| 研究生: |
李宜潤 Li, Yi-Run |
|---|---|
| 論文名稱: |
以蛋白質觀點研究寒冷效應對水稻芽鞘之影響和稻米芽鞘胰蛋白酶抑制劑之模擬肽學特性研究 The Study of Rice Coleoptiles Gradients under Chilling Effect and the bioactivity of a 33-mers Cyclic Peptide Based on Its BBI Protease Inhibitor |
| 指導教授: |
黃福永
Huang, Fu-Yung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 低溫逆境 、二維膠體電泳分析 、質譜分析 、稻米芽鞘胰蛋白酶抑制劑 、模擬肽學 、酵素動力學 |
| 外文關鍵詞: | chilling effect, 2D gel electrophoresis, LC/MS, protein identification, cyclic peptide inhibitor, inhibition constants |
| 相關次數: | 點閱:98 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
第一部分主要是以蛋白質質譜的分析方法去討論寒冷效應會如何影響稻米芽鞘,並且觀察當低溫逆境施加在水稻上時會產生何種變化,並進一步探討其原因。
我們將前處理過後的稻米芽鞘水溶性蛋白質,以二維電泳分析技術搭配質譜儀的(LC/MS)分析,對稻米芽鞘的蛋白質作分析,觀察寒冷效應(chilling effect)會如何影響稻米芽鞘中的蛋白質,並探討其中產生差異的原因。
並從二維膠體電泳分析結果發現經歷過低溫環境的稻米芽鞘之蛋白質,在分子量15kDa有出現一個新的蛋白質點,我們將此變異的蛋白質點,利用質譜儀進一步的進行分析,並執行蛋白質鑑定。
第二部分我們主要是利用稻米芽鞘胰蛋白酶抑制劑(RCTI)的domain I,由於結構的因素,過去的研究指出環狀之蛋白酶抑制劑效果比起線性來說較為優異,故我們將domain I部分之序列改造成環狀的結構,並利用酵素動力學方法去測試其抑制活性以及分析為何種抑制作用類型,雖然抑制劑的效果沒有我們預計中如此理想,但實驗的結果還是指出模擬環狀之胰蛋白酶抑制劑的確具有抑制效果,而得到的Ki為12.07*10-7M。
關鍵字:低溫逆境、二維膠體電泳分析、質譜分析、稻米芽鞘胰蛋白酶抑制劑、模擬肽學、酵素動力學
Part I showed that the chilling effect on the protein of rice coleoptiles with proteomic method. The overall proteins extracted from the rice coleoptiles at the 4 oC were compared with those grown at room temperature through 2D gel electrophoresis. The proteins were analysed after purification. 2D gel electrophoresis was employed to investigate the differences between experimental and control ones. One additional protein spot were observed with molecular weight around 13kDa for the coleoptiles grown at 4 oC. Furthermore, the protein spots were identified with LC/MSMS, then identified showed an uncharacterized protein which acc number is A2Z6D8_ORYSI.
Part II described the use of domain I of rice coleoptile protease inhibitor from rice seedlings grown in hypoxia condition as scaffold, a cyclic 33-mer peptide with7-33 disulfide-cyclized peptides . The study of its activity and changes in detail of secondary structure upon complexation of inhibitors with trypsin enzyme were reported. The cyclic peptide inhibitor and disulfide-cyclic peptide inhibitor exhibited inhibition towards trypsin enzyme. The inhibition constants obtained for cyclic inhibitors were 12.3x 10-7M.
Key words: chilling effect、2D gel electrophoresis、LC/MS、protein identification、cyclic peptide inhibitor、inhibition constants
1. Bewley, J. D. and Black, M., In Physiology and Biochemistry of Seeds in Relation to Germination. Springer-Verlag, Berlin. (1982)
2.賴光隆,糧食作物,黎明文化事業股份有限公司出版,台北市 (1992)
3.尤旭達 (Shouichi Yoshida) ;張正賢譯著,稻作學精要,茂昌出版社發行(1988)
4. Takahashi,N., The relation of water absorption to germination of rice seed., Sci. Rep. Res. Inst., Tohoku Univ., D, 12:61-69 (1961)
5. Mayer, A.M. and Poljakoff-Mayber, A., In The germination of seeds. 4th ed., Pergamon Press, Oxford ; New York. (1989)
6. Chen, S. C. and Varner, J. E., Plant Physiology. 46, 108 (1970)
7. Marcus et al., Plant Physiology. 41, 1167 (1996)
8. Murata et al., Plant Physiology. 43, 1899 (1968)
9.高景輝,植物賀爾蒙生理,華香園出版社發行 (2006)
10.朱德民,植物與環境逆境,明文書局發行, pp.2-10. (1993)
11. Levitt, J., Responses of Plant Ecology, Springer-verlag, Berlin. (1980)
12. Bleecker A.B. Schyette J.L. and Kende H., Anatomical analysis of growth and developmental patterens in the internode of deep water rice. Planta, 169, 490-497. (1986)
13.朱德民,植物與環境逆境,明文書局發行,1993 (1993)
14.陳益明、林秋榮,植物的熱休克反應,科學發展月刊,13:1053-1071. (1984)
15.陳益明、林秋榮,植物熱休克蛋白質的生理功能,行政院國家科學委員會專題研究計劃成果報告 (1989)
16. Tissieres A, Mitchell HK, Tracy UM Protein synthesis in salivary glands of Drosophila melanogaster relation to chromosome puffs. J Mol Biol 84:389-398 (1974)
17. Chang P-FL, Lin CY, The discovery of the heat shock response in plants. In: Discoveries in Plant Biology Vol. 3, SD Kung and SF Yang eds. World Scientific Co Pte Ltd, Singapore. pp. 347-370 (2000)
18. Welch WJ, How cells respond to stress, Scientific Anmerican, 268:34-41 (1993)
19. Linquist S, Craig EA, The heat-shock proteins, Annu Rev Genet, 22:631-677 (1988)
20. Vierling E, The roles of heat shock proteins in plants, Annu Rev Plant Pyhsiol Plant Mol Biol, 42:579-620 (1991)
21. Maresca, B., and Lindquis, S., In Heat shock. Springer-Verlag, Berlin; New York. (1991)
22. Kiang J.G., and Tsokos G.C., Heat shock protein 70kDa: molecular biology, biochemistry, and physiology. Pharmacol. Ther, 80:183-201 (1998)
23. Ellis R.J., the general concept of molecular chaperones, Phil. Trans. R. Soc. Lond. B, 993:257-261 (1993)
24. Georgopoulos C., and Welch W. J., Role of the major heat shock protein, Annu. Rev. Cell Biol., 3:601-634 (1993)
25. Yang X. D., and Feige U., Heat shock proteins in autoimmune disease. From causative antigen to specific therapy, Experientia, 48:650-656 (1992)
26. Salisbury, F. B. and Ross, C. W., In Plant physiology. 4th ed., Wadsworth Pub. Co., Belmont, Calif. (1992)
27.邱人璋,稻作病害,中國農村復興聯合委員會出版 (1971)
28. Wilkinsons, R. E., In Plant-environment interactions. M. Dekker , New York . (1994)
29. Alscher, R.G., Cumming, J.R., In Stress responses in plants:adaptation and acclimation mechanisms . Wiley-Liss, New York (1990)
30.朱德民,植物與環境逆境,明文書局發行,pp.94-102 (1993)
31. Wright, M. and E. W. Simon., J. Exp. Bot. 24:400-11 (1973)
32. Taylor, A. O. et al, Pl. Physiol. 49:798-802 (1972)
33.盧守耕,稻作學,正中書局出版 (1970)
34. Craig EA, Gambill BD, Nelson RJ, Heat shock proteins : Molecular chaperones of protein biogenesis. Micro Reviews, 57:402-414 (1993)
35. Gurley WB, Key JL, Transcriptional regulation of the heat-shock response : A plant perspective, Biochemistry, 30:1-12 (1991)
36. Hendrick JP, Hartl FU, Molecular chaperone function of heat shock proteins, Annu Rev Biochem, 62:349-384 (1993)
37. Parsell DA, Kowal AS, Singer MA, Linquist S, Protein disaggregation mediated by heat-shock protein HSP104. Nature, 372:475-478 (1995)
38.李門輝、李平篤,水稻種子發芽發育過程中醣代謝相關酵素活性之變化,中國農業化學會誌,31(2):265-273(1993)
39. Harris, E.L. V.and Angal,S., In Protein purification applications :a practical approach. IRL Press, New York. (1990)
40. Scopes, R. K., In Protein purification :principles and practice. 3rd ed., Springer-Verlag, New York (1994)
41.張正賢,稻作學精要,國立編譯館主編出版,台北市 (1988)
42. Granier, F., Electrophoresis., 9, 712 (1988)
43. Tsugita, A., Kamo, M., Kawakami, T., Ohki, Y., Electrophoresis., 17, 855 (1996)
44. Gonzalo J.Dpmingo, Robin J.Leatherbarrow, Neil Freeman, Shila Patel, Malcolm Weir, ‘’Synthesis of a mixture of cyclic peptides based on the Bowman-Birk reactive site loop to screen for serine protease inhibitor’’, Int.J.Peptide protein Res., 46:79-87 (1995)
45. Yili Li, Qichen Huang, Shiwei Zhang, Shenping Liu, Chengwu Chi, and Youqi Tang, ‘’Sudies on an Artficial Trypsin Inibitor:Chemical Synthesis, Refolding, and Crystallographic Analysis of Its complex with Trypsin’’, J.Biochem., 116:18-25 (1994)
46. Misao Tashiro, Kimikazu Hashino, Masake Shiozaki, Fumio Ibuki, and Zensuke Maki, ‘’The complete amino acid sequence of rice bran trypsin inhibitor’’, J. Biochem., 102:297-306 (1987)
47. Jong-Min Beck, Jae-Cheon Song, Yang Do Choi, and Su-Il Kim, Nucleotide sequence homology of cDNAs encoding soybean Bowman-Birk type proteinase inhibitor and its isoinibitors, Biosci. Biotech. Biochem, 58(5):843-846 (1994)
48. Rosemarie W. Hammond, Donald E . Foard, and Brain A.Larkings, ‘’Molecular-Birk protease inhibitor in soyean’’, The journal of Biological Chemistry, 259(15):9883-9890 (1984)
49. Wen-Chi Hou, Hsien Jung and Yaw-Huei Lin, ‘’Dioscorins from different Dioscoea species all exibit both carbonic anhydrase and trypsin inhibitor activities’’, Bot. Bull. Acad. Sin., 41:191-196 (2000)
50. Randeep Rakwal, Ganesh Kumar Agrawal, Nam-Soo Jwa, ‘’Characterization of rice(Oryza sativa L)Bowman-Birk proteinase inhibitor:tightly light regulated induction inresponse to cut, jasmonic acid, ethylene and protein phosphatase 2A inhibitor‘’, Gene, 263:189-198 (2001)
51. Yasuko Kato and Tsukasa Mastuda, ‘’Glycation of Proteinous Inhibitors:Loss in Trypsin Inhibitory Activity by the Blocking of Arginine and Lysine Residues at Their Reactive Sites’’,J. Agric. FoodChem., 45:3826-3831 (1997)
52. Shoji Odani, Takehiko Koide, and Teruo Ono, ‘’heat germ trypsin inhibitors isolation and structural characterization of single-heated and double-headed inhibitors of the Bowman-Birk type’’, J.Biochem. 100:975-983 (1986)
53. Ping Chen, John Rose, Robert Love, Chin H. Wei, and Bi-Cheng Wang, ‘’active site of an anticarcinogenic Bowman-Birk Proteinase inhibitor are similar to other trypsin inhibitors’’, The Journal of Biological Chemistry, 267(3):1990-1994 (1992)
54. I. P. Gladysheva, T. S. Zamolodchikova, E. A. Sokolova, and N. I.Larionova, “Interaction between Duodenase, a Proteinase with Dual Specificity, and Soybean Inhibitors of Bowman-Birk and Kunitz Type”, Biochemistry (Moscow), 64(11):1244-1249 (1999)
55. Gonzalo J. Domingo, Robin J. Leatherbarrow, Neil Freeman, Shila Patel, Malcolm Weir, “Synthesis of a mixture of cyclic peptides based on the Bowman-Birk reactive site loop to screen for serine protease inhibitors”, Int. J. Peptide protein Res., 46:79-87 (1995)
56. John E. Mole and H. Robert Horton, “Kinetics of Papain-Catalyzed Hydrolysis ofα-N-Benzoyl-L-arginine-p- troanilide”, Biochemistry, 12(5):816-822 (1973)
57. Misao Tashiro, kimikazu Hashino, Masako ShiozaKi, Fumio Ibuki,
and Zensuke Maki, “The complete amino acid sequence of rice bran trypsin inhibitor”, J. Biochem., 102:297-306 (1987)
58. John Wiley & Sons Ltd, Interpretation of Infrared Spectra, A PracticalApproach, pp 10815–10837 (2000)
59. Iwai H., Pluckthun A., Circular beta-lactamase: stability enhancement by cyclizing the backbone. FEBS Lett; 459: 166–172. (1999)
60. Trabi M., Craik D. J., Circular proteins--no end in sight. Trends Biochem. Sci; 27: 132–138. (2002)
校內:2021-08-08公開