E. P. Greenberg, and A. M. Stevens, 1997. Cross-species induction of luminescence in the quorum-sensing bacterium Vibrio harveyi. J Bacteriol. 179:4043-4045.

    5.Bassler, B. L., M. Wright, R. E. Showalter, and M. R. Silverman. 1993. Intercellular signaling in Vibrio harveyi: sequence and function of genes regulating expression of luminescence. Mol Microbiol. 9:773-86.

    6.Baumann P., L. Baumann, M. J. Woolkalis,, and S. S. Bang. 1983. Evolutionary relationships in Vibrio and Photobacterium: a basis for a natural classification. Annu Rev Microbiol. 37:369-398.

    7.Benyajati, C., A. R. Place, D. A. Powers, and W. Sofer. 1981. Alcohol dehydrogenase gene of Drosophila melanogaster: Relationship of the intervening sequences to functional domains in the protein. Proc. Natl. Acad. Sci. U S A. 78: 2717-2721.

    8.Billard, P., and M. S. DuBow. 1998. Bioluminescence-based assays for detection and characterization of bacteria and chemicals in clinical laboratories. Clin Biochem. 31:1-14.

    9.Black, M. E., T. G. Newcomb, H. M. Wilson, and L. A. Loeb. 1996. Creation of drug-specific herpes simplex virus type 1 thymidine kinase mutants for gene therapy. Proc Natl Acad Sci U S A. 93:3525-3529.

    10.Brown, T. A. 1991. Molecular biology LabFax, 1st ed. Academic Press, Oxford, UK.

    11.Cadwell, R. C., and G. F. Joyce. 1992. Randomization of genes by PCR mutagenesis. PCR Methods Appl. 2:28-33.

    12.Campbell, A. K. 1989. Living light: biochemistry, function and biomedical applications. Essays Biochem. 24:41-76.

    13.Chatterjee, J., C. M. Miyamoto, and E. A. Meighen. 1996. Autoregulation of luxR: the Vibrio harveyi lux-operon activator functions as a repressor. Mol Microbiol. 20:415-425.

    14.Chen Z., J. C. Jiang, Z. G. Lin, W. R. Lee, M. E. Baker, and S. H. Chang. 1993. Site-specific mutagenesis of Drosophila alcohol dehydrogenase: evidence for involvement of tyrosine-152 and lysine-156 in catalysis. Biochemistry. 32:3342-3346.

    15.Chen, K., and F. H. Arnold. 1993. Tuning the activity of an enzyme for unusual environments: sequential random mutagenesis of subtilisin E for catalysis in dimethylformamide. Proc Natl Acad Sci U S A. 90:5618-5622.

    16.Choi, S. H., and E. P. Greenberg. 1992. Genetic dissection of DNA binding and luminescence gene activation by the Vibrio fischeri LuxR protein. J Bacteriol. 174:4064-4069.

    17.Coco, W. M., M. R. Parsek, and A. M. Chakrabarty. 1994. Purification of the LysR family regulator, ClcR, and its interaction with the Pseudomonas putida clcABD chlorocatechol operon promoter. J Bacteriol. 176:5530-5533.

    18.Cody, C. W., D. C. Prasher, W. M. Westler, F. G. Prendergast, and W. W. Ward. 1993. Chemical structure of the hexapeptide chromophore of the Aequorea green-fluorescent protein. Biochemistry. 32:1212-1218.

    19.Cohn, D. H., A. J. Mileham, M. I. Simon, K. H. Nealson, S. K. Rausch, D. Bnam, and T. O. Baldwin. 1985. Nucleotide sequence of the luxA gene of Vibrio harveyi and the complete amino acid sequence of the alpha subunit of bacterial luciferase. J Biol Chem. 260: 6139-6146.

    20. Cormack, B. P., R. H. Valdivia, S. and Falkow. 1996. FACS-optimized mutants of the green fluorescent protein (GFP). Gene. 173:33-38.

    21.Crameri, A., E. A. Whitehorn, E. Tate, and W. P. Stemmer. 1996. Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat Biotechnol. 14:315-319.

    22. Crameri, A., G. Dawes, E. R. Jr, S. Silver, and W. P.C. Stemmer. 1997. Molecular evolution of an arsenate detoxification pathway by DNA shuffling. Nature Biotechnology 15:436-438.

    23.Delagrave, S., R. E. Hawtin, C. M. Silva, M. M. Yang, and D. C. Youvan. 1995. Red-shifted excitation mutants of the green fluorescent protein. Biotechnology. 13:151-154.

    24.Donnenberg, M. S., and J. B. Kaper. 1991. Construction of an eae deletion mutant of enteropathogenic Escherichia coli by using a positive-selection suicide vector. Infect Immun. 59:4310-4317.

    25.Eckert, K. A., and T. A. Kunkel. 1991. DNA polymerase fidelity and the polymerase chain reaction. PCR Methods Appl. 1:17-24.

    26. Fisher, M., J. T. Kroon, W. Martindale, A. R. Stuitje, A. R. Slabas, and J. B. Rafferty. 2000.The X-ray structure of Brassica napus beta-keto acyl carrier protein reductase and its implications for substrate binding and catalysis. Structure Fold Des. 8:339-347.

    27. Foran, D. R., and W. M. Brown. 1988. Nucleotide sequence of the LuxA and LuxB genes of the bioluminescent marine bacterium Vibrio fischeri. Nucleic Acids Res. 16:777-778.

    28.Ghosh D, Z, Wawrzak, C. M. Weeks, W. L. Duax, and M. Erman. 1994. The refined three-dimensional structure of 3 alpha,20 beta-hydroxysteroid dehydrogenase and possible roles of the residues conserved in short-chain dehydrogenases. Structure.2:629-640.

    29.Goodwin, P. C. 1999. GFP biofluorescence: imaging gene expression and protein dynamics in living cells. Design considerations for a fluorescence imaging laboratory. Methods Cell Biol. 58:343-367.

    30.Guex, N. and M. C. Peitsch. 1997. SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modelling. Electrophoresis 18:2714-2723.

    31.Harayama, S. 1998. Artificial evolution by DNA shuffling. Tibtech. 16:76-82.

    32.Hastings, J. W., C. J. Potrikus, S. C. Gupta, M. Kurfurst, and J. C. Makemson. 1985. Biochemistry and physiology of bioluminescent bacteria. Adv Microb Physiol. 26:235-291.

    33. Heidelberg, J. F., J. A. Eisen, W. C. Nelson, R. A. Clayton, M. L. Gwinn, R. J. Dodson, D. H. Haft, E. K. Hickey, J. D. Peterson, L. Umayam, S. R. Gill, K. E. Nelson, T. D. Read, H. Tettelin, D. Richardson, M. D. Ermolaeva, J. Vamathevan, S. Bass, H. Qin, I. Dragoi, P. Sellers, L. McDonald, T. Utterback, R. D. Fleishmann, W. C. Nierman, and O. White. 2000. DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature. 406:469-470.

    34.Heim, R., D. C. Prasher, and R. Y. Tsien. 1994. Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc Natl Acad Sci U S A. 91:12501-12504.

    35.Hsu, R. Y., and H. A. Lardy. 1967. Pigeon liver malic enzyme. III. Fluorescence studies of coenzyme binding. J Biol Chem. 242:527-532.

    36.Jeong, K. C., H. S. Jeong, J. H. Rhee, S. E. Lee, S. S. Chung, A. M. Starks, G. M. Escudero, P. A. Gulig, and S. H. Choi. 2000. Construction and phenotypic evaluation of a Vibrio vulnificus vvpE mutant for elastolytic protease. Infect Immun. 68:5096-5106.

    37.Jornvall, H., B. Persson, M. Krook, S. Atrian, R. Gonzalez-Duarte, J. Jeffery, and D. Ghosh. 1995. Short-chain dehydrogenases /reductases (SDR). Biochemistry. 34:6003-6013.

    38.Kan, Z., and T. J. Liu. 1999. Video microscopy of tumor metastasis: using the green fluorescent protein (GFP) gene as a cancer-cell-labeling system. Clin Exp Metastasis. 17:49-55.

    39.Kolter, R., M. Inuzuka, and D. R. Helinski. 1978. Trans-complementation-dependent replication of a low molecular weight origin fragment from plasmid R6K. Cell. 15:1199-1208.

    40.Krook, M., D. Ghosh, W. Duax, and H. Jornvall. 1993. Three-dimensional model of NAD(+)-dependent 15-hydroxyprostaglandin dehydrogenase and relationships to the NADP(+)-dependent enzyme (carbonyl reductase). FEBS Lett. 322:139-142.

    41.Kuchner, O., and F. H. Arnold. 1997. Directed evolution of enzyme catalysts. Trends Biotechnol. 15:523-530.

    42. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 277:680-685.

    43. Lakowicz, J. R., H. Szmacinski, K. Nowaczyk, M. L. Johnson. 1992. Fluorescence lifetime imaging of free and protein-bound NADH. Proc Natl Acad Sci U S A. 89:1271-1275.

    44.Leung, D. W., E. Chen, and D. V. Goeddel. 1989. A method for random mutagenesis of a defined DNA segment using a modified polymerase chain reaction. Technique 1:11-15.

    45.Li B., and S. X. Lin. 1996. Fluorescence-energy transfer in human estradiol 17 beta-dehydrogenase-NADPH complex and studies on the coenzyme binding,. Eur J Biochem. 235:180-186.

    46.Lindbladh, C., M. Persson, L. Bulow, and K. Mosbach. 1992. Characterization of a recombinant bifunctional enzyme, galactose dehydrogenase/bacterial luciferase, displaying an improved bioluminescence in a three-enzyme system. Eur J Biochem. 204:241-247.


    47.Meighen, E. A., and I. Bartlet. 1980.Complementation of subunits from different bacterial luciferases. Evidence for the role of the beta subunit in the bioluminescent mechanism. J Biol Chem. 255:11181-11187.

    48.Meighen, E.A. 1991. Molecular biology of bacterial bioluminescence. Microbiol Rev. 55:123-142.

    49.Miller, V. L., and J. J. Mekalanos. 1988. A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J Bacteriol. 170:2575-2583.

    50.Min, G. S., and J. R. Powell. 1998. Long-distance genome walking using the long and accurate polymerase chain reaction. Biotechniques. 24:398-400.

    51.Moore, J. C. 1997. Strategies for the in vitro evolution of protein function : Enzyme evolution by random recombination of improved sequence. J. Mol. Biol. 272:336-347.

    52.Moore, J. C., and F. H. Arnold. 1996. Directed evolution of a para-nitrobenzyl esterase for aqueous-organic solvents. Nat Biotechnol. 14:458-467.
    53.Morin, J. G., and J. W. Hastings. 1971. Energy transfer in a bioluminescent system. J Cell Physiol. 77:313-318.

    54.Morise, H., O. Shimomura, F. H. Johnson, and J. Winant. 1974. Intermolecular energy transfer in the bioluminescent system of Aequorea. Biochemistry. 13:2656-62.

    55.Otagiri, M., G. Kurisu, S. Ui, Y. Takusagawa, M. Ohkuma, T. Kudo, and M. Kusunoki. 2001 Crystal structure of meso-2,3-butanediol dehydrogenase in a complex with Nad(+) and inhibitor mercaptoethanol at 1.7 A resolution for understanding of chiral substrate recognition mechanisms. J.Biochem.(Tokyo) 129: 205 -211.

    56.Peitsch, M. C. 1996. ProMod and Swiss-Model: Internet-based tools for automated comparative protein modelling. Biochem Soc Trans 24:274-279.

    57.Persson, B., M. Krook, and H. Joernvall. 1991. Characteristics of short-chain alcohol dehydrogenases and related enzymes. Eur.J.Bioch. 200: 537-543.

    58.R. Y. Hsu, and H. A. Lardy. 1967. Pigeon liver malic enzyme. 3. Fluorescence studies of coenzyme binding. J Biol Chem. 242:527-532.

    59.Renna, M. C., N. Najimudin, L. R. Winik, and S. A. Zahler. 1993. Regulation of the Bacillus subtilis alsS, alsD, and alsR genes involved in post-exponential-phase production of acetoin. J Bacteriol. 175:3863-3875.

    60.Riendeau, D., A. Rodriguez, and E. Meighen. 1982. Resolution of the fatty acid reductase from Photobacterium phosphoreum into acyl proteinsynthetase and acyl-CoA reductase activities. Evidence for an enzyme complex. J Biol Chem. 257:6908-6915.

    61.Rodriguez, A., D. Riendeau, and E. Meighen. 1983. Purification of the acyl coenzyme A reductase component from a complex responsible for the reduction of fatty acids in bioluminescent bacteria. Properties and acyltransferase activity. J Biol Chem. 258:5233-5237.

    62.Rosorius, O., P. Heger, G. Stelz, N. Hirschmann, J. Hauber, and R. H. Stauber. 1999. Direct observation of nucleocytoplasmic transport by microinjection of GFP-tagged proteins in living cells. Biotechniques. 27:350-355.

    63.Rossmann, M. G., A. Liljas, C. I. Branden, and L. J. Banaszak. 1975. in The Enzyme, 3rd ed. Academic Press, New York.

    64.Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual , 2nd ed Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

    65.Sanger, F., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 74:5463-5467.

    66.Schmidt, T. M., K. Kopecky, and K. H. Nealson. 1989. Bioluminescence of the insect pathogen Xenorhabdus luminescens. Appl Environ Microbiol. 55:2607-2612.

    67.Scott, T. G., R. D. Spencer, N. J. Leonard, and G. Weber. 1970. Emission properties of NADH. Studies of fluorescence lifetimes and efficiencies of NADH, AcPyADH, and simplified synthetic models. J. Am. Chem. Soc. 92: 687-695.

    68.Siegele, D. A., and L. Campbell, and J. C. Hu. 2000. Green fluorescent protein as a reporter of transcriptional activity in a prokaryotic system. Methods Enzymol. 305:499-513.

    69.Simou, R., U. Priefer, and A. Puhler. 1983. A broad-host-range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram-negative bacteria. Bio/Technology 1:784-791.

    70.Stemmer, W. P. 1994. Rapid evolution of a protein in vitro by DNA shuffling. Nature. 370:389-391.

    71.Stemmer, W. P.. 1994. DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Proc Natl Acad Sci U S A. 91:10747-10751.

    72.Stocchi V, L. Cucchiarini, M. Magnani, L. Chiarantini, P. Palma, and G. Crescentini. 1985. Simultaneous extraction and reverse-phase high-performance liquid chromatographic determination of adenine and pyridine nucleotides in human red blood cells. Anal Biochem. 146:118-24.

    73.Studier, F. W., and B. A. Moffatt. 1986. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol. 189:113-130.

    74.Su, J. H., Y. C. Chuang, Y. C. Tsai, and M. C. Chang. 2001. Cloning and Characterization of a Blue Fluorescent Protein from Vibrio vulnificus. Biochem Biophys Res Commun. 287:359-365.

    75.Terskikh A., A. Fradkov, G. Ermakova, A. Zaraisky, P. Tan, A. V. Kajava, X. Zhao, S. Lukyanov, M. Matz, S. Kim, I. Weissman, and P. Siebert. 2000. "Fluorescent timer": protein that changes color with time. Science. 290:1585-1588.

    76.Varughese, K. I., M. M. Skinner, J. M. Whiteley, D. A. Matthews, and N. H. Xuong. 1992. Crystal structure of rat liver dihydropteridine reductase. Proc Natl Acad Sci U S A. 89:6080-6084.

    77.Velick S. F. 1958. Fluorescence spectra and polarization of glyceraldehyde-3-phosphate and lactic dehydrogenase coenzyme complexes. J. Biol. Chem. 233:1455-1467.

    78.Wan, L. , M. B. Twitchett, L. D. Eltis, A. G. Mauk, and M. Smith. 1998. In vitro evolution of horse heart myoglobin to increase peroxidase activity. Proc Natl Acad Sci U S A. 95:12825-12831.

    79.Wells, J. A., M. Vasser, and D. B. Powers. 1985. Cassette mutagenesis: an efficient method for generation of multiple mutations at defined sites.Gene. 34:315-323.

    80.Yamashita, A., H. Kato, S. Wakatsuki, T. Tomizaki, T. Nakatsu, K. Nakajima, T. Hashimoto, Y. Yamada, and J. Oda. 1999. Structure of tropinone reductase-II complexed with NADP+ and pseudotropine at 1.9 A resolution: implication for stereospecific substrate binding and catalysis. Biochemistry. 38:7630-7637.

    81.Yang, F., L. G. Moss, and G. N. Jr. Phillips. 1996. The molecular structure of green fluorescent protein. Nat Biotechnol. 14:1246-51.

    82.Yang, T. T., L. Cheng, and S. R. Kain. 1996. Optimized codon usage and chromophore mutations provide enhanced sensitivity with the green fluorescent protein. Nucleic Acids Res. 24:4592-4593.

    83.Yang, T. T., P. Sinai, G. Green, P. A. Kitts, Y. T. Chen, L. Lybarger, R. Chervenak, G. H. Patterson, D. W. Piston, and S. R. Kain. 1998. Improved fluorescence and dual color detection with enhanced blue and green variants of the green fluorescent protein. J Biol Chem. 273:8212-16.

    84. You, L., and F. H. Arnold. 1996. Directed evolution of subtilisin E in Bacillus subtilis to enhance total activity in aqueous dimethylformamide. Protein Eng. 9:77-83.
    85.Youvan, D. C., and M. E. Michel-Beyerle. 1996. Structure and fluorescence mechanism of GFP. Nat Biotechnol. 4:1219-20.

    86.Zhang, J. H., Dawes G., and Stemmer W. P. 1997. Directed evolution of a fucosidase from a galactosidase by DNA shuffling and screening. Proc Natl Acad Sci U S A. 94:4504-4505.

    87.Zhao, H. and F. H. Arnold. 1997. Optimization of DNA shuffling for high fidelity recombination. Nucleic Acid Res. 25:1307-1308.

    無法下載圖示 校內:不公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE