| 研究生: |
郭聖揚 Kuo, Sheng-Yang |
|---|---|
| 論文名稱: |
含膽固醇偶氮苯凝膠化合物之合成及選擇性凝膠化反應 Synthesis and Selective-Gelation of Cholesteryl Azobenzene Organogelators |
| 指導教授: |
劉瑞祥
Liu, Jui-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 超分子凝膠 、光調變性 、對掌性 、氫鍵 、自組裝 |
| 外文關鍵詞: | supramolecular gel, phototunable, chiral, hydrogen bond, self-assembly |
| 相關次數: | 點閱:124 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了探討凝膠化合物之碳鏈長度對於其於溶劑中形成凝膠能力之影響,本研究合成了 cholesteryl 2-(4-(4-dimethylamino)-azobenzene- 4’-amido) ethyl carbamate (N2) 與 cholesteryl 4-(4-(4-dimethylamino) -azobenzene- 4’-amido) butyl carbamate (N4) 兩種化合物。於小分子凝膠體設計上,除了導入膽固醇基團以增強分子間凡德瓦力以及誘導螺旋結構外,並加入偶氮苯基團以獲得光調變性與π-π stacking作用力。
從SEM與TEM觀察到化合物N4為一維纖維結構交織成的網狀結構,而N2則多為球狀團聚結構。由DSC配合POM觀察化合物N4的相轉移溫度。由分子軟體模擬軟體與XRD證明化合物於最低能量的型態因分子內氫鍵而呈彎曲摺疊狀。偶氮苯之氮上孤對電子與醯胺產生的分子間氫鍵不僅使順式較反式穩定,並且於紫外光與可見光照射下產生不可逆的光致變現象。此外該氫鍵影響分子的堆疊,N4在xylene與diphenyl ether的自組裝為短纖維結構。變溫1H-NMR與ATR結果顯示氫鍵、π-π堆疊作用力與凡德瓦爾力為形成凝膠主要的驅動力。N4於水/xylene與DMSO/hexane兩系統中皆出現選擇性凝膠化性質,具有將來相分離技術之前景。
In order to discuss the effect of gelation with various alkyl chain length, we synthesized two gelators: cholesteryl 2-(4-(4-dimethylamino)-azobenzene-4’-amido) ethyl carbamate (N2) and cholesteryl 4-(4-(4-dimethylamino)-azobenzene- 4’-amido) butyl carbamate (N4). Cholesterol group was introduced to enhance the gelation ability and its chiral center induces the asymmetric helical structure. Azobenzene with dimethyl aniline was also introduced to offer π-π stacking forces and phoisomerization property. Fibrillar structures were observed in the N4 xerogel via SEM and TEM. For N2 system, only ball cluster can be found. Phase transition temperature were measured using DSC and the phase change study was performed using POM. The morphology of N2 and N4 at lowest energy were simulated by a software. The structure is folded due to the intramolecular hydrogen bonding. The calculated molecular length is in accordance with the XRD results. It was found that cis-form of azobenzene is more stable than trans-form due to the intermolecular hydrogen bonding between the nitrogen of azobenzene and the amide groups. The irreversible photoisomerization was investigated using UV-visible spectroscopy. 1H-NMR and ATR results show that the hydrogen bonding, π-π stacking force and Van der Waals force are the driving forces forming one-dimensional structure. The selective-gelation ability is observed in water/xylene and DMSO/hexane systems, which can be applied for phase separation.
1. Kumar, D. K.; Steed, J. W., Supramolecular gel phase crystallization: orthogonal self-assembly under non-equilibrium conditions. Chemical Society reviews 2014, 43 (7), 2080-2088.
2. Dawn, A.; Shiraki, T.; Haraguchi, S.; Tamaru, S.; Shinkai, S., What kind of "soft materials" can we design from molecular gels? Chemistry, an Asian journal 2011, 6 (2), 266-282.
3. Lehn, J.-M., Supramolecular chemistry-scope and perspectives molecules-supermolecules-molecular devices. Angewandte 1987, 27, 89-112.
4. Yan, Y.; Lin, Y.; Qiao, Y.; Huang, J., Construction and application of tunable one-dimensional soft supramolecular assemblies. Soft Matter 2011, 7 (14), 6385-6398.
5. Zhang, X.; Wang, C., Supramolecular amphiphiles. Chemical Society reviews 2011, 40 (1), 94-101.
6. Hameren, R. v.; Buul, A. M. v.; Hoogboom, J.; Lazarenko, S. V.; Gerritsen, J. W.; Engelkamp, H.; Christianen, P. C. M.; Heus, H. A.; Maan, J. C.; Rasing, T.; Speller, S.; Rowan, A. E.; Elemans, J. A. A. W.; Nolte, R. J. M., Macroscopic Hierarchical Surface Patterning of Porphyrin Trimers via Self-Assembly and Dewetting. Science 2006, 314, 1433-1436.
7. Beachley, V.; X. J. Wen, P., Polymer nanofibrous structures: Fabrication, biofunctionalization, and cell interactions. Polym. Sci. 2010, 35, 868-892.
8. Toksoz, S.; Acar, H.; Guler, M. O., Self-assembled one-dimensional soft nanostructures. Soft Matter 2010, 6, 5839–5849.
9. Shimizu, T.; Masuda, M.; Minamikawa, H., Supramolecular Nanotube Architectures Based on Amphiphilic Molecules. Chem. Rev., 2005, 105, 1401-1443.
10. Zhang, Y. Q.; Chen, P. L.; Liu, M. H., A General Method for Constructing Optically Active Supramolecular Assemblies from Intrinsically Achiral Water-Insoluble Free-Base Porphyrins. Chem.-Eur. J. 2008, 14, 1793-1803.
11. Hameren, R. v.; Schoen, P.; Buul, A. M. v.; Hoogboom, J.; Lazarenko, S. V.; Gerritsen, J. W.; Engelkamp, H.; Christianen, P. C. M.; Heus, H. A.; Maan, J. C.; Rasing, T.; Speller, S.; Rowan, A. E.; Elemans, J. A. A. W.; Nolte, R. J. M., Science 2006, 314, 1433-1436.
12. Li, Y. G.; Wang, T. Y.; Liu, M. H., Gelating-induced supramolecular chirality of achiral porphyrins: chiroptical switch between achiral molecules and chiral assemblies Soft Matter 2007, 3, 1312-1317.
13. Balamurugana, S.; Yeap, G.-Y.; Mahmood, W. A. K.; Tan, P.-L.; Cheong, K.-Y., Thermal and photo reversible gel–sol transition of azobenzene based liquid crystalline organogel. Journal of Photochemistry and Photobiology A: Chemistry 2014, 278, 19-24.
14. Gohy, J. F.; Lohmeijer, B. G. G.; Schubert, U. S., Metallo-Supramolecular Block Copolymer Micelles. Macromolecules 2002, 35, 4560-4563.
15. Moughton, A. O.; O’Reilly, R. K., Noncovalently Connected Micelles, Nanoparticles, and Metal-Functionalized Nanocages Using Supramolecular Self-Assembly. J. Am. Chem. Soc. 2008, 460, 8714-8725.
16. B. Song; Wu, G. L.; Wang, Z. Q.; Zhang, X.; Smet, M.; Dehaen, W., Metal−Ligand Coordination-Induced Self-Assembly of Bolaamphiphiles Bearing Bipyrimidine. Langmuir : the ACS journal of surfaces and colloids 2009, 25, 13306-13310.
17. Wei, S.-C.; Pan, M.; Li, K.; Wang, S.; Zhang, J.; Su, C.-Y., A multistimuli-responsive photochromic metal-organic gel. Adv Mater 2014, 26 (13), 2072-2077.
18. Bojinova, T.; Coppel, Y.; Viguerie, N. L.; Milius, A.; Lattes, I. R.; Lattes, A., Complexes between β-Cyclodextrin and Aliphatic Guests as New Noncovalent Amphiphiles: Formation and Physicochemical Studies. Langmuir : the ACS journal of surfaces and colloids 2003, 19, 5233-5239.
19. Falvey, P.; C. W. Lim, R. D.; Revermann, T.; Karst, U.; Giesbers, M.; Marcelis, A. T. M.; Lazar, A.; Coleman, A. W.; Reinhoudt, D. N.; Ravoo, B. J., Chem. Eur. J 2005, 11, 1171-1180.
20. Mahavidyalaya, A.; Sainthia, B., Low Molecular Mass Gelators of Organic Liquids. Journal of Physical Sciences, 2007, 11.
21. Israelachvili, J. N., Principles of Colloid and Surface Chemistry. Academic Press: New York 1991.
22. Banerjee, S.; Das, R. K.; Maitra, U., Supramolecular gels ‘in action’. Journal of Materials Chemistry 2009, 19 (37), 6649–6687.
23. Abdallah, D. J.; Weiss, R. G., n-Alkanes Gel n-Alkanes (and Many Other Organic Liquids). Langmuir : the ACS journal of surfaces and colloids 2000, 16, 352-355.
24. Terech, P.; Weiss, R. G., Low molecular mass gelators of organic liquids and the properties of their gels. Chem. Rev., 1997, 97.
25. Mallia, V. A.; Weiss, R. G., Self-assembled fibrillar networks and molecular gels employing 12-hydroxystearic acid and its isomers and derivatives. Journal of Physical Organic Chemistry 2014, 27 (4), 310-315.
26. Duan, P.; Li, Y.; Li, L.; Deng, J.; Liu, M., Multiresponsive chiroptical switch of an azobenzene-containing lipid: solvent, temperature, and photoregulated supramolecular chirality. The journal of physical chemistry. B 2011, 115 (13), 3322-3329.
27. Terech, P.; Bouas-Laurent; Desvergne, H., Small Molecular Luminescent Gelling Agent 2,3-Bis-n-decyloxyanthracene: Rheological and Structural Study J. P. J. Colloid Sci 1995, 174, 258-263.
28. Placin.; Buffeteau; Desbat, B.; Ducasse; Lassegues, Molecular Arrangement in the Gel Fibers of 2,3-Didecyloxyanthracene (DDOA): A Spectroscopic and Theoretical Approach. Langmuir : the ACS journal of surfaces and colloids 2003, 19, 4563-4572.
29. Terech, P.; Weiss, R. G., Low molecular mass gelators of organic liquids and the properties of their gels. Chemical Review 1997, 97, 3133-3160.
30. Zinic, M.; Vogtle, F.; Fages, F., Cholesterol-based gelators. Topics in current chemistry 2005, 256, 39-76.
31. Malik, S.; Kawano, S.-i.; Fujita, N.; Shinkai, S., Pyridine-containing versatile gelators for post-modification of gel tissues toward construction of novel porphyrin nanotubes. Tetrahedron 2007, 63 (31), 7326-7333.
32. Ishiguro, K.; Ando, T.; Goto, H., Novel application of 4-nitro-7-(1-piperazinyl)-2,1,3-benzoxadiazole to visualize lysosomes in live cells BioTechniques 2008, 45, 465-468.
33. Ozawa, T.; Asakawa, T.; Ohta, A.; Miyagishi, S., New fluorescent probes applicable to aggregates of fluorocarbon surfactants. J. Oleo Sci. 2007, 56, 587-593.
34. Xu, Z.; Peng, J.; Yan, N.; Yu, H.; Zhang, S.; Liu, K.; Fang, Y., Simple design but marvelous performances: molecular gels of superior strength and self-healing properties. Soft Matter 2013, 9 (4), 1091-1099.
35. Bommel, K. J. C. v.; Pol, C. v. d.; I. Muizebelt, A. F.; Heeres, A.; Meetsma, A.; Feringa, B. L.; Esch, J. v., Responsive Cyclohexane-Based Low-Molecular-Weight Hydrogelators with Modular Architecture. Angew.Chem. 2004, 43, 1663-1667.
36. Liu, J.; He, P.; Yan, J.; Fang, X.; Peng, J.; Liu, K.; Fang, Y., An Organometallic Super‐Gelator with Multiple‐Stimulus Responsive Properties. Advanced Materials 2008, 20 (13), 2508-2511.
37. Bunzen, H.; Kolehmainen, E., In situ formation of steroidal supramolecular gels designed for drug release. Molecules 2013, 18 (4), 3745-3759.
38. Zhang, M.; Sun, S.; Yu, X.; Cao, X.; Zou, Y.; Yi, T., Formation of a large-scale ordered honeycomb pattern by an organogelator via a self-assembly process. Chem Commun 2010, 46 (20), 3553-3555.
39. Xu, X. D.; Zhang, J.; Chen, L. J.; Zhao, X. L.; Wang, D. X.; Yang, H. B., Large-scale honeycomb microstructures constructed by platinum-acetylide gelators through supramolecular self-assembly. Chemistry 2012, 18 (6), 1659-67.
40. Abraham, S.; Vijayaraghavan, R. K.; Das, S., Tuning microstructures in organogels: gelation and spectroscopic properties of mono- and bis-cholesterol-linked diphenylbutadiene derivatives. Langmuir : the ACS journal of surfaces and colloids 2009, 25 (15), 8507-8513.
41. Xue, M.; Gao, D.; Chen, X.; Liu, K.; Fang, Y., New dimeric cholesteryl-based A(LS)2 gelators with remarkable gelling abilities: organogel formation at room temperature. Journal of colloid and interface science 2011, 361 (2), 556-564.
42. Peng, J.; Liu, K.; Liu, J.; Zhang, Q.; Feng, X.; Fang, Y., New Dicholesteryl-Based Gelators: Chirality and Spacer Length Effect. Langmuir : the ACS journal of surfaces and colloids 2008, 24, 2992-3000.
43. Wang, C.; Chen, Q.; Sun, F.; Zhang, D.; Zhang, G.; Huang, Y.; Zhao, R.; Zhu, D., Multistimuli Responsive Organogels Based on a New Gelator Featuring Tetrathiafulvalene and Azobenzene Groups: Reversible Tuning of the Gel-Sol Transition by Redox Reactions and Light Irradiation. J. AM. CHEM. SOC. 2010, 132, 3092–3096.
44. Murata, K.; Aoki, M.; Suzuki, T.; Harada, T.; Kawabata, H.; Komri, T.; Olrseto, F.; Ueda, K.; Shinkai, S., Thermal and light control of the sol-gel phase transition in cholesterol-based organic gels. Novel helical aggregation modes as detected by circular dichroism and electron microscopic observation. J. Am. Chem. Soc. 1994, 116, 6664-6676.
45. Jung, J. H.; Kobayashi, H.; Masuda, M.; Shimizu, T.; Shinkai, S., Helical Ribbon Aggregate Composed of a Crown-Appended Cholesterol Derivative Which Acts as an Amphiphilic Gelator of Organic Solvents and as a Template for Chiral Silica Transcription. J. Am. Chem. Soc. 2001, 123, 8785-8789.
46. Murata, K.; Aoki, M.; Suzuki, T.; Harada, T.; Kawabata, H.; Komri, T.; Olrseto, F.; Ueda, K.; Shinkai, S., Thermal and Light Control of the Sol-Gel Phase Transition in Cholesterol-Based Organic Gels. Novel Helical Aggregation Modes As Detected by Circular Dichroism and Electron Microscopic Observation. J. Am. Chem. Soc. 1994, 116, 6664-6676.
47. Jiao, T.; Wang, Y.; Gao, F.; Zhou, J.; Gao, F., Photoresponsive organogel and organized nanostructures of cholesterol imide derivatives with azobenzene substituent groups. Progress in Natural Science: Materials International 2012, 22 (1), 64-70.
48. Bandara, H. M.; Burdette, S. C., Photoisomerization in different classes of azobenzene. Chemical Society reviews 2012, 41 (5), 1809-1825.