簡易檢索 / 詳目顯示

研究生: 林五祥
Lin, Wu-Shiang
論文名稱: 熱與溶質效應對於錫鉛合金方向性凝固之影響分析
Experimental Analysis of Heat and Solute Effects on the Directional Solidification of Sn-Pb alloys
指導教授: 趙隆山
Chaon, Long-Sun
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 151
中文關鍵詞: 方向性凝固、錫鉛合金、顯微結構、形態、初始濃度
外文關鍵詞: Directional Solidification, Sn-Pb Alloy, Microstructure, Morphology, Initial Concentration
相關次數: 點閱:99下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一般的鑄造過程不易控制凝固結構之形態,最多只能改變晶粒大小,而方向性凝固與單晶成長是屬於難度高之鑄造技術,需使用適當的鑄造機制,來控制凝固結構形態,其中以單晶之製程最為困難,方向性凝固則次之,不過方向性凝固是單晶製程的基礎。針對方向性凝固之研究,本文設計三種不同實驗模式來作探討,模式A是採用五種不同初始濃度,模式B與C是改變模式A之凝固機構的加熱方式與升降平台之下降速度。在實驗研究中,以錫鉛合金為測試材料,液態時完全融合,固體與液體具有溶解度差異,於偏析之作用使得凝固過程中最後有共晶結構之形成,使用光學顯微鏡觀察凝固顯微結構與利用熱偶線與溫測擷取系統量測鑄件軸向之溫度分布,探討本方向性凝固設備之溫度梯度變化、成長速率的熱傳環境及初始濃度之凝固控制參數與凝固顯微結構晶粒數、晶粒形態之間的相關性,由其分析結果,進一步掌握方向性凝固之控制機制。

    The morphology of solidification microstructure is difficult to control in a casting process, in which only the grain size can be easily changed. To perform advanced casting techniques such as directional solidification and the growth of single crystal, a proper casting mechanism is needed to control solidifying microstructure. Among these solidification processes, the growth of single crystal is the most difficult one and directional solidification is the second. The fabricating technique of single crystal is based on that of directional solidification. To obtain directional solidification, in this paper, three different experiment models were designed. Sn-Pb alloy is used as the testing material. Five different initial concentrations of lead (2.5, 5, 10, 20, 38 wt.% Pb) are used in Model A. Models B and C have different heating settings and going-down speeds of the descending platform from those of Model A. An optical microscope is utilized to observe the solidifying microstructures and thermal couples are used to measure the temperatures along the axial direction of the cylindrical casting. The relationship between the solidification parameters (temperature gradient, growth rate and initial concentration) and microstructures was investigated for these three models. From the analysis results, the controlled mechanism of directional solidification can be further grasped.

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 第一章 緒論 1 第二章 凝固理論模式 6 2-1 凝固過程 6 2-2 凝固模式與晶粒成長 7 2-2-1 成核階段 7 2-2-2 成長侵犯與晶粒形狀 8 2-2-2-1 平面式成長與非平面式成長 8 2-2-2-2 金屬之晶粒成長形狀與形態 10 2-3 方向性凝固之模式 11 2-4 實驗模式 12 第三章 實驗設備方法 14 3-1 實驗設備 14 3-1-1 熱電偶點焊機與氫氧焰焊接機 14 3-1-2 熔解爐 15 3-1-3 溫度擷取設備與量測方式 15 3-1-4 加熱及溫度控制設備 16 3-1-5 升降平台與冷激銅盒 17 3-2方向性凝固機構之實驗設計 17 3-2-1 實驗模式 Case A 19 3-2-2 實驗模式 Case B 20 3-2-3 實驗模式 Case C 20 3-3 觀察金相顯微組職之實驗 21 3-3-1 金相觀察之實驗設備 22 3-3-2 金相觀察之實驗步驟與方法 23 3-4 實驗數據整理與計算 25 第四章 結果與討論 27 4-1 鑄件的暫態溫度量測與搭配金相觀察 27 4-2 金相顯微組織觀察 29 4-2-1 橫切面之晶粒數分佈 30 4-2-2 縱切面之成長方向 31 4-3 一段加熱與二段控溫於成長速率圖與溫度梯度圖之分析觀察 34 4-4 鑄件各位置之離開加熱區時間與到達共晶時間之分析觀察 35 第五章 結論 38 參考文獻 41 附錄(A) 實驗流程 146 附錄(B) 巨觀金相之鑄件縱切面觀察 147 附錄(C) 鑄件試片取樣位置 148 附錄(D) 晶粒數取樣方式 149 附錄(E)金屬材料常見三種密集堆積結晶結構的原子排列方式 150

    [1] J.GERIN SYLVIA 原著;仲銘華譯,鑄造金屬工藝學,復漢出版 社,1985。
    [2] 楊哲人,“金屬材料的結構與特性”,科學月刊,0283期,1993。
    [3] William F. Smith原著;李春穎,許煙明,陳忠仁 譯,材料科學與工程,高立 圖書,1994。
    [4] Donald R.Askeland, translated原著;陳黃鈞譯,材料科學與工程上冊,暁園出版社,1989。
    [5] C. M. Klaren, J. D. Verhoeven, and R. Trivedi, “Primary Dendrite Spacing of Lead Dendrite in Pb-Sn and Pb-Au Alloys,” Metallurgical Transactions A29, pp.1853-1861 (1980).
    [6] D. G. McCartney, and J. D. Hunt, “Measurements of Cell and Primary Dendrite Arm Spacings in Directionally Solidified Aluminum Alloys,” Acta Metallurgica Vol. 29, pp.1851-1863 (1981).
    [7] Guolu Ding, Weidong Huang, Xin Lin, and Yaohe Zhou “Predication of Average Spacing for Constrained Cellular/Dendrite Growth,” Journal of Crystal Growth 177, pp.281-288 (1997).
    [8] C.T. Rios, and R.Caram, “Primary Dendrite Spacing as a Function of Directional Solidification Parameters in an Al-Si-Cu Alloy,” Journal of Crystal Growth 174, pp.65-69 (1997).
    [9] Ming Li, Takassuke Mori, and Hajime Iwasaki, “Effect of Solute Convection on The Primary Arm Spacings of Pb-Sn Binary Alloys During Upward Directional Solidification,” Materials Science and Engineering A265, pp.217-223 (1999).
    [10] E. Cadirli, and M. Gunduz, “The Directional Solidification of Pb-Sn Alloys,” Journal of Materials Science 35, pp.3837-3848 (2000).
    [11] E. Cadirli, and M. Gunduz, “ The Dependence of Lamellar Spacing on Growth Rate and Temperature Gradient in the lead-tin Eutectic Alloy”, Journal of Materials Processing Technology 97, pp.74-81 (2000).
    [12] JUN Hui, R. Tiwari, X. Wu, S.N. Tewari, and R. Trivedi, “Primary Dendrite Distribution and Disorder during Directional solidification
    of Pb-Sb Alloys”, Metallurgical and Materials Transactions V33A, pp.3499-3510 (2002).
    [13] Otavio Lima Rocha, Claudio Alves Siqueira, and Amauri Garcia, “Cellular/Dendritic Transition During Unsteady-State Unidirectional Solidification of Sn-Pb Alloys,” Materials Science and Engineering A347, pp.59-69 (2003).
    [14] Otavio Lima Rocha, Claudio Alves Siqueira, and Amauri Garcia, “Cellular Spacings in Unsteady-State Directionally Solidified Sn-Pb Alloys,” Materials Science and Engineering A361, pp.111-118 (2003).
    [15] Fernando sa, Otavio Lima Rocha, Claudio Alves Siqueira, and Amauri Garcia, “The Effect of Solidification Variables on Tertiary Dendrite Arm Spacing in Unsteady-State Directional Solidification of Sn-Pb and Al-Cu alloys,” Materials Science Engineering A373, pp.131-138 (2004).
    [16] W. Kurz, and D.J. Fisher, Fundamentals of Solidification, McGraw-Hill, Inc., New York, USA (1974).
    [17] 翁銘彥,”砷化鎵單晶成長分析”,成功大學工程科學研究所碩 士論文 (2000)。
    [18] 何廣福,“方向性凝固之研究”,成功大學工程科學研究所碩士論 文 (2005)。
    [19] 呂璞石,黃振賢,金屬材料,文京圖書,p.39 (1990)。
    [20] 林盈佐,”凝固顯微組織與模式分析”,成功大學工程科學研究所 碩士論文(1998)。
    [21] Reed-Hill, Abbaschian原著;劉偉隆,林淳杰,曾春風,陳文照 譯,物理冶金,全華科技圖書 (1995)。
    [22] Gunter, and Petzow, Metallogarphic Etching, Petzow, pp.137( 2001).
    [23] ”Standard Methods for Estimationg the Average Grain Size of metals“, Annual Books of ASTM Standards vol03, ASTM, USA, pp.120-156(1984).
    [24] W. J. Boettinger, S. R. Coriell, A. L. Greer, A. K. Karma, W. Kurz, M. Rappaz, and R. Trivedi, “Solidification Microstructure: Recent Developments,Future Directions”, Acta Metallurgica 48, pp43-70(2000).
    [25] 何堃森,”引擎渦輪段精密翼形之鑄造雨鍍層技術及製程/微結構模擬研究”,成功大學材料科學及工程學系博士論文,pp.145-147(2000)。
    [26] Avinoam Tomer, Structure of Metals Through Optical Microscopy,pp.12(1993).

    下載圖示 校內:2007-09-05公開
    校外:2008-09-05公開
    QR CODE