簡易檢索 / 詳目顯示

研究生: 陳思寧
Chen, Ssu-Ning
論文名稱: 以替代毒理測試方法評估食品加工污染物包含3-單氯丙二醇及縮水甘油的內分泌干擾活性與生殖毒性
Evaluation of the endocrine-disrupting activities and reproductive toxicity induced by food processing contaminants including 3-MCPD and glycidol using alternative test methods
指導教授: 陳容甄
Chen, Rong-Jane
學位類別: 碩士
Master
系所名稱: 醫學院 - 食品安全衛生暨風險管理研究所
Department of Food Safety / Hygiene and Risk Management
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 107
中文關鍵詞: 單氯丙二醇縮水甘油內分泌干擾粒線體損傷生殖毒性
外文關鍵詞: 3-MCPD, glycidol, endocrine disruption, mitochondria dysfunction, reproductive toxicity
相關次數: 點閱:105下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 第一章、序論 1 第二章、文獻回顧 2 第一節、食品加工污染物(Process contaminants in food) 2 (ㄧ) 三單氯丙二醇(3-monochloropropanediol, 3-MCPD)及其酯類(3-monochloropropanediolester, 3-MCPDE) 2 (二) 縮水甘油(Glycidol)及縮水甘油酯(Glycidyl ester, GE) 6 第二節、內分泌干擾活性與生殖毒性 9 (一) 雌性激素受體路徑 (Estrogen receptor pathway) 11 (二) 雄性激素受體路徑 (Androgen receptor pathway) 13 (三) 類固醇生合成途徑(Steroidogenesis pathway) 14 第三節、雄性生殖毒性與細胞死亡 17 第四節、粒線體損傷 18 第五節、程序性細胞死亡(Programmed cell death, PCD) 20 (一) 自體吞噬作用(Autophagy) 21 (二) 粒線體自體吞噬作用(Mitophagy) 22 (三) 細胞凋亡(Apoptosis) 25 (四) 鐵依賴性細胞死亡(Ferroptosis) 27 第三章、研究目的 30 第四章、材料與方法 31 第一節、研究材料 31 (一) 細胞株 31 (二) 儀器 32 (三) 試劑與耗材 33 第二節、研究方法及步驟 39 (一) 動物實驗 39 (二) 細胞實驗 40 第五章、研究架構 51 第六章、實驗結果 52 第一節、食品汙染物3-MCPD及Glycidol之體外內分泌干擾潛力 52 (一) 3-MCPD與glycidol對於人類雄激素受體的體外轉錄活性 52 (二) 3-MCPD與glycidol對於類固醇激素生合成路徑的體外影響 53 第二節、食品汙染物3-MCPD及Glycidol之體內內分泌干擾潛力 55 (一) 3-MCPD與glycidol誘導Wild-type斑馬魚之卵黃蛋白原生成 56 第三節、食品汙染物3-MCPD及Glycidol之細胞模式以探討睪丸細胞損傷及程序性死亡機制 57 (一) 小鼠睪丸Leydig細胞TM3暴露3-MCPD與glycidol誘導細胞毒殺效應並進行協同作用分析 58 (二) 小鼠睪丸Leydig細胞TM3暴露3-MCPD與glycidol造成粒線體功能受損和影響粒線體動態蛋白表達 59 (三) 小鼠睪丸Leydig細胞TM3暴露3-MCPD與glycidol誘導粒線體自體吞噬作用(mitophagy)並扮演保護角色 61 (四) 小鼠睪丸Leydig細胞TM3暴露3-MCPD與glycidol誘導自體吞噬(Autophagy)並扮演保護角色 63 (五) 小鼠睪丸Leydig細胞TM3暴露3-MCPD與glycidol誘導細胞凋亡(Apoptosis) 64 (六) 小鼠睪丸Leydig細胞TM3暴露3-MCPD與glycidold與鐵依賴性細胞死亡(Ferroptosis)潛在關係 66 第七章、討論 69 第八章、結論及建議 77 第九章、參考文獻 79 圖表 90

    2020/1322, C. R. E. (2020). Amending Regulation (EC) No 1881/2006 as regards maximum levels of 3-monochloropropanediol (3-MCPD), 3-MCPD fatty acid esters and glycidyl fatty acid esters in certain foods. Official Journal of the European Union, 310, 2-5.
    衛生福利部食品藥物管理署. (2022). 預告增訂食用油脂中縮水甘油脂肪酸酯之限量標準. https://www.mohw.gov.tw/cp-5264-65832-1.html
    衛生福利部食品藥物管理署. (2023). 單氯丙二醇 Q&A. https://www.fda.gov.tw/tc/siteListContent.aspx?sid=214&id=7577
    Amir, S., Shah, S. T. A., Mamoulakis, C., Docea, A. O., Kalantzi, O.-I., Zachariou, A., Calina, D., Carvalho, F., Sofikitis, N., Makrigiannakis, A., & Tsatsakis, A. (2021). Endocrine Disruptors Acting on Estrogen and Androgen Pathways Cause Reproductive Disorders through Multiple Mechanisms: A Review. International Journal of Environmental Research and Public Health, 18(4), 1464. https://doi.org/10.3390/ijerph18041464
    Appel, K. E., Abraham, K., Berger-Preiss, E., Hansen, T., Apel, E., Schuchardt, S., Vogt, C., Bakhiya, N., Creutzenberg, O., & Lampen, A. (2013). Relative oral bioavailability of glycidol from glycidyl fatty acid esters in rats. Arch Toxicol, 87(9), 1649-1659. https://doi.org/10.1007/s00204-013-1061-1
    Arpit, S., Hannah, J., Pallas, Y., & William, B. (2019). Causal roles of mitochondrial dynamics in longevity and healthy aging. EMBO Reports 20, e48395. https://doi.org/10.15252/embr.201948395
    Bailone, R. L., Fukushima, H. C. S., Ventura Fernandes, B. H., De Aguiar, L. K., Corrêa, T., Janke, H., Grejo Setti, P., Roça, R. D. O., & Borra, R. C. (2020). Zebrafish as an alternative animal model in human and animal vaccination research. Laboratory Animal Research, 36(1), 13. https://doi.org/10.1186/s42826-020-00042-4
    Barocelli, E., Corradi, A., Mutti, A., & Petronini, P. (2011). Comparison between 3-MCPD and its palmitic esters in a 90-day toxicological study. EFSA. https://doi.org/10.2903/sp.efsa.2011.EN-187
    Bassi, G., Sidhu, S. K., & Mishra, S. (2021). The Expanding Role of Mitochondria, Autophagy and Lipophagy in Steroidogenesis. Cells, 10(8). https://doi.org/10.3390/cells10081851
    Bedoui, S., Herold, M. J., & Strasser, A. (2020). Emerging connectivity of programmed cell death pathways and its physiological implications. Nature Reviews Molecular Cell Biology, 21(11), 678-695. https://doi.org/10.1038/s41580-020-0270-8
    Behr, A. C., Lichtenstein, D., Braeuning, A., Lampen, A., & Buhrke, T. (2018). Perfluoroalkylated substances (PFAS) affect neither estrogen and androgen receptor activity nor steroidogenesis in human cells in vitro. Toxicol Lett, 291, 51-60. https://doi.org/10.1016/j.toxlet.2018.03.029
    Burden, N., Embry, M. R., Hutchinson, T. H., Lynn, S. G., Maynard, S. K., Mitchell, C. A., Pellizzato, F., Sewell, F., Thorpe, K. L., Weltje, L., & Wheeler, J. R. (2022). Investigating endocrine-disrupting properties of chemicals in fish and amphibians: Opportunities to apply the 3Rs. Integrated Environmental Assessment and Management, 18(2), 442-458. https://doi.org/https://doi.org/10.1002/ieam.4497
    Burman, J., Pickles, S., Wang, C., Sekine, S., Vargas, J., Zhang, Z., Youle, A., Nezich, C., Wu, X., Hammer, J., & Youle, R. (2017). Mitochondrial fission facilitates the selective mitophagy of protein aggregates. Journal of Cell Biology, 216(10), 3231-3247. https://doi.org/10.1083/jcb.201612106
    Chain, E. Panel o. C. i. t. F. (2016). Risks for human health related to the presence of 3- and 2-monochloropropanediol (MCPD), and their fatty acid esters, and glycidyl fatty acid esters in food. Efsa Journal, 14(5), e04426. https://doi.org/https://doi.org/10.2903/j.efsa.2016.4426
    Chang, N. C. (2020). Autophagy and Stem Cells: Self-Eating for Self-Renewal [Review]. Frontiers in Cell and Developmental Biology, 8. https://doi.org/10.3389/fcell.2020.00138
    Cheng, W., Liu, G., & Liu, X. (2016). Formation of Glycidyl Fatty Acid Esters Both in Real Edible Oils during Laboratory-Scale Refining and in Chemical Model during High Temperature Exposure. J Agric Food Chem, 64(29), 5919-5927. https://doi.org/10.1021/acs.jafc.6b01520
    Cheng, W. W., Liu, G. Q., Wang, L. Q., & Liu, Z. S. (2017). Glycidyl Fatty Acid Esters in Refined Edible Oils: A Review on Formation, Occurrence, Analysis, and Elimination Methods. Compr Rev Food Sci Food Saf, 16(2), 263-281. https://doi.org/10.1111/1541-4337.12251
    Collier, P., Cromie, D., & Davies, A. (1991). Mechanism of formation of chloropropanols present in protein hydrolysates. Journal of the American Oil Chemists' Society, 68, 785-790.
    D'Arcy, M. (2019). Cell death: a review of the major forms of apoptosis, necrosis and autophagy Cell Biology International, 46(6), 582-592. https://doi.org/10.1002/cbin.11137
    Dang, Z., Traas, T., & Vermeire, T. (2011). Evaluation of the fish short term reproduction assay for detecting endocrine disrupters. Chemosphere, 85(10), 1592-1603. https://doi.org/https://doi.org/10.1016/j.chemosphere.2011.08.006
    Di Nisio, A., & Foresta, C. (2019). Water and soil pollution as determinant of water and food quality/contamination and its impact on male fertility. Reproductive Biology and Endocrinology, 17(1), 4. https://doi.org/10.1186/s12958-018-0449-4
    Dikic, I., & Elazar, Z. (2018). Mechanism and medical implications of mammalian autophagy. Nature Reviews Molecular Cell Biology, 19(6), 349-364. https://doi.org/10.1038/s41580-018-0003-4
    EFSA. (2016). Risks for human health related to the presence of 3- and 2-monochloropropanediol (MCPD), and their fatty acid esters, and glycidyl fatty acid esters in food. EFSA. https://doi.org/10.2903/j.efsa.2016.4426
    EFSA. (2017). Update of the risk assessment on 3-monochloropropane diol and its fatty acid esters. EFSA. https://doi.org/10.2903/j.efsa.2018.5083
    Fang, E., Hou, Y., Palikaras, K., Adriaanse, B., Kerr, J., Yang, B., Lautrup, S., Hasan-Olive, M., Caponio, D., Dan, X., Rocktäschel, P., Croteau, D., Akbari, M., Greig, N., Fladby, T., Nilsen, H., Cader, M., Mattson, M., Tavernarakis, N., & Bohr, V. (2019). Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease. Nature Neuroscience, 22, 401-412. https://doi.org/10.1038/s41593-018-0332-9
    Flora, S. J. S., & Agrawal, S. (2017). Chapter 31 - Arsenic, Cadmium, and Lead. In R. C. Gupta (Ed.), Reproductive and Developmental Toxicology (Second Edition) (pp. 537-566). Academic Press. https://doi.org/10.1016/B978-0-12-804239-7.00031-7
    Gao, B., Li, Y., Huang, G., & Yu, L. (2019). Fatty Acid Esters of 3-Monochloropropanediol: A Review. Annual Review of Food Science and Technology 10, 259-284. https://doi.org/10.1146/annurev-food-032818-121245
    Gegg, M., Cooper, J., Chau, K., Rojo, M., Schapira, A., & Taanman, J. (2010). Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. Human Molecular Genetics, 19(24), 4861-4870. https://doi.org/10.1093/hmg/ddq419
    Geisler, S., Holmström, K., Skujat, D., Fiesel, F., Rothfuss, O., Kahle, P., & Springer, W. (2010). PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nature Cell Biology, 12, 119-131. https://doi.org/10.1038/ncb2012
    Giacomello, M., Pyakurel, A., Glytsou, C., & Scorrano, L. (2020). The cell biology of mitochondrial membrane dynamics. Nature Reviews Molecular Cell Biology, 21(4), 204-224. https://doi.org/10.1038/s41580-020-0210-7
    Goh, K. M., Wong, Y. H., Tan, C. P., & Nyam, K. L. (2021). A summary of 2-, 3-MCPD esters and glycidyl ester occurrence during frying and baking processes. Curr Res Food Sci, 4, 460-469. https://doi.org/10.1016/j.crfs.2021.07.002
    He, Q.-K., Li, Y.-P., Xu, Z.-R., Wei, W.-B., Qiao, F.-X., Sun, M.-X., Liu, Y.-C., Chen, Y.-Z., Wang, H.-L., Qi, Z.-Q., & Liu, Y. (2023). 3-MCPD exposure enhances ovarian fibrosis and reduces oocyte quality i n mice. Environmental Pollution, 316, 120662. https://doi.org/10.1016/j.envpol.2022.120662
    IARC. (2013). Some chemicals present in industrial and consumer products, food and drinking-water. IARC Monogr Eval Carcinog Risks Hum, 101, 9-549.
    International Programme on Chemical, S. (2001). Principles for evaluating health risks to reproduction associated with exposure to chemicals. In. Geneva: World Health Organization.
    Ji, J., Zhu, P., Sun, C., Sun, J., An, L., Zhang, Y., & Sun, X. (2017). Pathway of 3-MCPD-induced apoptosis in human embryonic kidney cells. J Toxicol Sci, 42(1), 43-52. https://doi.org/10.2131/jts.42.43
    Jin, S., & Youle, R. (2012). PINK1- and Parkin-mediated mitophagy at a glance. Journal of Cell Science, 125(Pt 4), 795-799. https://doi.org/10.1242/jcs.093849
    Kane, L., Lazarou, M., Fogel, A., Li, Y., Yamano, K., Sarraf, S., Banerjee, S., & Youle, R. (2014). PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. Journal of Cell Biology, 205, 143-153. https://doi.org/10.1083/jcb.201402104
    Kang, J. S., Choi, J.-S., & Park, J.-W. (2016). Transcriptional changes in steroidogenesis by perfluoroalkyl acids (PFOA and PFOS) regulate the synthesis of sex hormones in H295R cells. Chemosphere, 155, 436-443. https://doi.org/10.1016/j.chemosphere.2016.04.070
    Ketelut-Carneiro, N., & Fitzgerald, K. A. (2022). Apoptosis, Pyroptosis, and Necroptosis-Oh My! The Many Ways a Cell Can Die. J Mol Biol, 434(4), 167378. https://doi.org/10.1016/j.jmb.2021.167378
    Knapen, D., Angrish, M. M., Fortin, M. C., Katsiadaki, I., Leonard, M., Margiotta-Casaluci, L., Munn, S., O'Brien, J. M., Pollesch, N., Smith, L. C., Zhang, X., & Villeneuve, D. L. (2018). Adverse outcome pathway networks I: Development and applications. Environ Toxicol Chem, 37(6), 1723-1733. https://doi.org/10.1002/etc.4125
    Kubli, D. A., & Gustafsson Å, B. (2012). Mitochondria and mitophagy: the yin and yang of cell death control. Circ Res, 111(9), 1208-1221. https://doi.org/10.1161/circresaha.112.265819
    Kumar, A. V., Mills, J., & Lapierre, L. R. (2022). Selective Autophagy Receptor p62/SQSTM1, a Pivotal Player in Stress and Aging. Frontiers in Cell and Developmental Biology, 10. https://doi.org/10.3389/fcell.2022.793328
    Kuzukiran, O., Simsek, I., Filazi, A., & Yurdakok-Dikmen, B. (2022). Chapter 41 - Perfluorooctane sulfonate and perfluorooctanoic acid. In R. C. Gupta (Ed.), Reproductive and Developmental Toxicology (pp. 815-831). Academic Press. https://doi.org/10.1016/B978-0-323-89773-0.00041-2
    La Merrill, M. A., Vandenberg, L. N., Smith, M. T., Goodson, W., Browne, P., Patisaul, H. B., Guyton, K. Z., Kortenkamp, A., Cogliano, V. J., Woodruff, T. J., Rieswijk, L., Sone, H., Korach, K. S., Gore, A. C., Zeise, L., & Zoeller, R. T. (2020). Consensus on the key characteristics of endocrine-disrupting chemicals as a basis for hazard identification. Nat Rev Endocrinol, 16(1), 45-57. https://doi.org/10.1038/s41574-019-0273-8
    Lai, S.-S. (2021). Study of the food contaminant 3-monochloro-1,2-propanediol-induced renal toxicity mechanism via toxic mitophagy. 臺灣博碩士論文加值系統. https://hdl.handle.net/11296/cnj4tv
    Lee, B., & Khor, S. (2015). 3-Chloropropane-1,2-diol (3-MCPD) in Soy Sauce : A Review on the Formation, Reduction, and Detection of This Potential Carcinogen Comprehensive Reviews in Food Science and Food Safety 14(1), 48-66. https://doi.org/10.1111/1541-4337.12120
    Lee, B., Park, S., Kim, Y., Han, J., Jeong, E., Moon, K., & Son, H. (2015). A 28-day oral gavage toxicity study of 3-monochloropropane-1,2-diol (3-MCPD) in CB6F1-non-Tg rasH2 mice. Food and Chemical Toxicology, 86, 95-103. https://doi.org/10.1016/j.fct.2015.09.019
    Li, C., Li, C., Yu, H., Cheng, Y., Xie, Y., Yao, W., Guo, Y., & Qian, H. (2021). Chemical food contaminants during food processing: sources and control. Critical Reviews in Food Science and Nutrition, 61(9), 1545-1555. https://doi.org/10.1080/10408398.2020.1762069
    Li, S., Zhang, J., Liu, C., Wang, Q., Yan, J., Hui, L., Jia, Q., Shan, H., Tao, L., & Zhang, M. (2021). The Role of Mitophagy in Regulating Cell Death. Oxid Med Cell Longev, 2021, 6617256. https://doi.org/10.1155/2021/6617256
    Liang, C., Gao, Y., He, Y., Han, Y., Manthari, R. K., Tikka, C., Chen, C., Wang, J., & Zhang, J. (2020). Fluoride induced mitochondrial impairment and PINK1-mediated mitophagy in Leydig cells of mice: In vivo and in vitro studies. Environ Pollut, 256, 113438. https://doi.org/10.1016/j.envpol.2019.113438
    Liu, J., Rone, M. B., & Papadopoulos, V. (2006). Protein-Protein Interactions Mediate Mitochondrial Cholesterol Transport and Steroid Biosynthesis. Journal of Biological Chemistry, 281(50), 38879-38893. https://doi.org/10.1074/jbc.M608820200
    Liu, J., Yang, C., Zhang, W., Su, H., Liu, Z., Pan, Q., & Liu, H. (2018). Disturbance of mitochondrial dynamics and mitophagy in sepsis induced acute kidney injury. Life Sciences, 235. https://doi.org/10.1016/j.lfs.2019.116828
    Liu, M., Gao, B., Qin, F., Wu, P., Shi, H., Luo, W., Ma, A., Jiang, Y., Xu, X., & Yu, L. (2012). Acute oral toxicity of 3-MCPD mono- and di-palmitic esters in Swiss mice and their cytotoxicity in NRK-52E rat kidney cells. Food and Chemical Toxicology, 50(10), 3785-3791. https://doi.org/10.1016/j.fct.2012.07.038
    Liu, M., Huang, G., Wang, T., Sun, X., & Yu, L. (2016). 3-MCPD 1-Palmitate Induced Tubular Cell Apoptosis In Vivo via JNK/p53 Pathways. Toxicological Sciences, 151(1), 181-192. https://doi.org/10.1093/toxsci/kfw033
    Liu, M., Wang, B., Cui, Y., Xiao, B., Liu, P., Gao, J., Song, M., Shao, B., & Li, Y. (2022). PINK1/Parkin-mediated mitophagy is activated to protect against testicular damage caused by aluminum. J Inorg Biochem, 232, 111840. https://doi.org/10.1016/j.jinorgbio.2022.111840
    Liu, P., Li, C., Huang, K., Liu, C., Chen, H., Lee, C., Chiou, Y., & Chen, R. (2021). 3-MCPD and glycidol coexposure induces systemic toxicity and synergistic nephrotoxicity via NLRP3 inflammasome activation, necroptosis, and autophagic cell death. J Hazard Mater, 405, 124241. https://doi.org/10.1016/j.jhazmat.2020.124241
    Liu, Y., Cao, X., He, C., Guo, X., Cai, H., Aierken, A., Hua, J., & Peng, S. (2022). Effects of Ferroptosis on Male Reproduction. Int J Mol Sci, 23(13). https://doi.org/10.3390/ijms23137139
    Lu, J., Lu, J., Bu, X., Li, Y., Ge, G., & Guan, S. (2021). Ginsenoside Rb1 alleviates liver injury induced by 3-chloro-1,2-propan ediol by stimulating autophagic flux. Journal of food science, 86(12), 5503-5515. https://doi.org/10.1111/1750-3841.15968
    Maglich, J. M., Kuhn, M., Chapin, R. E., & Pletcher, M. T. (2014). More than just hormones: H295R cells as predictors of reproductive toxicity. Reproductive Toxicology, 45, 77-86. https://doi.org/https://doi.org/10.1016/j.reprotox.2013.12.009
    Matsuda, N., Sato, S., Shiba, K., Okatsu, K., Saisho, K., Gautier, C., Sou, Y., Saiki, S., Kawajiri, S., Sato , F., Kimura, M., Komatsu, M., Hattori, N., & Tanaka, K. (2010). PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. Journal of Cell Biology, 189(2), 211-221. https://doi.org/10.1083/jcb.200910140
    Mizushima, N., Yoshimori, T., & Ohsumi, Y. (2011). The role of Atg proteins in autophagosome formation. Annual Review of Cell and Developmental Biology, 27, 107-132. https://doi.org/10.1146/annurev-cellbio-092910-154005
    Namba, T., Takabatake, Y., Kimura, T., Takahashi, A., Yamamoto, T., Matsuda, J., Kitamura, H., Niimura, F., Matsusaka, T., Iwatani, H., Matsui, I., Kaimori, J., Kioka, H., Isaka, Y., & Rakugi, H. (2014). Autophagic clearance of mitochondria in the kidney copes with metabolic acidosis. American Society of Nephrology, 25(10), 2254-2266. https://doi.org/10.1681/ASN.2013090986
    OECD. (2011). Test No. 456: H295R Steroidogenesis Assay. https://doi.org/10.1787/9789264122642-en
    OECD. (2012). Test No. 229: Fish Short Term Reproduction Assay. https://doi.org/10.1787/9789264185265-en
    OECD. (2018). Revised Guidance Document 150 on Standardised Test Guidelines for Evaluating Chemicals for Endocrine Disruption. https://doi.org/10.1787/9789264304741-en
    OECD. (2020). Test No. 458: Stably Transfected Human Androgen Receptor Transcriptional Activation Assay for Detection of Androgenic Agonist and Antagonist Activity of Chemicals. https://doi.org/10.1787/9789264264366-en
    Onami, S., Cho, Y., Toyoda, T., Akagi, J., Fujiwara, S., Ochiai, R., Tsujino, K., Nishikawa, A., & Ogawa, K. (2015). Orally administered glycidol and its fatty acid esters as well as 3-MCPD fatty acid esters are metabolized to 3-MCPD in the F344 rat. Regulatory Toxicology and Pharmacology, 73(3), 726-731. https://doi.org/10.1016/j.yrtph.2015.10.020
    Onishi, M., Yamano, K., Sato, M., Matsuda, N., & Okamoto, K. (2021). Molecular mechanisms and physiological functions of mitophagy. EMBO J, 40(3), e104705. https://doi.org/10.15252/embj.2020104705
    Osellame, L. D., Blacker, T. S., & Duchen, M. R. (2012). Cellular and molecular mechanisms of mitochondrial function. Best Pract Res Clin Endocrinol Metab, 26(6), 711-723. https://doi.org/10.1016/j.beem.2012.05.003
    Park, C., Song, H., Choi, J., Sim, S., Kojima, H., Park, J., Iida, M., & Lee, Y. (2020). The mixture effects of bisphenol derivatives on estrogen receptor and androgen receptor. Environmental Pollution, 260, 114036. https://doi.org/j.envpol.2020.114036
    Park, J., Park, C., Gye, M. C., & Lee, Y. (2019). Assessment of endocrine-disrupting activities of alternative chemicals for bis(2-ethylhexyl)phthalate. Environmental Research, 172, 10-17. https://doi.org/j.envres.2019.02.001
    Park, M.-A., Hwang, K.-A., & Choi, K.-C. (2011). Diverse animal models to examine potential role(s) and mechanism of endocrine disrupting chemicals on the tumor progression and prevention: Do they have tumorigenic or anti-tumorigenic property? Laboratory Animal Research, 27, 265-273. https://doi.org/10.5625/lar.2011.27.4.265
    Pelekanou, V., Notas, G., Stathopoulos, E. N., Castanas, E., & Kampa, M. (2013). Androgen receptors in early and castration resistant prostate cancer: friend or foe? Hormones (Athens), 12(2), 224-235. https://doi.org/10.14310/horm.2002.1406
    Peng, X., Gan, J., Wang, Q., Shi, Z., & Xia, X. (2016). 3-Monochloro-1,2-propanediol (3-MCPD) induces apoptosis via mitochondrial oxidative phosphorylation system impairment and the caspase cascade pathway. Toxicology, 372, 1-11. https://doi.org/10.1016/j.tox.2016.09.017
    Reddam, A., McLarnan, S., & Kupsco, A. (2022). Environmental Chemical Exposures and Mitochondrial Dysfunction: a Review of Recent Literature. Curr Environ Health Rep, 9(4), 631-649. https://doi.org/10.1007/s40572-022-00371-7
    Renata, J., Magdalena, K., Agnieszka, G., Justyna, G., & Jacek, N. (2016). 3-MCPD: A Worldwide Problem of Food Chemistry. Critical Reviews in Food Science and Nutrition, 56(14), 2268-2277. https://doi.org/10.1080/10408398.2013.829414
    Runwal, G., Stamatakou, E., Siddiqi, F. H., Puri, C., Zhu, Y., & Rubinsztein, D. C. (2019). LC3-positive structures are prominent in autophagy-deficient cells. Scientific Reports, 9(1), 10147. https://doi.org/10.1038/s41598-019-46657-z
    SenthilKumar, G., Skiba, J. H., & Kimple, R. J. (2019). High-throughput quantitative detection of basal autophagy and autophagic flux using image cytometry. BioTechniques, 67(2), 70-73. https://doi.org/10.2144/btn-2019-0044
    Sevim, Ç., Özkaraca, M., Kara, M., Ulaş, N., Mendil, A. S., Margina, D., & Tsatsakis, A. (2021). Apoptosis is induced by sub-acute exposure to 3-MCPD and glycidol on Wistar Albino rat brain cells. Environ Toxicol Pharmacol, 87, 103735. https://doi.org/10.1016/j.etap.2021.103735
    Shanle, E. K., & Xu, W. (2011). Endocrine disrupting chemicals targeting estrogen receptor signaling: identification and mechanisms of action. Chem Res Toxicol, 24(1), 6-19. https://doi.org/10.1021/tx100231n
    Shi, J., Fung, G., Deng, H., Zhang, J., Fiesel, F., Springer, W., Li, X., & Luo, H. (2015). NBR1 is dispensable for PARK2-mediated mitophagy regardless of the presence or absence of SQSTM1. Cell Death and Disease, 6(10), e1943. https://doi.org/10.1038/cddis.2015.278
    Shimamura, Y., Inagaki, R., Oike, M., Dong, B., Gong, W., & Masuda, S. (2021). Glycidol Fatty Acid Ester and 3-Monochloropropane-1,2-Diol Fatty Acid Ester in Commercially Prepared Foods. Foods, 10(12), 2905. https://www.mdpi.com/2304-8158/10/12/2905
    Singh, V. K., Pal, R., Srivastava, P., Misra, G., Shukla, Y., & Sharma, P. K. (2021). Exposure of androgen mimicking environmental chemicals enhances proliferation of prostate cancer (LNCaP) cells by inducing AR expression and epigenetic modifications. Environmental Pollution, 272, 116397. https://doi.org/10.1016/j.envpol.2020.116397
    Su, Y., Liu, Z., Xie, K., Ren, Y., Li, C., & Chen, W. (2022). Ferroptosis: A Novel Type of Cell Death in Male Reproduction. Genes (Basel), 14(1). https://doi.org/10.3390/genes14010043
    Sun, J., Bai, S., Bai, W., Zou, F., Zhang, L., Su, Z., Zhang, Q., Ou, S., & Huang, Y. (2013). Toxic Mechanisms of 3-Monochloropropane-1,2-Diol on Progesterone Production in R2C Rat Leydig Cells. Journal of agricultural and food chemistry, 61. https://doi.org/10.1021/jf400809r
    Sun, N., Yun, J., Liu, J., Malide, D., Liu, C., Rovira, I., Holmström, K., Fergusson, M., Yoo, Y., Combs, C., & Finkel, T. (2015). Measuring In Vivo Mitophagy. Molecular Cell, 60(4), 685-696. https://doi.org/10.1016/j.molcel.2015.10.009
    Tang, D., Chen, X., Kang, R., & Kroemer, G. (2021). Ferroptosis: molecular mechanisms and health implications. Cell Res, 31(2), 107-125. https://doi.org/10.1038/s41422-020-00441-1
    Tran, S., Fairlie, W. D., & Lee, E. F. (2021). BECLIN1: Protein Structure, Function and Regulation. Cells, 10(6), 1522. https://doi.org/10.3390/cells10061522
    Vieira, K., & Favareto, A. (2017). Experimental exposure to 3-monochloropropane-1,2-diol from the pre-puberty causes damage in sperm production and motility in adulthood. Acta Scientiarum - Biological Sciences, 39, 235-242. https://doi.org/10.4025/actascibiolsci.v39i2.31323
    Wada, J., & Nakatsuka, A. (2016). Mitochondrial Dynamics and Mitochondrial Dysfunction in Diabetes. Acta Med Okayama, 70(3), 151-158. https://doi.org/10.18926/amo/54413
    Wang, C., Ruan, T., Liu, J., He, B., Zhou, Q., & Jiang, G. (2015). Perfluorooctyl Iodide Stimulates Steroidogenesis in H295R Cells via a Cyclic Adenosine Monophosphate Signaling Pathway. Chemical Research in Toxicology, 28(5), 848-854. https://doi.org/10.1021/tx5004563
    Weißhaar, R., & Perz, R. (2010). Fatty acid esters of glycidol in refined fats and oils. European Joutnal of Lipid Science and Technology, 112, 158-165. https://doi.org/10.1002/ejlt.200900137
    Wu, J., Chen, J.-x., & He, J.-h. (2020). T-2 toxin-induced DRP-1-dependent mitophagy leads to the apoptosis of mice Leydig cells (TM3). Food and Chemical Toxicology, 136, 111082. https://doi.org/10.1016/j.fct.2019.111082
    Wu, Y., Wang, J., Zhao, T., Chen, J., Kang, L., Wei, Y., Han, L., Shen, L., Long, C., Wu, S., & Wei, G. (2022). Di-(2-ethylhexyl) phthalate exposure leads to ferroptosis via the HIF-1alpha/HO-1 signaling pathway in mouse testes. J Hazard Mater, 426, 127807. https://doi.org/10.1016/j.jhazmat.2021.127807
    Xia, X., Fan, X., Zhao, M., & Zhu, P. (2019). The Relationship between Ferroptosis and Tumors: A Novel Landscape for Therapeutic Approach. Curr Gene Ther, 19(2), 117-124. https://doi.org/10.2174/1566523219666190628152137
    Xing, H., Chen, S., Wang, X., Li, J., & Ren, F. (2022). 3-Monochloropropane-1,2-diol causes spermatogenesis failure in male rats via Sertoli cell dysfunction but not testosterone reduction. Toxicol Lett, 360, 1-10. https://doi.org/10.1016/j.toxlet.2022.01.006
    Yang, P., Zhang, Y., Li, Y., Granvogl, M., Gao, B., & Yu, L. L. (2021). Proteomic Analyses of 3-Monochloropropanediol 1-Monooleate and 1-Monostearate Induced Testicular Toxicity in a 90 Day Sprague-Dawley Rats’ Study. Journal of agricultural and food chemistry, 69(15), 4542-4549. https://doi.org/10.1021/acs.jafc.0c07242
    Yi, L., Shang, X.-J., Lv, L., Wang, Y., Zhang, J., Quan, C., Shi, Y., Liu, Y., & Zhang, L. (2022). Cadmium-induced apoptosis of Leydig cells is mediated by excessive mitochondrial fission and inhibition of mitophagy. Cell Death & Disease, 13(11), 928. https://doi.org/10.1038/s41419-022-05364-w
    Yi, X., Long, X., & Liu, C. (2023). Activating autophagy and ferroptosis of 3‑Chloropropane‑1,2‑diol induces injury of human umbilical vein endothelial cells via AMPK/mTOR/ULK1. Mol Med Rep, 27(3). https://doi.org/10.3892/mmr.2023.12963
    Yu, H., Caldwell, D. J., & Suri, R. P. (2019). In vitro estrogenic activity of representative endocrine disrupting chemicals mixtures at environmentally relevant concentrations. Chemosphere, 215, 396-403. https://doi.org/10.1016/j.chemosphere.2018.10.067
    Zelinkova, Z., Novotny, O., Schurek, J., Velisek, J., Hajslova, J., & Dolezal, M. (2008). Occurrence of 3-MCPD fatty acid esters in human breast milk. Food Addit Contam Part A Chem Anal Control Expo Risk Assess, 25(6), 669-676. https://doi.org/10.1080/02652030701799375
    Zhao, Y., Jiang, Q., Guo, L., Fan, D., Wang, M., & Zhao, Y. (2023). Apigenin and its octoic acid diester attenuated glycidol-induced autop hagic-dependent apoptosis via inhibiting the ERK/JNK/p38 signaling pat hways in human umbilical vein endothelial cells (HUVECs). Current research in food science, 6, 100447. https://doi.org/10.1016/j.crfs.2023.100447
    Zhong, Y., Jin, C., Han, J., Zhu, J., Liu, Q., Sun, D., Xia, X., & Peng, X. (2021). Inhibition of ER stress attenuates kidney injury and apoptosis induced by 3-MCPD via regulating mitochondrial fission/fusion and Ca(2+) homeostasis. Cell Biol Toxicol, 37(5), 795-809. https://doi.org/10.1007/s10565-021-09589-x
    Zhu, C.-l., Yao, R.-q., Li, L.-x., Li, P., Xie, J., Wang, J.-f., & Deng, X.-m. (2021). Mechanism of Mitophagy and Its Role in Sepsis Induced Organ Dysfunction: A Review [Review]. Frontiers in Cell and Developmental Biology, 9. https://doi.org/10.3389/fcell.2021.664896

    無法下載圖示 校內:2027-09-01公開
    校外:2027-09-01公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE