簡易檢索 / 詳目顯示

研究生: 薛仁碩
Xue, Ren-Shuo
論文名稱: 以三維逆向方法預測一方塊於空腔內之暫態自然對流熱傳特徵
Prediction of Transient Natural Convection Heat Transfer Characteristics in Cavity with a Block Using 3D Inverse Method
指導教授: 陳寒濤
Chen, Han-Taw
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 109
中文關鍵詞: 逆向計算流體力學封閉空腔自然對流暫態分析
外文關鍵詞: Inverse CFD, Closed cavity, Natural convection, Transient analysis
相關次數: 點閱:10下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文使用三維逆向計算流體力學配合最小平方法進行封閉空腔內具一被加熱物之暫態自然對流特徵研究,並選定適用於在不同時間點的流動模型,並提出修正之經驗公式,最後探討Ra數、Nu數、熱傳遞係數以及速度與時間的關係。結果顯示,在流場之Ra數小於10^6時,所有計算使用的流動模型,以層流的計算結果最為精準,在熱傳遞係數以及最大速度的預測也最為接近,當Ra數超過10^6後,流場開始進入過渡流,數值計算的結果變為Zero-eq.較為精準。此外,在熱傳遞係數的部分,因為熱羽流(Thermal Plume)的發展以及回流影響對流效應,在本文所獲得的結果為先上升後下降,後續持平與穩態之計算結果相符。在最大速度方面,則是持續上升,並隨著Ra數趨緩而趨緩,後續漸漸持平並與穩態之結果相符。因此本文建議在自然對流之暫態分析應考慮在不同的Ra數下使用不同的流動模型進行計算,並且在封閉空腔中需考慮熱羽流回流發展所影響的對流強度,進行經驗公式的修正以適配各種不同的狀況,並且在過渡流的時候可以使用層流與紊流的經驗公式進行內插修正。

    In this study, the three-dimensional inverse computational fluid dynamics(CFD) combined with the least square method(LSM) to investigate the transient natural convection characteristics in a cavity with a block. Appropriate flow model is determined for different time interval. The results indicate that Laminar flow model yields the most accurate prediction across all flow models when the Rayleigh number is below 10^6. As the Rayleigh number exceeds 10^6, the flow enters transitional rigime. The zero-equation provides higher accuracy in predicting the heat transfer coefficient and maximum velocity in flow field. Regarding the heat transfer coefficient, due to the development of thermal plumes and the influence of recirculation on convective effects, the heat transfer coefficient initially increases, then decreases, and eventually stabilizes—consistent with the steady states result. In contrast the maximum velocity continuously increases and gradually levels off as the Rayleigh number grows, eventually aligning with steady-state values. Therefore, this study recommends that inverse transient natural convection analyses account for varying flow models based on different Rayleigh number. Additionally, the development of thermal plume recirculation in closed cavities should be considered when evaluating convection strength. Modified empirical correlations should be applied to accommodate different flow regime, and the interpolation between laminar and turbulent correlations is advised during transitional flow conditions.

    摘要 I 誌謝 VII 目錄 VIII 表目錄 XI 圖目錄 XIII 符號說明 XIV 第一章 緒論 1 1-1 研究背景 1 1-2 文獻回顧 2 1-3 研究目的 4 1-4 本文架構 5 第二章 逆向法之理論與建構過程 7 2-1 逆向熱傳及方法簡介 7 2-2 基本假設 8 2-3 計算流體力學簡介 9 2-4 數值模擬方法 9 2-5 統御方程式 11 2-6 流動模型 12 2-6-1 層流模型 13 2-6-2 零方程式模型 13 2-6-3 STD k-ε模型 14 2-6-4 RNG k-ε模型 16 2-7 最小平方法 18 2-8 熱輻射模型 19 2-9 均方根誤差 20 第三章 實驗方法 21 3-1 實驗簡介 21 3-2 實驗設計 23 3-2-1 高絕熱空腔 24 3-2-2 被加熱物 25 3-2-3 加熱系統 25 3-2-4 溫度擷取系統 26 3-3 實驗步驟 27 第四章 數值模擬與分析 30 4-1 簡介 30 4-2 三維模型建立 31 4-3 網格 31 4-3-1 網格品質 32 4-3-2 網格獨立性分析 33 4-4 求解方法 39 4-5 邊界條件 40 4-6 初始條件設定 41 第五章 結果與討論 44 5-1 簡介 44 5-2 流動模型選擇 44 5-2-1 穩態流動模型選擇 46 5-2-2 暫態流動模型選擇 48 5-2-3 經驗公式修正 62 5-3 數值結果討論 63 5-3-1 各時段之流場和溫度場 63 5-3-2 Ra與時間的關係 77 5-3-3 Nu數與時間的關係 78 5-3-4 從熱板傳入空腔(Q_(hp_out))與時間的關係 80 5-3-5 熱傳遞係數與時間的關係 81 5-3-6 流場的最大速度(v_max)與時間的關係 84 第六章 結論與建議 87 6-1 結論 87 6-2 未來展望 88 第七章 參考文獻 89

    [1] R. Stevens and D. Lohse, "Sidewall effects in Rayleigh─Bénard convection," Journal of Fluid Mechanics, vol. 741, p. 1, 01/31 2014.
    [2] J. Abraham and E. Sparrow, "Three-Dimensional Laminar and Turbulent Natural Convection in a Continuously/discretely Wall-Heated Enclosure Containing a Thermal Load," Numerical Heat Transfer Part A-applications - NUMER HEAT TRANSFER PT A-APPL, vol. 44, pp. 105-125, 08/01 2003.
    [3] E. Sparrow and J. Abraham, "A Computational Analysis of the Radiative and Convective Processes that Take Place in Preheated and Non-Preheated Ovens," Heat Transfer Engineering - HEAT TRANSFER ENG, vol. 24, pp. 25-37, 09/01 2003.
    [4] P. Duda, "A general method for solving transient multidimensional inverse heat transfer problems," International Journal of Heat and Mass Transfer, vol. 93, pp. 665-673, 2016/02/01/ 2016.
    [5] U. Drori and G. Ziskind, "Induced ventilation of a one-story real-size building," Energy and Buildings, vol. 36, no. 9, pp. 881-890, 2004/09/01/ 2004.
    [6] F. Xu and S. C. Saha, "Transition to an unsteady flow induced by a fin on the sidewall of a differentially heated air-filled square cavity and heat transfer," International Journal of Heat and Mass Transfer, vol. 71, pp. 236-244, 2014/04/01/ 2014.
    [7] M. Mahafujur Rahaman, S. Bhowmick, B. Pada Ghosh, F. Xu, R. Nath Mondal, and S. C. Saha, "Transient natural convection flows and heat transfer in a thermally stratified air-filled trapezoidal cavity," Thermal Science and Engineering Progress, vol. 47, p. 102377, 2024/01/01/ 2024.
    [8] A. Dalal and M. K. and Das, "Natural Convection in a Rectangular Cavity Heated from Below and Uniformly Cooled from the Top and Both Sides," Numerical Heat Transfer, Part A: Applications, vol. 49, no. 3, pp. 301-322, 2006/02/01 2006.
    [9] I. Sezai and A. A. Mohamad, "Natural convection in a rectangular cavity heated from below and cooled from top as well as the sides," Physics of Fluids, vol. 12, no. 2, pp. 432-443, 2000.
    [10] A. K. A. Shati, S. G. Blakey, and S. B. M. Beck, "An empirical solution to turbulent natural convection and radiation heat transfer in square and rectangular enclosures," Applied Thermal Engineering, vol. 51, no. 1, pp. 364-370, 2013/03/01/ 2013.
    [11] R. H. Hernández, "Natural convection in thermal plumes emerging from a single heat source," International Journal of Thermal Sciences, vol. 98, pp. 81-89, 2015/12/01/ 2015.
    [12] H.-T. Chen, H. Ming-Hsun, H. Yin-Chuan, and K.-H. and Chang, "Experimental and numerical study of inverse natural convection-conduction heat transfer in a cavity with a fin," Numerical Heat Transfer, Part A: Applications, vol. 84, no. 6, pp. 641-658, 2023/09/17 2023.
    [13] H.-T. Chen, S.-C. Chang, M.-H. Hsu, and C.-H. You, "Experimental and numerical study of innovative plate heat exchanger design in simplified hot box of SOFC," International Journal of Heat and Mass Transfer, vol. 181, p. 121880, 2021/12/01/ 2021.
    [14] L. Prandtl, "7. Bericht über Untersuchungen zur ausgebildeten Turbulenz," ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, vol. 5, no. 2, pp. 136-139, 1925/01/01 1925.
    [15] B. E. Launder and D. B. Spalding, "The numerical computation of turbulent flows," Computer Methods in Applied Mechanics and Engineering, vol. 3, no. 2, pp. 269-289, 1974/03/01/ 1974.
    [16] V. Yakhot, S. A. Orszag, S. Thangam, T. B. Gatski, and C. G. Speziale, "Development of turbulence models for shear flows by a double expansion technique," Physics of Fluids A: Fluid Dynamics, vol. 4, no. 7, pp. 1510-1520, 1992.
    [17] H.-T. Chen, X.-W. Zhuang, S. Rashidi, and W.-M. Yan, "Temperature control in warehouse with internal and external heat rejections," International Journal of Thermal Sciences, vol. 194, p. 108600, 2023/12/01/ 2023.
    [18] E. M. Sparrow and R. D. Cess, Radiation heat transfer / E.M. Sparrow, R.D. Cess (Thermal science series). Belmont, Calif: Brooks Pub. Co., 1966.
    [19] H.-T. Chen, M.-H. Hsu, K.-C. Yang, K.-H. Chang, and K.-C. Liu, "Study of inverse natural convection-conduction heat transfer for in-line tube heat exchanger in a hot box with experimental data," Journal of the Taiwan Institute of Chemical Engineers, vol. 141, p. 104600, 2022/12/01/ 2022.
    [20] J. P. Holman, Heat transfer / J.P. Holman, 8th ed. (Schaum's outline series). New York: McGraw-Hill, 1997.
    [21] R. J. Goldstein, E. M. Sparrow, and D. C. Jones, "Natural convection mass transfer adjacent to horizontal plates," International Journal of Heat and Mass Transfer, vol. 16, no. 5, pp. 1025-1035, 1973/05/01/ 1973.
    [22] V. Arpaci, A. Salamet, and S.-H. Kao, "Introduction to Heat Transfer," Applied Mechanics Reviews, vol. 55, p. 37, 04/03 2002.
    [23] Y. Wang, A. Sergent, D. Saury, D. Lemonnier, and P. Joubert, "Numerical study of an unsteady confined thermal plume under the influence of gas radiation," International Journal of Thermal Sciences, vol. 156, p. 106474, 2020/10/01/ 2020.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE