簡易檢索 / 詳目顯示

研究生: 陳韻如
Chen, Yun-Ju
論文名稱: p300磷酸化作用參與表皮生長因子誘導角質細胞中角質素十六基因表現之調控
The effect of p300 phosphorylation on EGF-induced keratin 16 gene expression in keratinocytes
指導教授: 張文昌
Chang, Wen-Chang
學位類別: 博士
Doctor
系所名稱: 醫學院 - 基礎醫學研究所
Institute of Basic Medical Sciences
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 81
中文關鍵詞: 表皮生長因子磷酸化角質素十六
外文關鍵詞: keratin 16, phosphorylation, p300, EGF, ERK1/2
相關次數: 點閱:116下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在ㄧ些與細胞過度增生有關的疾病(例如:牛皮癬)當中,角質細胞中的角質素十六(keratin 16,K16)會有過度表現的情形。而由本實驗室先前對keratin 16的研究可知,在角質細胞(HaCaT cells)中,表皮生長因子(EGF)會活化Ras,造成c-Jun及c-Fos生合成增加,而增加的AP1核蛋白一方面會結合到keratin 16啟動區上的AP1區域,另ㄧ方面也會透過與Sp1的交互作用而結合到keratin 16啟動區上的Sp1區域,於是透過這兩個response elements來增加keratin 16基因表現;此外,EGF也會藉由MEK-ERK訊息傳遞路徑來增加p300聚集到keratin 16啟動區上,共同增加keratin 16基因的表現。而此調控機制,至少有一部分是藉由增加c-Jun以及組織蛋白H3之乙醯化(acetylation)所致。根據之前文獻的報告,在in vitro,p300純化蛋白的C端 (a.a. 1572-2370) 會受到活化態的ERK2所磷酸化,進而增加其轉錄活性。然而,在in vivo,p300會受到何種蛋白激酶磷酸化,且磷酸化的確切位置,及其如何影響p300的功能,還不是很清楚。於是,本研究主要是要探討p300磷酸化參與EGF誘導角質細胞中keratin 16基因表現之調控。由實驗結果可知,在 in vivo及in vitro狀態下,EGF會隨著劑量及時間增加而增加p300的磷酸化,此機制是藉由活化ERK訊息傳導路徑而造成的。進一步藉由in vitro kinase assay及單點突變實驗,則在p300上定出六個磷酸化位點,分別是三個蘇氨酸及三個絲氨酸。接下來在in vivo狀態下,進一步去分析這六個位點是否確實會被磷酸化。由實驗結果得知,在 in vivo狀態下,三個絲氨酸(Ser2279、2315、2366)為EGF主要的標的,這三個位置磷酸化後會增加p300聚集到角質素16啟動區上,增強其和Sp1的交互作用,另一方面也會增加p300本身的酵素活性進而增加角質素16基的表現。因此,如果將這三個絲氨酸(Ser2279、2315、2366)同時突變掉,也會造成EGF所誘導的角質素16基因表現被抑制。綜合以上結果可知,ERK2訊息傳導路徑所媒介的p300絲氨酸(Ser2279、2315、2366)磷酸化在EGF所誘導的角質素16基因表現中扮演一個非常關鍵的角色,而這也是第一篇研究指出在in vivo狀態下,p300在哪些確切位點被ERK2訊息傳導路徑磷酸化。

    Overexpression of keratin 16 in keratinocytes has been found to be associated with hyperproliferative skin diseases such as psoriasis. In our previous studies on gene regulation of keratin 16, we have reported that transcriptional coactivator p300 interacts with Sp1 and AP1 proteins, and is involved in the regulation of epidermal growth factor (EGF)-induced keratin 16 gene expression in HaCaT cells at least in part through acetylation of c-Jun and histone H3. The recruitment of p300 to keratin 16 promoter by EGF is mediated by ERK signaling pathway. Although one study shows that activated ERK2 can phosphorylate p300 (a.a. 1572-2370) in vitro and increase its transcriptional activity, however, it remains to prove that ERK can phosphorylate p300 in vivo and to identify the exact phosphorylation sites. More importantly, the functional links between the specific phosphorylation events and the downstream gene regulation also remain to be explored. Therefore, the specific aim is to study the role of p300 phosphorylation in the regulation of EGF-induced keratin 16 gene expression in keratinocytes. Here, our data showed that EGF dramatically induced time- and dose-dependent phosphorylation of p300, both in vitro and in vivo, through the activation of ERK2. Six ERK2 phosphorylation sites on p300, including three threonine and three serine residues, were first identified in vitro. The data from in vivo phosphorylation assay further indicated that Ser2279, Ser2315, and Ser2366 on the C-terminus of p300 were the major phosphorylated targets in response to EGF. Furthermore, these serine phosphorylations increased p300 HAT activity and interaction with Sp1, thereby enhancing p300 recruitment to the keratin 16 promoter. Substitution of these three serine residues with alanine blocked EGF-induced keratin 16 gene expression. Taken together, our results not only first reported the specific p300 phosphorylation sites by ERK2 in vivo but also explored the critical roles of these phosphorylations in regulating keratin 16 expression in response to EGF.

    Abstract in Chinese…………………………………………………….........I Abstract………………………………………………………………...........II Acknowledgement……………………………………………........ III Index…………………………………………………………………….VIII Abbreviations………………………………………………………………X Introduction I. The association of keratins expression in the hyper-proliferation of keratinocytes ....................................................................................... 1 II. Regulation of keratin 16 gene expression ............................................... 2 III. Signaling regulation of Extracellular signal-regulated kinases (ERKs) . 3 IV. Roles of p300/CBP in the regulation of gene expression ....................... 5 V. Regulation of p300/CBP activity ............................................................ 6 VI. Specific aims. . ........................................................................................ 8 Materials and Methods I. Materials ................................................................................................ ..9 II. Methods 1. Cell Culture and EGF Treatment .......................................................... 15 2. Immunoprecipitation (IP) Assay ........................................................... 15 3. In Vitro Kinase Assay ............................................................................ 16 4. In Vitro Acetylation Assay and Non-radioactive Histone Acetyltransferase Activity Assay .......................................................... 16 5. Transfection with Arrest-In and Reporter Gene Assay ........................ 17 V 6. DNA Affinity Precipitation Assay (DAPA) ......................................... 18 7. Chromatin Immunoprecipitation (ChIP) Assay .................................... 18 8. Construction and Purification of GST-p300 Fusion Proteins ............... 19 9. GST Pull-down Assay ........................................................................... 20 10. Reverse Transcription-PCR (RT-PCR) ................................................. 20 Results I. ERK2-dependent phosphorylation of p300 in response to EGF 1. EGF induced interaction between ERK2 and p300 .............................. 21 2. Direct phosphorylation of p300 by ERK2 in vitro ............................... 21 3. EGF induced phosphorylation of p300 through ERK pathway…. ....... 22 II. Six phosphorylation sites of p300 by ERK2 were identified in vitro 1. Construction and bacterial expression of various GST-fused p300 fragments in vitro ......................................................................... 23 2. Six potential phosphorylation sites of p300 by ERK2 were identified in vitro ................................................................................................... 24 III. Confirmation of ERK2 phosphorylation sites of p300 in response to EGF treatment in vivo 1. ERK2-dependent C-terminal serine phosphorylations of p300 were major targets by EGF in vivo ........................................................ 25 2. C-terminal serine residues on p300 were individually phosphorylated upon EGF treatment .................................................... 26 IV. C-terminal serine phosphorylations enhanced intrinsic HAT activity of p300 in vitro 1. ERK2-dependent C-terminal serine phosphorylations of p300 enhanced p300 HAT activity examined by Western blot analysis ........ 27 VI 2. ERK2-dependent C-terminal serine phosphorylations of p300 enhanced its HAT activity examined by ELISA assay ......................... 28 V. Effects of C-terminal serine phosphorylations on the interactions of p300 with transcription factors 1. The interaction between p300 and Sp1 was enhanced by EGF ............ 29 2. ERK2-dependent C-terminal serine phosphorylations of p300 only increased its interaction with Sp1 ................................................. 29 VI. C-terminal serine phosphorylations increased the recruitment of p300 to the keratin 16 promoter. 1. C-terminal serine phosphorylation of p300 was critical for EGF-induced p300 recruitment to keratin 16 promoter examined by DAPA assay ........................................................................................... 30 2. C-terminal serine phosphorylation of p300 was critical for its recruitment to the keratin 16 promoter by ChIP assay ......................... 31 VII. The critical roles of ERK2 activation-dependent p300 phosphorylations in EGF-induced transcriptional activity of keratin 16. 1. C-terminal serine phosphorylations of p300 were important for the regulation of EGF-induced transcriptional activity of keratin 16 ... 32 2. C-terminal serine phosphorylation of p300 was critical for the regulation of EGF-induced mRNA expression of endogenous keratin 16 .......................................................................... 33 Discussion 1. Regulation of EGF-induced keratin 16 gene expression by ERK2-mediated p300 phosphorylations .......................................... 35 VII 2. The regulations of p300 phosphorylation by ERK signaling ............... 36 3. ERK2-mediated C-terminal phosphorylation of p300 increased its interaction with Sp1 ......................................................................... 38 4. ERK2-mediated C-terminal phosphorylation of p300 might be a general mechanism for gene regulation ................................................ 39 Conclusion ...................................................................................................... 43 References ...................................................................................................... 44 Publications .................................................................................................... 79 Curriculum Vitae ........................................................................................... 80

    Ait-Si-Ali, S., Ramirez, S., Barre, F. X., Dkhissi, F., Magnaghi-Jaulin, L., Girault, J. A., Robin, P., Knibiehler, M., Pritchard, L. L., Ducommun, B., Trouche, D., and Harel-Bellan., A. Histone acetyltransferase activity of CBP is controlled by cycle-dependent kinases and oncoprotein E1A. Nature 396, 184–186, 1998
    Ait-Si-Ali, S., Carlisi, D., Ramirez, S., Upegui-Gonzalez, L. C., Duquet, A., Robin, P., Rudkin, B., Harel-Bellan, A., and Trouche, D. Phosphorylation by p44 MAP Kinase/ERK1 stimulates CBP histone acetyl transferase activity in vitro. Biochem. Biophys. Res. Commun. 262, 157–162, 1999
    Alonso, L. and Fuchs, E. Stem cells of the skin epithelium. Proc. Natl. Acad. Sci. U. S. A. 100, 11830-11835, 2003
    Chan, H. M., and La Thangue, N. B. p300/CBP proteins: HATs for transcriptional bridges and scaffolds. J. Cell Sci. 114, 2363-2373, 2001
    Chang, W. C. Cell signaling and gene regulation of human 12(S)-lipoxygenase expression. Prost. Other Lipid Med. 71, 277-285, 2003
    Chen, B. K., Huang, C. C., Chang, W. C., Chen, Y. J., Kikkawa, U., Nakahama, K., Morita, I., and Chang, W. C. PP2B-mediated dephosphorylation of c-Jun C terminus regulates phorbol ester-induced c-Jun/Sp1 interaction in A431 cells. Mol. Biol. Cell 18, 1118-1127, 2007
    Chen, L. C., Chen, B. K., Chang, J. M., and Chang, W. C. Essential role of c-Jun induction and coactivator p300 in epidermal growth factor-induced gene expression of cyclooxygenase-2 in human epidermoid carcinoma A431 cells. Biochim. Biophys. Acta. 1683, 38-48, 2004
    Déléris, P., Rousseau, J., Coulombe, P., Rodier, G., Tanguay, P. L., and Meloche, S. Activation loop phosphorylation of the atypical MAP kinases ERK3 and ERK4 is required for binding, activation and cytoplasmic relocalization of MK5. J. Cell. Physiol. 217, 778-788, 2008
    Downward Julian. Targeting Ras signaling pathways in cancer therapy. Nat. Rev. Cancer 3, 11-22, 2003
    English, J. M., Pearson, G., Baer, R., and Cobb, M. H. Identification of substrates and regulators of the mitogen-activated protein kinase ERK5 using chimeric protein kinases. J. Biol. Chem. 273, 3854–3860, 1998
    Freedberg, I. M., Tomic-Canic, M., Komine, M., and Blumenberg, M. Keratins and the keratinocyte activation cycle. J. Invest. Dermatol. 116, 633-640, 2001
    Fuchs, E. Epidermal differentiation: the bare essentials. J. Cell Biol. 111, 2807–2814, 1990
    Fuchs, E., and Weber, K. Intermediate filaments: structure, dynamics, function, and disease. Annu. Rev. Biochem. 63, 345–382, 1994
    Ghosh, A. K. and Varga, J. The transcriptional coactivator and acetyltransferase p300 in
    fibroblast biology and fibrosis. J. Cell. Physiol. 213, 663–671, 2007
    Gille, H., Kortenjann, M., Thomae, O., Moomaw, C., Slaughter, C., Cobb, M. H. and Shaw, P. E. ERK phosphorylation potentiates Elk-1-mediated ternary complex formation and transactivation. EMBO J. 14, 951-962, 1995
    Greaves, M. W. and Weinstein, G. D. Treatment of psoriasis. N. Engl. J. Med. 332, 581-588, 1995
    Gu, L. H. and Coulombe, P. A. Keratin function in skin epithelia: a broadening palette with surprising shades. Curr. Cell Biol. 19, 13-23, 2007
    Gu W. and Roeder R.G. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90, 595-606, 1997
    Gusterson, R., Brar, B., Faulkes, D., Giordano, A., Chrivia, J., and Latchman, D. The transcriptional co-activators CBP and p300 are activated via phenylephrine through the p42/p44 MAPK cascade J. Biol. Chem. 277, 2517-2524, 2002
    Gusterson, R. J., Yuan, L. W., Latchman, D. S. Distinct serine residues in CBP and p300 are necessary for their activation by phenylephrine. Int. J. Biochem. Cell Biol. 36, 893-899, 2004
    Huang, W. C., and Chen, C. C. Akt phosphorylation of p300 at Ser-1834 is essential for its histone acetyltransferase and transcriptional activity. Mol. Cell. Biol. 25, 6592-6602, 2005
    Huang, W. C., Ju, T. K., Hung, M. C., and Chen, C. C. Phosphorylation of CBP by IKKalpha promotes cell growth by switching the binding preference of CBP from p53 to NF-kappaB. Mol. Cell. 26, 75-87, 2007
    Hung, J. J., Wang, Y. T., and Chang, W. C. Sp1 deacetylation induced by phorbol ester recruits p300 to activate 12(S)-lipoxygenase gene transcription. Mol. Cell. Biol. 26, 1770-1785, 2006
    Impey, S., Fong, A. L., Wang, Y., Cardinaux, J. R., Fass, D. M., Obrietan, K., Wayman, G. A., Storm, D. R., Soderling, T. R., and Goodman, R. H. Phosphorylation of CBP mediates transcriptional activation by neural activity and CaM kinase IV. Neuron 34, 235-244, 2002
    Jacobs, D., Glossip, D., Xing, H., Muslin, A. J., and Kornfeld, K. Multiple docking sites on substrate proteins form a modular system that mediates recognition by ERK MAP kinase. Genes Dev. 13, 163-175, 1999
    Janknecht, R., Ernst, W. H., Pingoud, V. and Nordheim, A. Activation of ternary complex factor Elk-1 by MAP kinases. EMBO J. 12, 5097-5104, 1993
    Janknecht, R., and Hunter, T. Versatile molecular glue. Transcriptional control. Curr. Biol. 6, 951-954, 1996
    Janknecht, R., and Nordheim, A. MAP kinase-dependent transcriptional coactivation by Elk-1 and its cofactor CBP. Biochem. Biophys. Res. Commun. 228, 831-837, 1996
    Janknecht R. The versatile functions of the transcriptional coactivators p300 and CBP and their roles in disease. Histol. Histopathol. 17, 657-68, 2002
    Jiang, C. K., Magnaldo, T., Ohtsuki, M., Freedberg, I. M., Bernerd, F., and Blumenberg, M. Epidermal growth factor and transforming growth factor alpha specifically induce the activation- and hyperproliferation-associated keratins 6 and 16. Proc. Natl. Acad. Sci. U. S. A. 90, 6786-6790, 1993
    Kamakura, S., Moriguchi, T., and Nishida, E. Activation of the protein kinase ERK5/BMK1 by receptor tyrosine kinases. Identification and characterization of a signaling pathway to the nucleus. J. Biol. Chem. 274, 26563–26571, 1999
    Kato, Y., Tapping, R. I., Huang, S., Watson, M. H., Ulevitch, R. J., and Lee, J. D. Bmk1/Erk5 is required for cell proliferation induced by epidermal growth factor. Nature 395, 713-716, 1998
    Kolch, W. Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway
    by protein interactions. Biochem. J. 351, 289-305, 2000
    Komine, M., Rao, L. S., Kaneko, T., Tomic-Canic, M., Tamaki, K., Freedberg, I. M., and Blumenberg, M. Inflammatory Versus Proliferative Processes in Epidermis. J. Biol. Chem. 275, 32077–32088, 2000
    Kung, A.L., Rebel, V.I., Bronson, R.T., Ch’ng, L.E., Sieff, C.A., and Livingston, D.M., Yao, T. P. Gene dose-dependent control of hematopoiesis and hematologic tumor suppression by CBP. Genes Dev. 14, 272–277, 2000
    Lee, J. S., See, R. H., Deng, T., and Shi, Y. Adenovirus E1A downregulates cJun- and JunB-mediated transcription by targeting their coactivator p300. Mol. Cell. Biol. 16, 4312-4326, 1996
    Leigh, I. M., Navsaria, H., Purkis, P. E., Mckay, I. A., Bowden, P. E., and Riddle, P. N.
    Keratins (K16 and K17) as markers of keratinocyte hyperproliferation in psoriasis in vivo and in vitro. Br. J. Dermatol. 133, 501–511, 1995
    Legube, G. and Trouche, D. Regulating histone acetyltransferases and deacetylases. EMBO Rep. 4, 944–947, 2003
    Linh, N., Tsai, Tony K. S., Ku, Nader K. Salib, and David L. Crowe. Extracellular signals regulate rapid coactivator recruitment at AP-1 sites by altered phosphorylation of both CREB binding protein and c-Jun. Mol. Cell. Biol. 28, 4240-4250, 2008
    Liu, Y. W., Arakawa, T., Yamamoto, S., and Chang, W. C. Transcriptional activation of human 12-lipoxygenase gene promoter is mediated through Sp1 consensus sites in A431 cells. Biochem. J. 324, 133–140, 1997
    Liu, Y. Z., Thomas, N. S., Latchman, D. S. CBP associates with the p42/p44 MAPK enzymes and is phosphorylated following NGF treatment. Neuroreport 10, 1239–1243, 1999
    Liu, Y., Denlinger, C. E., Rundall, B. K., Smith, P. W., and Jones, D. R. Suberoylanilide hydroxamic acid induces Akt-mediated phosphorylation of p300, which promotes acetylation and transcriptional activation of RelA/p65. J. Biol. Chem. 281, 31359-31368, 2006
    Lloyd, C., Yu, Q. C., Chang, J., Turksen, K., Degenstein, L., Hutton, E., and Fuchs, E. The basal keratin network of stratified squamous epithelia: defining K15 function in the absence of K14. J. Cell Biol. 129, 1329–1344, 1995
    Machesney, M., Tidman, N., Waseem, A., Kirby, L., and Leigh, I. Activated keratinocytes in the epidermis of hypertrophic scars. Am. J. Pathol. 152, 1133–1141, 1998
    McClowry, T. L., Shors, T. and Brown, D. R. Expression of cytokeratin 16 in human papillomavirus type 11-infected genital epithelium. J. Med. Virol. 66, 96-101, 2002
    Milanini, J., Pouyssegur, J., and Pages, G. Identification of two Sp1 phosphorylation sites for p42/p44 mitogen-activated protein kinases. J. Biol. Chem. 277, 20631-20639, 2002
    Mody, N., Leitch, J., Armstrong, C., Dixon, J., and Cohen, P. Effects of MAP kinase cascade inhibitors on the MKK5/ERK5 pathway. FEBS Lett. 502, 21–24, 2001
    Nishimoto, S. and Nishida, E. MAPK signaling: ERK5 versus ERK1/2. EMBO Rep. 7, 782-786, 2006
    Ogryzko, V. V., Schiltz, R. L., Russsanova, V., Howard, B. H., and Nakatani, Y. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87, 953-959, 1996
    Paramio, J. M., Casanova, M. L., Segrelles, C., Mittnacht, S., Lane, E.B., and Jorcano, J. L. Modulation of cell proliferation by cytokeratins K10 and K16. Mol. Cell. Biol. 19, 3086-3094, 1999
    Proksch, E., Brandner, J. M., and Jensen, J. M. The skin: an indispensable barrier. Exp. Dermatol. 17, 1063–1072, 2008
    Rebel, V. I., Kung, A. L., Tanner, E. A., Yang, H., Bronson, R. T., Livingston, D. M. Distinct roles for CREB-binding protein and p300 in hematopoietic stem cell self-renewal. Proc. Natl. Acad. Sci. USA 99, 14789–14794, 2002
    Roberts, P. J. and Der, C. J. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 26, 3291-3310, 2007
    Roux, P. P., Richards, S. A., and Blenis, J. Phosphorylation of p90 ribosomal S6 kinase (RSK) regulates extracellular signal-regulated kinase docking and RSK activity. Mol. Cell. Biol. 23, 4796-4804, 2003
    Sanchez, M., Sauvé, K., Picard, N., and Tremblay, A. The hormonal response of estrogen receptor beta is decreased by the phosphatidylinositol 3-kinase/Akt pathway via a phosphorylation-dependent release of CREB-binding protein. J. Biol. Chem. 282, 4830-4840, 2007
    Sang, N., Stiehl, D. P., Bohensky, J., Leshchinsky, I., Srinivas, V., and Caro, J. MAPK signaling up-regulates the activity of hypoxia-inducible factors by its effects on p300. J. Biol. Chem. 278, 14013-14019, 2003
    Shikama, N., Lyon, J., and La Thangue, N. B. The p300/CBP family: integrating signals with transcription factors and chromatin. Trends Cell Biol. 7, 230-236, 1997
    Sterner, D. E., and Berger, S. L. Acetylation of histones and transcription-related factors. Microbiol. Mol. Biol. Rev. 64, 435-459, 2000
    Solomon, S. S., Majumdar, G., Martinez-Hernandez, A., and Raghow, R. A critical role of Sp1 transcription factor in regulating gene expression in response to insulin and other hormones. Life Sci. 83, 305-312, 2008
    Sutter, C. H., Yin, H., Li, Y., Mammen, J. S., Bodreddigari, S., Stevens, G., Cole, J. A., and Sutter, T. R. EGF receptor signaling blocks aryl hydrocarbon receptor-mediated transcription and cell differentiation in human epidermal keratinocytes. Proc. Natl. Acad. Sci. U. S. A. 106, 4266-4271, 2009
    Suzuki, T., Kimura, A., Nagai, R., and Horikoshi, M. Regulation of interaction of the acetyltransferase region of p300 and the DNA-binding domain of Sp1 on and through DNA binding. Genes Cells 5, 29-41, 2000
    Tai, D. J., Su, C. C., Ma, Y. L., and Lee, E. H. SGK1 phosphorylation of IKKand p300 up-regulates NF-B activity and increases NMDA receptor NR2A and NR2B expression. J. Biol. Chem. 284, 4073-4089, 2009
    Thompson PR, Wang D, Wang L, Fulco M, Pediconi N, Zhang D, An W, Ge Q, Roeder RG, Wong J, Levrero M, Sartorelli V, Cotter RJ, Cole PA. Regulation of the p300 HAT domains via a novel activation loop. Nat. Struct. Mol. Biol.11, 308–315, 2004
    Wang, Y. N., and Chang, W. C. Induction of disease-associated Keratin 16 gene expression by epidermalgrowth factor is regulated through cooperation of transcription factors Sp1 and c-Jun. J. Biol. Chem. 278, 45848-45857, 2003
    Wang, Y. N., Chen, Y. J., and Chang, W. C. Activation of extracellular signal-regulated kinase signaling by epidermal growth factor mediates c-Jun activation and p300 recruitment in Keratin 16 gene expression. Mol. Pharmacol. 69, 85-98, 2006
    Wierstra, I. Sp1: emerging roles--beyond constitutive activation of TATA-less housekeeping genes. Biochem. Biophys. Res. Commun. 372, 1-13, 2008
    Xiao, H., Hasegawa, T., and Isobe, K. p300 Collaborates with Sp1 and Sp3 in p21waf1/cip1 promoter activation induced by histone deacetylase inhibitor. J. Biol. Chem. 275, 1371-1376, 2000
    Yang, W., Hong, Y. H., Shen, X. Q., Frankowski, C., Camp, H. S., and Leff, T. Regulation of transcription by AMP-activated protein kinase. J. Biol. Chem. 276, 38341–38344, 2001
    Yang, S. H., Sharrocks, A. D., and Whitmarsh, A. J. Transcriptional regulation by the MAP kinase signaling cascades. Gene 320, 3–21, 2003
    Yao, T. P., Oh, S. P., Fuchs, M., Zhou, N. D., Ch’ng, L. E., Newsome, D., Bronson, R. T., Li, E., Livingston, D. M., and Eckner, R. Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300. Cell 93, 361–372, 1998
    Yu, F. Chou, C. W. and Chen, C. C. TNF-alpha suppressed TGF-beta-induced CTGF expression by switching the binding preference of p300 from Smad4 to p65. Cell. Signal. 21, 867-872, 2009
    Yuan, L. W., and Gambee, J. E. Phosphorylation of p300 at Serine 89 by Protein Kinase C. J. Biol. Chem. 275, 40946-40951, 2000
    Yuan, L. W., Soh, J. W., and Weinstein, I. B. Inhibition of histone acetyltransferase function of p300 by PKCdelta. Biochim. Biophys. Acta. 1592, 205–211, 2002
    Zanger, K., Radovick, S., and Wondisford, F. E. CREB binding protein recruitment to the transcription complex requires growth factor-dependent phosphorylation of its GF box. Mol. Cell 7, 551-558, 2001

    下載圖示 校內:立即公開
    校外:2009-06-05公開
    QR CODE