| 研究生: |
陳思寧 Chen, Ssu-Ning |
|---|---|
| 論文名稱: |
以替代毒理測試方法評估食品加工污染物包含3-單氯丙二醇及縮水甘油的內分泌干擾活性與生殖毒性 Evaluation of the endocrine-disrupting activities and reproductive toxicity induced by food processing contaminants including 3-MCPD and glycidol using alternative test methods |
| 指導教授: |
陳容甄
Chen, Rong-Jane |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 食品安全衛生暨風險管理研究所 Department of Food Safety / Hygiene and Risk Management |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | 單氯丙二醇 、縮水甘油 、內分泌干擾 、粒線體損傷 、生殖毒性 |
| 外文關鍵詞: | 3-MCPD, glycidol, endocrine disruption, mitochondria dysfunction, reproductive toxicity |
| 相關次數: | 點閱:105 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
2020/1322, C. R. E. (2020). Amending Regulation (EC) No 1881/2006 as regards maximum levels of 3-monochloropropanediol (3-MCPD), 3-MCPD fatty acid esters and glycidyl fatty acid esters in certain foods. Official Journal of the European Union, 310, 2-5.
衛生福利部食品藥物管理署. (2022). 預告增訂食用油脂中縮水甘油脂肪酸酯之限量標準. https://www.mohw.gov.tw/cp-5264-65832-1.html
衛生福利部食品藥物管理署. (2023). 單氯丙二醇 Q&A. https://www.fda.gov.tw/tc/siteListContent.aspx?sid=214&id=7577
Amir, S., Shah, S. T. A., Mamoulakis, C., Docea, A. O., Kalantzi, O.-I., Zachariou, A., Calina, D., Carvalho, F., Sofikitis, N., Makrigiannakis, A., & Tsatsakis, A. (2021). Endocrine Disruptors Acting on Estrogen and Androgen Pathways Cause Reproductive Disorders through Multiple Mechanisms: A Review. International Journal of Environmental Research and Public Health, 18(4), 1464. https://doi.org/10.3390/ijerph18041464
Appel, K. E., Abraham, K., Berger-Preiss, E., Hansen, T., Apel, E., Schuchardt, S., Vogt, C., Bakhiya, N., Creutzenberg, O., & Lampen, A. (2013). Relative oral bioavailability of glycidol from glycidyl fatty acid esters in rats. Arch Toxicol, 87(9), 1649-1659. https://doi.org/10.1007/s00204-013-1061-1
Arpit, S., Hannah, J., Pallas, Y., & William, B. (2019). Causal roles of mitochondrial dynamics in longevity and healthy aging. EMBO Reports 20, e48395. https://doi.org/10.15252/embr.201948395
Bailone, R. L., Fukushima, H. C. S., Ventura Fernandes, B. H., De Aguiar, L. K., Corrêa, T., Janke, H., Grejo Setti, P., Roça, R. D. O., & Borra, R. C. (2020). Zebrafish as an alternative animal model in human and animal vaccination research. Laboratory Animal Research, 36(1), 13. https://doi.org/10.1186/s42826-020-00042-4
Barocelli, E., Corradi, A., Mutti, A., & Petronini, P. (2011). Comparison between 3-MCPD and its palmitic esters in a 90-day toxicological study. EFSA. https://doi.org/10.2903/sp.efsa.2011.EN-187
Bassi, G., Sidhu, S. K., & Mishra, S. (2021). The Expanding Role of Mitochondria, Autophagy and Lipophagy in Steroidogenesis. Cells, 10(8). https://doi.org/10.3390/cells10081851
Bedoui, S., Herold, M. J., & Strasser, A. (2020). Emerging connectivity of programmed cell death pathways and its physiological implications. Nature Reviews Molecular Cell Biology, 21(11), 678-695. https://doi.org/10.1038/s41580-020-0270-8
Behr, A. C., Lichtenstein, D., Braeuning, A., Lampen, A., & Buhrke, T. (2018). Perfluoroalkylated substances (PFAS) affect neither estrogen and androgen receptor activity nor steroidogenesis in human cells in vitro. Toxicol Lett, 291, 51-60. https://doi.org/10.1016/j.toxlet.2018.03.029
Burden, N., Embry, M. R., Hutchinson, T. H., Lynn, S. G., Maynard, S. K., Mitchell, C. A., Pellizzato, F., Sewell, F., Thorpe, K. L., Weltje, L., & Wheeler, J. R. (2022). Investigating endocrine-disrupting properties of chemicals in fish and amphibians: Opportunities to apply the 3Rs. Integrated Environmental Assessment and Management, 18(2), 442-458. https://doi.org/https://doi.org/10.1002/ieam.4497
Burman, J., Pickles, S., Wang, C., Sekine, S., Vargas, J., Zhang, Z., Youle, A., Nezich, C., Wu, X., Hammer, J., & Youle, R. (2017). Mitochondrial fission facilitates the selective mitophagy of protein aggregates. Journal of Cell Biology, 216(10), 3231-3247. https://doi.org/10.1083/jcb.201612106
Chain, E. Panel o. C. i. t. F. (2016). Risks for human health related to the presence of 3- and 2-monochloropropanediol (MCPD), and their fatty acid esters, and glycidyl fatty acid esters in food. Efsa Journal, 14(5), e04426. https://doi.org/https://doi.org/10.2903/j.efsa.2016.4426
Chang, N. C. (2020). Autophagy and Stem Cells: Self-Eating for Self-Renewal [Review]. Frontiers in Cell and Developmental Biology, 8. https://doi.org/10.3389/fcell.2020.00138
Cheng, W., Liu, G., & Liu, X. (2016). Formation of Glycidyl Fatty Acid Esters Both in Real Edible Oils during Laboratory-Scale Refining and in Chemical Model during High Temperature Exposure. J Agric Food Chem, 64(29), 5919-5927. https://doi.org/10.1021/acs.jafc.6b01520
Cheng, W. W., Liu, G. Q., Wang, L. Q., & Liu, Z. S. (2017). Glycidyl Fatty Acid Esters in Refined Edible Oils: A Review on Formation, Occurrence, Analysis, and Elimination Methods. Compr Rev Food Sci Food Saf, 16(2), 263-281. https://doi.org/10.1111/1541-4337.12251
Collier, P., Cromie, D., & Davies, A. (1991). Mechanism of formation of chloropropanols present in protein hydrolysates. Journal of the American Oil Chemists' Society, 68, 785-790.
D'Arcy, M. (2019). Cell death: a review of the major forms of apoptosis, necrosis and autophagy Cell Biology International, 46(6), 582-592. https://doi.org/10.1002/cbin.11137
Dang, Z., Traas, T., & Vermeire, T. (2011). Evaluation of the fish short term reproduction assay for detecting endocrine disrupters. Chemosphere, 85(10), 1592-1603. https://doi.org/https://doi.org/10.1016/j.chemosphere.2011.08.006
Di Nisio, A., & Foresta, C. (2019). Water and soil pollution as determinant of water and food quality/contamination and its impact on male fertility. Reproductive Biology and Endocrinology, 17(1), 4. https://doi.org/10.1186/s12958-018-0449-4
Dikic, I., & Elazar, Z. (2018). Mechanism and medical implications of mammalian autophagy. Nature Reviews Molecular Cell Biology, 19(6), 349-364. https://doi.org/10.1038/s41580-018-0003-4
EFSA. (2016). Risks for human health related to the presence of 3- and 2-monochloropropanediol (MCPD), and their fatty acid esters, and glycidyl fatty acid esters in food. EFSA. https://doi.org/10.2903/j.efsa.2016.4426
EFSA. (2017). Update of the risk assessment on 3-monochloropropane diol and its fatty acid esters. EFSA. https://doi.org/10.2903/j.efsa.2018.5083
Fang, E., Hou, Y., Palikaras, K., Adriaanse, B., Kerr, J., Yang, B., Lautrup, S., Hasan-Olive, M., Caponio, D., Dan, X., Rocktäschel, P., Croteau, D., Akbari, M., Greig, N., Fladby, T., Nilsen, H., Cader, M., Mattson, M., Tavernarakis, N., & Bohr, V. (2019). Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease. Nature Neuroscience, 22, 401-412. https://doi.org/10.1038/s41593-018-0332-9
Flora, S. J. S., & Agrawal, S. (2017). Chapter 31 - Arsenic, Cadmium, and Lead. In R. C. Gupta (Ed.), Reproductive and Developmental Toxicology (Second Edition) (pp. 537-566). Academic Press. https://doi.org/10.1016/B978-0-12-804239-7.00031-7
Gao, B., Li, Y., Huang, G., & Yu, L. (2019). Fatty Acid Esters of 3-Monochloropropanediol: A Review. Annual Review of Food Science and Technology 10, 259-284. https://doi.org/10.1146/annurev-food-032818-121245
Gegg, M., Cooper, J., Chau, K., Rojo, M., Schapira, A., & Taanman, J. (2010). Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. Human Molecular Genetics, 19(24), 4861-4870. https://doi.org/10.1093/hmg/ddq419
Geisler, S., Holmström, K., Skujat, D., Fiesel, F., Rothfuss, O., Kahle, P., & Springer, W. (2010). PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nature Cell Biology, 12, 119-131. https://doi.org/10.1038/ncb2012
Giacomello, M., Pyakurel, A., Glytsou, C., & Scorrano, L. (2020). The cell biology of mitochondrial membrane dynamics. Nature Reviews Molecular Cell Biology, 21(4), 204-224. https://doi.org/10.1038/s41580-020-0210-7
Goh, K. M., Wong, Y. H., Tan, C. P., & Nyam, K. L. (2021). A summary of 2-, 3-MCPD esters and glycidyl ester occurrence during frying and baking processes. Curr Res Food Sci, 4, 460-469. https://doi.org/10.1016/j.crfs.2021.07.002
He, Q.-K., Li, Y.-P., Xu, Z.-R., Wei, W.-B., Qiao, F.-X., Sun, M.-X., Liu, Y.-C., Chen, Y.-Z., Wang, H.-L., Qi, Z.-Q., & Liu, Y. (2023). 3-MCPD exposure enhances ovarian fibrosis and reduces oocyte quality i n mice. Environmental Pollution, 316, 120662. https://doi.org/10.1016/j.envpol.2022.120662
IARC. (2013). Some chemicals present in industrial and consumer products, food and drinking-water. IARC Monogr Eval Carcinog Risks Hum, 101, 9-549.
International Programme on Chemical, S. (2001). Principles for evaluating health risks to reproduction associated with exposure to chemicals. In. Geneva: World Health Organization.
Ji, J., Zhu, P., Sun, C., Sun, J., An, L., Zhang, Y., & Sun, X. (2017). Pathway of 3-MCPD-induced apoptosis in human embryonic kidney cells. J Toxicol Sci, 42(1), 43-52. https://doi.org/10.2131/jts.42.43
Jin, S., & Youle, R. (2012). PINK1- and Parkin-mediated mitophagy at a glance. Journal of Cell Science, 125(Pt 4), 795-799. https://doi.org/10.1242/jcs.093849
Kane, L., Lazarou, M., Fogel, A., Li, Y., Yamano, K., Sarraf, S., Banerjee, S., & Youle, R. (2014). PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. Journal of Cell Biology, 205, 143-153. https://doi.org/10.1083/jcb.201402104
Kang, J. S., Choi, J.-S., & Park, J.-W. (2016). Transcriptional changes in steroidogenesis by perfluoroalkyl acids (PFOA and PFOS) regulate the synthesis of sex hormones in H295R cells. Chemosphere, 155, 436-443. https://doi.org/10.1016/j.chemosphere.2016.04.070
Ketelut-Carneiro, N., & Fitzgerald, K. A. (2022). Apoptosis, Pyroptosis, and Necroptosis-Oh My! The Many Ways a Cell Can Die. J Mol Biol, 434(4), 167378. https://doi.org/10.1016/j.jmb.2021.167378
Knapen, D., Angrish, M. M., Fortin, M. C., Katsiadaki, I., Leonard, M., Margiotta-Casaluci, L., Munn, S., O'Brien, J. M., Pollesch, N., Smith, L. C., Zhang, X., & Villeneuve, D. L. (2018). Adverse outcome pathway networks I: Development and applications. Environ Toxicol Chem, 37(6), 1723-1733. https://doi.org/10.1002/etc.4125
Kubli, D. A., & Gustafsson Å, B. (2012). Mitochondria and mitophagy: the yin and yang of cell death control. Circ Res, 111(9), 1208-1221. https://doi.org/10.1161/circresaha.112.265819
Kumar, A. V., Mills, J., & Lapierre, L. R. (2022). Selective Autophagy Receptor p62/SQSTM1, a Pivotal Player in Stress and Aging. Frontiers in Cell and Developmental Biology, 10. https://doi.org/10.3389/fcell.2022.793328
Kuzukiran, O., Simsek, I., Filazi, A., & Yurdakok-Dikmen, B. (2022). Chapter 41 - Perfluorooctane sulfonate and perfluorooctanoic acid. In R. C. Gupta (Ed.), Reproductive and Developmental Toxicology (pp. 815-831). Academic Press. https://doi.org/10.1016/B978-0-323-89773-0.00041-2
La Merrill, M. A., Vandenberg, L. N., Smith, M. T., Goodson, W., Browne, P., Patisaul, H. B., Guyton, K. Z., Kortenkamp, A., Cogliano, V. J., Woodruff, T. J., Rieswijk, L., Sone, H., Korach, K. S., Gore, A. C., Zeise, L., & Zoeller, R. T. (2020). Consensus on the key characteristics of endocrine-disrupting chemicals as a basis for hazard identification. Nat Rev Endocrinol, 16(1), 45-57. https://doi.org/10.1038/s41574-019-0273-8
Lai, S.-S. (2021). Study of the food contaminant 3-monochloro-1,2-propanediol-induced renal toxicity mechanism via toxic mitophagy. 臺灣博碩士論文加值系統. https://hdl.handle.net/11296/cnj4tv
Lee, B., & Khor, S. (2015). 3-Chloropropane-1,2-diol (3-MCPD) in Soy Sauce : A Review on the Formation, Reduction, and Detection of This Potential Carcinogen Comprehensive Reviews in Food Science and Food Safety 14(1), 48-66. https://doi.org/10.1111/1541-4337.12120
Lee, B., Park, S., Kim, Y., Han, J., Jeong, E., Moon, K., & Son, H. (2015). A 28-day oral gavage toxicity study of 3-monochloropropane-1,2-diol (3-MCPD) in CB6F1-non-Tg rasH2 mice. Food and Chemical Toxicology, 86, 95-103. https://doi.org/10.1016/j.fct.2015.09.019
Li, C., Li, C., Yu, H., Cheng, Y., Xie, Y., Yao, W., Guo, Y., & Qian, H. (2021). Chemical food contaminants during food processing: sources and control. Critical Reviews in Food Science and Nutrition, 61(9), 1545-1555. https://doi.org/10.1080/10408398.2020.1762069
Li, S., Zhang, J., Liu, C., Wang, Q., Yan, J., Hui, L., Jia, Q., Shan, H., Tao, L., & Zhang, M. (2021). The Role of Mitophagy in Regulating Cell Death. Oxid Med Cell Longev, 2021, 6617256. https://doi.org/10.1155/2021/6617256
Liang, C., Gao, Y., He, Y., Han, Y., Manthari, R. K., Tikka, C., Chen, C., Wang, J., & Zhang, J. (2020). Fluoride induced mitochondrial impairment and PINK1-mediated mitophagy in Leydig cells of mice: In vivo and in vitro studies. Environ Pollut, 256, 113438. https://doi.org/10.1016/j.envpol.2019.113438
Liu, J., Rone, M. B., & Papadopoulos, V. (2006). Protein-Protein Interactions Mediate Mitochondrial Cholesterol Transport and Steroid Biosynthesis. Journal of Biological Chemistry, 281(50), 38879-38893. https://doi.org/10.1074/jbc.M608820200
Liu, J., Yang, C., Zhang, W., Su, H., Liu, Z., Pan, Q., & Liu, H. (2018). Disturbance of mitochondrial dynamics and mitophagy in sepsis induced acute kidney injury. Life Sciences, 235. https://doi.org/10.1016/j.lfs.2019.116828
Liu, M., Gao, B., Qin, F., Wu, P., Shi, H., Luo, W., Ma, A., Jiang, Y., Xu, X., & Yu, L. (2012). Acute oral toxicity of 3-MCPD mono- and di-palmitic esters in Swiss mice and their cytotoxicity in NRK-52E rat kidney cells. Food and Chemical Toxicology, 50(10), 3785-3791. https://doi.org/10.1016/j.fct.2012.07.038
Liu, M., Huang, G., Wang, T., Sun, X., & Yu, L. (2016). 3-MCPD 1-Palmitate Induced Tubular Cell Apoptosis In Vivo via JNK/p53 Pathways. Toxicological Sciences, 151(1), 181-192. https://doi.org/10.1093/toxsci/kfw033
Liu, M., Wang, B., Cui, Y., Xiao, B., Liu, P., Gao, J., Song, M., Shao, B., & Li, Y. (2022). PINK1/Parkin-mediated mitophagy is activated to protect against testicular damage caused by aluminum. J Inorg Biochem, 232, 111840. https://doi.org/10.1016/j.jinorgbio.2022.111840
Liu, P., Li, C., Huang, K., Liu, C., Chen, H., Lee, C., Chiou, Y., & Chen, R. (2021). 3-MCPD and glycidol coexposure induces systemic toxicity and synergistic nephrotoxicity via NLRP3 inflammasome activation, necroptosis, and autophagic cell death. J Hazard Mater, 405, 124241. https://doi.org/10.1016/j.jhazmat.2020.124241
Liu, Y., Cao, X., He, C., Guo, X., Cai, H., Aierken, A., Hua, J., & Peng, S. (2022). Effects of Ferroptosis on Male Reproduction. Int J Mol Sci, 23(13). https://doi.org/10.3390/ijms23137139
Lu, J., Lu, J., Bu, X., Li, Y., Ge, G., & Guan, S. (2021). Ginsenoside Rb1 alleviates liver injury induced by 3-chloro-1,2-propan ediol by stimulating autophagic flux. Journal of food science, 86(12), 5503-5515. https://doi.org/10.1111/1750-3841.15968
Maglich, J. M., Kuhn, M., Chapin, R. E., & Pletcher, M. T. (2014). More than just hormones: H295R cells as predictors of reproductive toxicity. Reproductive Toxicology, 45, 77-86. https://doi.org/https://doi.org/10.1016/j.reprotox.2013.12.009
Matsuda, N., Sato, S., Shiba, K., Okatsu, K., Saisho, K., Gautier, C., Sou, Y., Saiki, S., Kawajiri, S., Sato , F., Kimura, M., Komatsu, M., Hattori, N., & Tanaka, K. (2010). PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. Journal of Cell Biology, 189(2), 211-221. https://doi.org/10.1083/jcb.200910140
Mizushima, N., Yoshimori, T., & Ohsumi, Y. (2011). The role of Atg proteins in autophagosome formation. Annual Review of Cell and Developmental Biology, 27, 107-132. https://doi.org/10.1146/annurev-cellbio-092910-154005
Namba, T., Takabatake, Y., Kimura, T., Takahashi, A., Yamamoto, T., Matsuda, J., Kitamura, H., Niimura, F., Matsusaka, T., Iwatani, H., Matsui, I., Kaimori, J., Kioka, H., Isaka, Y., & Rakugi, H. (2014). Autophagic clearance of mitochondria in the kidney copes with metabolic acidosis. American Society of Nephrology, 25(10), 2254-2266. https://doi.org/10.1681/ASN.2013090986
OECD. (2011). Test No. 456: H295R Steroidogenesis Assay. https://doi.org/10.1787/9789264122642-en
OECD. (2012). Test No. 229: Fish Short Term Reproduction Assay. https://doi.org/10.1787/9789264185265-en
OECD. (2018). Revised Guidance Document 150 on Standardised Test Guidelines for Evaluating Chemicals for Endocrine Disruption. https://doi.org/10.1787/9789264304741-en
OECD. (2020). Test No. 458: Stably Transfected Human Androgen Receptor Transcriptional Activation Assay for Detection of Androgenic Agonist and Antagonist Activity of Chemicals. https://doi.org/10.1787/9789264264366-en
Onami, S., Cho, Y., Toyoda, T., Akagi, J., Fujiwara, S., Ochiai, R., Tsujino, K., Nishikawa, A., & Ogawa, K. (2015). Orally administered glycidol and its fatty acid esters as well as 3-MCPD fatty acid esters are metabolized to 3-MCPD in the F344 rat. Regulatory Toxicology and Pharmacology, 73(3), 726-731. https://doi.org/10.1016/j.yrtph.2015.10.020
Onishi, M., Yamano, K., Sato, M., Matsuda, N., & Okamoto, K. (2021). Molecular mechanisms and physiological functions of mitophagy. EMBO J, 40(3), e104705. https://doi.org/10.15252/embj.2020104705
Osellame, L. D., Blacker, T. S., & Duchen, M. R. (2012). Cellular and molecular mechanisms of mitochondrial function. Best Pract Res Clin Endocrinol Metab, 26(6), 711-723. https://doi.org/10.1016/j.beem.2012.05.003
Park, C., Song, H., Choi, J., Sim, S., Kojima, H., Park, J., Iida, M., & Lee, Y. (2020). The mixture effects of bisphenol derivatives on estrogen receptor and androgen receptor. Environmental Pollution, 260, 114036. https://doi.org/j.envpol.2020.114036
Park, J., Park, C., Gye, M. C., & Lee, Y. (2019). Assessment of endocrine-disrupting activities of alternative chemicals for bis(2-ethylhexyl)phthalate. Environmental Research, 172, 10-17. https://doi.org/j.envres.2019.02.001
Park, M.-A., Hwang, K.-A., & Choi, K.-C. (2011). Diverse animal models to examine potential role(s) and mechanism of endocrine disrupting chemicals on the tumor progression and prevention: Do they have tumorigenic or anti-tumorigenic property? Laboratory Animal Research, 27, 265-273. https://doi.org/10.5625/lar.2011.27.4.265
Pelekanou, V., Notas, G., Stathopoulos, E. N., Castanas, E., & Kampa, M. (2013). Androgen receptors in early and castration resistant prostate cancer: friend or foe? Hormones (Athens), 12(2), 224-235. https://doi.org/10.14310/horm.2002.1406
Peng, X., Gan, J., Wang, Q., Shi, Z., & Xia, X. (2016). 3-Monochloro-1,2-propanediol (3-MCPD) induces apoptosis via mitochondrial oxidative phosphorylation system impairment and the caspase cascade pathway. Toxicology, 372, 1-11. https://doi.org/10.1016/j.tox.2016.09.017
Reddam, A., McLarnan, S., & Kupsco, A. (2022). Environmental Chemical Exposures and Mitochondrial Dysfunction: a Review of Recent Literature. Curr Environ Health Rep, 9(4), 631-649. https://doi.org/10.1007/s40572-022-00371-7
Renata, J., Magdalena, K., Agnieszka, G., Justyna, G., & Jacek, N. (2016). 3-MCPD: A Worldwide Problem of Food Chemistry. Critical Reviews in Food Science and Nutrition, 56(14), 2268-2277. https://doi.org/10.1080/10408398.2013.829414
Runwal, G., Stamatakou, E., Siddiqi, F. H., Puri, C., Zhu, Y., & Rubinsztein, D. C. (2019). LC3-positive structures are prominent in autophagy-deficient cells. Scientific Reports, 9(1), 10147. https://doi.org/10.1038/s41598-019-46657-z
SenthilKumar, G., Skiba, J. H., & Kimple, R. J. (2019). High-throughput quantitative detection of basal autophagy and autophagic flux using image cytometry. BioTechniques, 67(2), 70-73. https://doi.org/10.2144/btn-2019-0044
Sevim, Ç., Özkaraca, M., Kara, M., Ulaş, N., Mendil, A. S., Margina, D., & Tsatsakis, A. (2021). Apoptosis is induced by sub-acute exposure to 3-MCPD and glycidol on Wistar Albino rat brain cells. Environ Toxicol Pharmacol, 87, 103735. https://doi.org/10.1016/j.etap.2021.103735
Shanle, E. K., & Xu, W. (2011). Endocrine disrupting chemicals targeting estrogen receptor signaling: identification and mechanisms of action. Chem Res Toxicol, 24(1), 6-19. https://doi.org/10.1021/tx100231n
Shi, J., Fung, G., Deng, H., Zhang, J., Fiesel, F., Springer, W., Li, X., & Luo, H. (2015). NBR1 is dispensable for PARK2-mediated mitophagy regardless of the presence or absence of SQSTM1. Cell Death and Disease, 6(10), e1943. https://doi.org/10.1038/cddis.2015.278
Shimamura, Y., Inagaki, R., Oike, M., Dong, B., Gong, W., & Masuda, S. (2021). Glycidol Fatty Acid Ester and 3-Monochloropropane-1,2-Diol Fatty Acid Ester in Commercially Prepared Foods. Foods, 10(12), 2905. https://www.mdpi.com/2304-8158/10/12/2905
Singh, V. K., Pal, R., Srivastava, P., Misra, G., Shukla, Y., & Sharma, P. K. (2021). Exposure of androgen mimicking environmental chemicals enhances proliferation of prostate cancer (LNCaP) cells by inducing AR expression and epigenetic modifications. Environmental Pollution, 272, 116397. https://doi.org/10.1016/j.envpol.2020.116397
Su, Y., Liu, Z., Xie, K., Ren, Y., Li, C., & Chen, W. (2022). Ferroptosis: A Novel Type of Cell Death in Male Reproduction. Genes (Basel), 14(1). https://doi.org/10.3390/genes14010043
Sun, J., Bai, S., Bai, W., Zou, F., Zhang, L., Su, Z., Zhang, Q., Ou, S., & Huang, Y. (2013). Toxic Mechanisms of 3-Monochloropropane-1,2-Diol on Progesterone Production in R2C Rat Leydig Cells. Journal of agricultural and food chemistry, 61. https://doi.org/10.1021/jf400809r
Sun, N., Yun, J., Liu, J., Malide, D., Liu, C., Rovira, I., Holmström, K., Fergusson, M., Yoo, Y., Combs, C., & Finkel, T. (2015). Measuring In Vivo Mitophagy. Molecular Cell, 60(4), 685-696. https://doi.org/10.1016/j.molcel.2015.10.009
Tang, D., Chen, X., Kang, R., & Kroemer, G. (2021). Ferroptosis: molecular mechanisms and health implications. Cell Res, 31(2), 107-125. https://doi.org/10.1038/s41422-020-00441-1
Tran, S., Fairlie, W. D., & Lee, E. F. (2021). BECLIN1: Protein Structure, Function and Regulation. Cells, 10(6), 1522. https://doi.org/10.3390/cells10061522
Vieira, K., & Favareto, A. (2017). Experimental exposure to 3-monochloropropane-1,2-diol from the pre-puberty causes damage in sperm production and motility in adulthood. Acta Scientiarum - Biological Sciences, 39, 235-242. https://doi.org/10.4025/actascibiolsci.v39i2.31323
Wada, J., & Nakatsuka, A. (2016). Mitochondrial Dynamics and Mitochondrial Dysfunction in Diabetes. Acta Med Okayama, 70(3), 151-158. https://doi.org/10.18926/amo/54413
Wang, C., Ruan, T., Liu, J., He, B., Zhou, Q., & Jiang, G. (2015). Perfluorooctyl Iodide Stimulates Steroidogenesis in H295R Cells via a Cyclic Adenosine Monophosphate Signaling Pathway. Chemical Research in Toxicology, 28(5), 848-854. https://doi.org/10.1021/tx5004563
Weißhaar, R., & Perz, R. (2010). Fatty acid esters of glycidol in refined fats and oils. European Joutnal of Lipid Science and Technology, 112, 158-165. https://doi.org/10.1002/ejlt.200900137
Wu, J., Chen, J.-x., & He, J.-h. (2020). T-2 toxin-induced DRP-1-dependent mitophagy leads to the apoptosis of mice Leydig cells (TM3). Food and Chemical Toxicology, 136, 111082. https://doi.org/10.1016/j.fct.2019.111082
Wu, Y., Wang, J., Zhao, T., Chen, J., Kang, L., Wei, Y., Han, L., Shen, L., Long, C., Wu, S., & Wei, G. (2022). Di-(2-ethylhexyl) phthalate exposure leads to ferroptosis via the HIF-1alpha/HO-1 signaling pathway in mouse testes. J Hazard Mater, 426, 127807. https://doi.org/10.1016/j.jhazmat.2021.127807
Xia, X., Fan, X., Zhao, M., & Zhu, P. (2019). The Relationship between Ferroptosis and Tumors: A Novel Landscape for Therapeutic Approach. Curr Gene Ther, 19(2), 117-124. https://doi.org/10.2174/1566523219666190628152137
Xing, H., Chen, S., Wang, X., Li, J., & Ren, F. (2022). 3-Monochloropropane-1,2-diol causes spermatogenesis failure in male rats via Sertoli cell dysfunction but not testosterone reduction. Toxicol Lett, 360, 1-10. https://doi.org/10.1016/j.toxlet.2022.01.006
Yang, P., Zhang, Y., Li, Y., Granvogl, M., Gao, B., & Yu, L. L. (2021). Proteomic Analyses of 3-Monochloropropanediol 1-Monooleate and 1-Monostearate Induced Testicular Toxicity in a 90 Day Sprague-Dawley Rats’ Study. Journal of agricultural and food chemistry, 69(15), 4542-4549. https://doi.org/10.1021/acs.jafc.0c07242
Yi, L., Shang, X.-J., Lv, L., Wang, Y., Zhang, J., Quan, C., Shi, Y., Liu, Y., & Zhang, L. (2022). Cadmium-induced apoptosis of Leydig cells is mediated by excessive mitochondrial fission and inhibition of mitophagy. Cell Death & Disease, 13(11), 928. https://doi.org/10.1038/s41419-022-05364-w
Yi, X., Long, X., & Liu, C. (2023). Activating autophagy and ferroptosis of 3‑Chloropropane‑1,2‑diol induces injury of human umbilical vein endothelial cells via AMPK/mTOR/ULK1. Mol Med Rep, 27(3). https://doi.org/10.3892/mmr.2023.12963
Yu, H., Caldwell, D. J., & Suri, R. P. (2019). In vitro estrogenic activity of representative endocrine disrupting chemicals mixtures at environmentally relevant concentrations. Chemosphere, 215, 396-403. https://doi.org/10.1016/j.chemosphere.2018.10.067
Zelinkova, Z., Novotny, O., Schurek, J., Velisek, J., Hajslova, J., & Dolezal, M. (2008). Occurrence of 3-MCPD fatty acid esters in human breast milk. Food Addit Contam Part A Chem Anal Control Expo Risk Assess, 25(6), 669-676. https://doi.org/10.1080/02652030701799375
Zhao, Y., Jiang, Q., Guo, L., Fan, D., Wang, M., & Zhao, Y. (2023). Apigenin and its octoic acid diester attenuated glycidol-induced autop hagic-dependent apoptosis via inhibiting the ERK/JNK/p38 signaling pat hways in human umbilical vein endothelial cells (HUVECs). Current research in food science, 6, 100447. https://doi.org/10.1016/j.crfs.2023.100447
Zhong, Y., Jin, C., Han, J., Zhu, J., Liu, Q., Sun, D., Xia, X., & Peng, X. (2021). Inhibition of ER stress attenuates kidney injury and apoptosis induced by 3-MCPD via regulating mitochondrial fission/fusion and Ca(2+) homeostasis. Cell Biol Toxicol, 37(5), 795-809. https://doi.org/10.1007/s10565-021-09589-x
Zhu, C.-l., Yao, R.-q., Li, L.-x., Li, P., Xie, J., Wang, J.-f., & Deng, X.-m. (2021). Mechanism of Mitophagy and Its Role in Sepsis Induced Organ Dysfunction: A Review [Review]. Frontiers in Cell and Developmental Biology, 9. https://doi.org/10.3389/fcell.2021.664896
校內:2027-09-01公開