| 研究生: |
陳韻如 Chen, Yun-Ju |
|---|---|
| 論文名稱: |
p300磷酸化作用參與表皮生長因子誘導角質細胞中角質素十六基因表現之調控 The effect of p300 phosphorylation on EGF-induced keratin 16 gene expression in keratinocytes |
| 指導教授: |
張文昌
Chang, Wen-Chang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 基礎醫學研究所 Institute of Basic Medical Sciences |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 表皮生長因子 、磷酸化 、角質素十六 |
| 外文關鍵詞: | keratin 16, phosphorylation, p300, EGF, ERK1/2 |
| 相關次數: | 點閱:116 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在ㄧ些與細胞過度增生有關的疾病(例如:牛皮癬)當中,角質細胞中的角質素十六(keratin 16,K16)會有過度表現的情形。而由本實驗室先前對keratin 16的研究可知,在角質細胞(HaCaT cells)中,表皮生長因子(EGF)會活化Ras,造成c-Jun及c-Fos生合成增加,而增加的AP1核蛋白一方面會結合到keratin 16啟動區上的AP1區域,另ㄧ方面也會透過與Sp1的交互作用而結合到keratin 16啟動區上的Sp1區域,於是透過這兩個response elements來增加keratin 16基因表現;此外,EGF也會藉由MEK-ERK訊息傳遞路徑來增加p300聚集到keratin 16啟動區上,共同增加keratin 16基因的表現。而此調控機制,至少有一部分是藉由增加c-Jun以及組織蛋白H3之乙醯化(acetylation)所致。根據之前文獻的報告,在in vitro,p300純化蛋白的C端 (a.a. 1572-2370) 會受到活化態的ERK2所磷酸化,進而增加其轉錄活性。然而,在in vivo,p300會受到何種蛋白激酶磷酸化,且磷酸化的確切位置,及其如何影響p300的功能,還不是很清楚。於是,本研究主要是要探討p300磷酸化參與EGF誘導角質細胞中keratin 16基因表現之調控。由實驗結果可知,在 in vivo及in vitro狀態下,EGF會隨著劑量及時間增加而增加p300的磷酸化,此機制是藉由活化ERK訊息傳導路徑而造成的。進一步藉由in vitro kinase assay及單點突變實驗,則在p300上定出六個磷酸化位點,分別是三個蘇氨酸及三個絲氨酸。接下來在in vivo狀態下,進一步去分析這六個位點是否確實會被磷酸化。由實驗結果得知,在 in vivo狀態下,三個絲氨酸(Ser2279、2315、2366)為EGF主要的標的,這三個位置磷酸化後會增加p300聚集到角質素16啟動區上,增強其和Sp1的交互作用,另一方面也會增加p300本身的酵素活性進而增加角質素16基的表現。因此,如果將這三個絲氨酸(Ser2279、2315、2366)同時突變掉,也會造成EGF所誘導的角質素16基因表現被抑制。綜合以上結果可知,ERK2訊息傳導路徑所媒介的p300絲氨酸(Ser2279、2315、2366)磷酸化在EGF所誘導的角質素16基因表現中扮演一個非常關鍵的角色,而這也是第一篇研究指出在in vivo狀態下,p300在哪些確切位點被ERK2訊息傳導路徑磷酸化。
Overexpression of keratin 16 in keratinocytes has been found to be associated with hyperproliferative skin diseases such as psoriasis. In our previous studies on gene regulation of keratin 16, we have reported that transcriptional coactivator p300 interacts with Sp1 and AP1 proteins, and is involved in the regulation of epidermal growth factor (EGF)-induced keratin 16 gene expression in HaCaT cells at least in part through acetylation of c-Jun and histone H3. The recruitment of p300 to keratin 16 promoter by EGF is mediated by ERK signaling pathway. Although one study shows that activated ERK2 can phosphorylate p300 (a.a. 1572-2370) in vitro and increase its transcriptional activity, however, it remains to prove that ERK can phosphorylate p300 in vivo and to identify the exact phosphorylation sites. More importantly, the functional links between the specific phosphorylation events and the downstream gene regulation also remain to be explored. Therefore, the specific aim is to study the role of p300 phosphorylation in the regulation of EGF-induced keratin 16 gene expression in keratinocytes. Here, our data showed that EGF dramatically induced time- and dose-dependent phosphorylation of p300, both in vitro and in vivo, through the activation of ERK2. Six ERK2 phosphorylation sites on p300, including three threonine and three serine residues, were first identified in vitro. The data from in vivo phosphorylation assay further indicated that Ser2279, Ser2315, and Ser2366 on the C-terminus of p300 were the major phosphorylated targets in response to EGF. Furthermore, these serine phosphorylations increased p300 HAT activity and interaction with Sp1, thereby enhancing p300 recruitment to the keratin 16 promoter. Substitution of these three serine residues with alanine blocked EGF-induced keratin 16 gene expression. Taken together, our results not only first reported the specific p300 phosphorylation sites by ERK2 in vivo but also explored the critical roles of these phosphorylations in regulating keratin 16 expression in response to EGF.
Ait-Si-Ali, S., Ramirez, S., Barre, F. X., Dkhissi, F., Magnaghi-Jaulin, L., Girault, J. A., Robin, P., Knibiehler, M., Pritchard, L. L., Ducommun, B., Trouche, D., and Harel-Bellan., A. Histone acetyltransferase activity of CBP is controlled by cycle-dependent kinases and oncoprotein E1A. Nature 396, 184–186, 1998
Ait-Si-Ali, S., Carlisi, D., Ramirez, S., Upegui-Gonzalez, L. C., Duquet, A., Robin, P., Rudkin, B., Harel-Bellan, A., and Trouche, D. Phosphorylation by p44 MAP Kinase/ERK1 stimulates CBP histone acetyl transferase activity in vitro. Biochem. Biophys. Res. Commun. 262, 157–162, 1999
Alonso, L. and Fuchs, E. Stem cells of the skin epithelium. Proc. Natl. Acad. Sci. U. S. A. 100, 11830-11835, 2003
Chan, H. M., and La Thangue, N. B. p300/CBP proteins: HATs for transcriptional bridges and scaffolds. J. Cell Sci. 114, 2363-2373, 2001
Chang, W. C. Cell signaling and gene regulation of human 12(S)-lipoxygenase expression. Prost. Other Lipid Med. 71, 277-285, 2003
Chen, B. K., Huang, C. C., Chang, W. C., Chen, Y. J., Kikkawa, U., Nakahama, K., Morita, I., and Chang, W. C. PP2B-mediated dephosphorylation of c-Jun C terminus regulates phorbol ester-induced c-Jun/Sp1 interaction in A431 cells. Mol. Biol. Cell 18, 1118-1127, 2007
Chen, L. C., Chen, B. K., Chang, J. M., and Chang, W. C. Essential role of c-Jun induction and coactivator p300 in epidermal growth factor-induced gene expression of cyclooxygenase-2 in human epidermoid carcinoma A431 cells. Biochim. Biophys. Acta. 1683, 38-48, 2004
Déléris, P., Rousseau, J., Coulombe, P., Rodier, G., Tanguay, P. L., and Meloche, S. Activation loop phosphorylation of the atypical MAP kinases ERK3 and ERK4 is required for binding, activation and cytoplasmic relocalization of MK5. J. Cell. Physiol. 217, 778-788, 2008
Downward Julian. Targeting Ras signaling pathways in cancer therapy. Nat. Rev. Cancer 3, 11-22, 2003
English, J. M., Pearson, G., Baer, R., and Cobb, M. H. Identification of substrates and regulators of the mitogen-activated protein kinase ERK5 using chimeric protein kinases. J. Biol. Chem. 273, 3854–3860, 1998
Freedberg, I. M., Tomic-Canic, M., Komine, M., and Blumenberg, M. Keratins and the keratinocyte activation cycle. J. Invest. Dermatol. 116, 633-640, 2001
Fuchs, E. Epidermal differentiation: the bare essentials. J. Cell Biol. 111, 2807–2814, 1990
Fuchs, E., and Weber, K. Intermediate filaments: structure, dynamics, function, and disease. Annu. Rev. Biochem. 63, 345–382, 1994
Ghosh, A. K. and Varga, J. The transcriptional coactivator and acetyltransferase p300 in
fibroblast biology and fibrosis. J. Cell. Physiol. 213, 663–671, 2007
Gille, H., Kortenjann, M., Thomae, O., Moomaw, C., Slaughter, C., Cobb, M. H. and Shaw, P. E. ERK phosphorylation potentiates Elk-1-mediated ternary complex formation and transactivation. EMBO J. 14, 951-962, 1995
Greaves, M. W. and Weinstein, G. D. Treatment of psoriasis. N. Engl. J. Med. 332, 581-588, 1995
Gu, L. H. and Coulombe, P. A. Keratin function in skin epithelia: a broadening palette with surprising shades. Curr. Cell Biol. 19, 13-23, 2007
Gu W. and Roeder R.G. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90, 595-606, 1997
Gusterson, R., Brar, B., Faulkes, D., Giordano, A., Chrivia, J., and Latchman, D. The transcriptional co-activators CBP and p300 are activated via phenylephrine through the p42/p44 MAPK cascade J. Biol. Chem. 277, 2517-2524, 2002
Gusterson, R. J., Yuan, L. W., Latchman, D. S. Distinct serine residues in CBP and p300 are necessary for their activation by phenylephrine. Int. J. Biochem. Cell Biol. 36, 893-899, 2004
Huang, W. C., and Chen, C. C. Akt phosphorylation of p300 at Ser-1834 is essential for its histone acetyltransferase and transcriptional activity. Mol. Cell. Biol. 25, 6592-6602, 2005
Huang, W. C., Ju, T. K., Hung, M. C., and Chen, C. C. Phosphorylation of CBP by IKKalpha promotes cell growth by switching the binding preference of CBP from p53 to NF-kappaB. Mol. Cell. 26, 75-87, 2007
Hung, J. J., Wang, Y. T., and Chang, W. C. Sp1 deacetylation induced by phorbol ester recruits p300 to activate 12(S)-lipoxygenase gene transcription. Mol. Cell. Biol. 26, 1770-1785, 2006
Impey, S., Fong, A. L., Wang, Y., Cardinaux, J. R., Fass, D. M., Obrietan, K., Wayman, G. A., Storm, D. R., Soderling, T. R., and Goodman, R. H. Phosphorylation of CBP mediates transcriptional activation by neural activity and CaM kinase IV. Neuron 34, 235-244, 2002
Jacobs, D., Glossip, D., Xing, H., Muslin, A. J., and Kornfeld, K. Multiple docking sites on substrate proteins form a modular system that mediates recognition by ERK MAP kinase. Genes Dev. 13, 163-175, 1999
Janknecht, R., Ernst, W. H., Pingoud, V. and Nordheim, A. Activation of ternary complex factor Elk-1 by MAP kinases. EMBO J. 12, 5097-5104, 1993
Janknecht, R., and Hunter, T. Versatile molecular glue. Transcriptional control. Curr. Biol. 6, 951-954, 1996
Janknecht, R., and Nordheim, A. MAP kinase-dependent transcriptional coactivation by Elk-1 and its cofactor CBP. Biochem. Biophys. Res. Commun. 228, 831-837, 1996
Janknecht R. The versatile functions of the transcriptional coactivators p300 and CBP and their roles in disease. Histol. Histopathol. 17, 657-68, 2002
Jiang, C. K., Magnaldo, T., Ohtsuki, M., Freedberg, I. M., Bernerd, F., and Blumenberg, M. Epidermal growth factor and transforming growth factor alpha specifically induce the activation- and hyperproliferation-associated keratins 6 and 16. Proc. Natl. Acad. Sci. U. S. A. 90, 6786-6790, 1993
Kamakura, S., Moriguchi, T., and Nishida, E. Activation of the protein kinase ERK5/BMK1 by receptor tyrosine kinases. Identification and characterization of a signaling pathway to the nucleus. J. Biol. Chem. 274, 26563–26571, 1999
Kato, Y., Tapping, R. I., Huang, S., Watson, M. H., Ulevitch, R. J., and Lee, J. D. Bmk1/Erk5 is required for cell proliferation induced by epidermal growth factor. Nature 395, 713-716, 1998
Kolch, W. Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway
by protein interactions. Biochem. J. 351, 289-305, 2000
Komine, M., Rao, L. S., Kaneko, T., Tomic-Canic, M., Tamaki, K., Freedberg, I. M., and Blumenberg, M. Inflammatory Versus Proliferative Processes in Epidermis. J. Biol. Chem. 275, 32077–32088, 2000
Kung, A.L., Rebel, V.I., Bronson, R.T., Ch’ng, L.E., Sieff, C.A., and Livingston, D.M., Yao, T. P. Gene dose-dependent control of hematopoiesis and hematologic tumor suppression by CBP. Genes Dev. 14, 272–277, 2000
Lee, J. S., See, R. H., Deng, T., and Shi, Y. Adenovirus E1A downregulates cJun- and JunB-mediated transcription by targeting their coactivator p300. Mol. Cell. Biol. 16, 4312-4326, 1996
Leigh, I. M., Navsaria, H., Purkis, P. E., Mckay, I. A., Bowden, P. E., and Riddle, P. N.
Keratins (K16 and K17) as markers of keratinocyte hyperproliferation in psoriasis in vivo and in vitro. Br. J. Dermatol. 133, 501–511, 1995
Legube, G. and Trouche, D. Regulating histone acetyltransferases and deacetylases. EMBO Rep. 4, 944–947, 2003
Linh, N., Tsai, Tony K. S., Ku, Nader K. Salib, and David L. Crowe. Extracellular signals regulate rapid coactivator recruitment at AP-1 sites by altered phosphorylation of both CREB binding protein and c-Jun. Mol. Cell. Biol. 28, 4240-4250, 2008
Liu, Y. W., Arakawa, T., Yamamoto, S., and Chang, W. C. Transcriptional activation of human 12-lipoxygenase gene promoter is mediated through Sp1 consensus sites in A431 cells. Biochem. J. 324, 133–140, 1997
Liu, Y. Z., Thomas, N. S., Latchman, D. S. CBP associates with the p42/p44 MAPK enzymes and is phosphorylated following NGF treatment. Neuroreport 10, 1239–1243, 1999
Liu, Y., Denlinger, C. E., Rundall, B. K., Smith, P. W., and Jones, D. R. Suberoylanilide hydroxamic acid induces Akt-mediated phosphorylation of p300, which promotes acetylation and transcriptional activation of RelA/p65. J. Biol. Chem. 281, 31359-31368, 2006
Lloyd, C., Yu, Q. C., Chang, J., Turksen, K., Degenstein, L., Hutton, E., and Fuchs, E. The basal keratin network of stratified squamous epithelia: defining K15 function in the absence of K14. J. Cell Biol. 129, 1329–1344, 1995
Machesney, M., Tidman, N., Waseem, A., Kirby, L., and Leigh, I. Activated keratinocytes in the epidermis of hypertrophic scars. Am. J. Pathol. 152, 1133–1141, 1998
McClowry, T. L., Shors, T. and Brown, D. R. Expression of cytokeratin 16 in human papillomavirus type 11-infected genital epithelium. J. Med. Virol. 66, 96-101, 2002
Milanini, J., Pouyssegur, J., and Pages, G. Identification of two Sp1 phosphorylation sites for p42/p44 mitogen-activated protein kinases. J. Biol. Chem. 277, 20631-20639, 2002
Mody, N., Leitch, J., Armstrong, C., Dixon, J., and Cohen, P. Effects of MAP kinase cascade inhibitors on the MKK5/ERK5 pathway. FEBS Lett. 502, 21–24, 2001
Nishimoto, S. and Nishida, E. MAPK signaling: ERK5 versus ERK1/2. EMBO Rep. 7, 782-786, 2006
Ogryzko, V. V., Schiltz, R. L., Russsanova, V., Howard, B. H., and Nakatani, Y. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87, 953-959, 1996
Paramio, J. M., Casanova, M. L., Segrelles, C., Mittnacht, S., Lane, E.B., and Jorcano, J. L. Modulation of cell proliferation by cytokeratins K10 and K16. Mol. Cell. Biol. 19, 3086-3094, 1999
Proksch, E., Brandner, J. M., and Jensen, J. M. The skin: an indispensable barrier. Exp. Dermatol. 17, 1063–1072, 2008
Rebel, V. I., Kung, A. L., Tanner, E. A., Yang, H., Bronson, R. T., Livingston, D. M. Distinct roles for CREB-binding protein and p300 in hematopoietic stem cell self-renewal. Proc. Natl. Acad. Sci. USA 99, 14789–14794, 2002
Roberts, P. J. and Der, C. J. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 26, 3291-3310, 2007
Roux, P. P., Richards, S. A., and Blenis, J. Phosphorylation of p90 ribosomal S6 kinase (RSK) regulates extracellular signal-regulated kinase docking and RSK activity. Mol. Cell. Biol. 23, 4796-4804, 2003
Sanchez, M., Sauvé, K., Picard, N., and Tremblay, A. The hormonal response of estrogen receptor beta is decreased by the phosphatidylinositol 3-kinase/Akt pathway via a phosphorylation-dependent release of CREB-binding protein. J. Biol. Chem. 282, 4830-4840, 2007
Sang, N., Stiehl, D. P., Bohensky, J., Leshchinsky, I., Srinivas, V., and Caro, J. MAPK signaling up-regulates the activity of hypoxia-inducible factors by its effects on p300. J. Biol. Chem. 278, 14013-14019, 2003
Shikama, N., Lyon, J., and La Thangue, N. B. The p300/CBP family: integrating signals with transcription factors and chromatin. Trends Cell Biol. 7, 230-236, 1997
Sterner, D. E., and Berger, S. L. Acetylation of histones and transcription-related factors. Microbiol. Mol. Biol. Rev. 64, 435-459, 2000
Solomon, S. S., Majumdar, G., Martinez-Hernandez, A., and Raghow, R. A critical role of Sp1 transcription factor in regulating gene expression in response to insulin and other hormones. Life Sci. 83, 305-312, 2008
Sutter, C. H., Yin, H., Li, Y., Mammen, J. S., Bodreddigari, S., Stevens, G., Cole, J. A., and Sutter, T. R. EGF receptor signaling blocks aryl hydrocarbon receptor-mediated transcription and cell differentiation in human epidermal keratinocytes. Proc. Natl. Acad. Sci. U. S. A. 106, 4266-4271, 2009
Suzuki, T., Kimura, A., Nagai, R., and Horikoshi, M. Regulation of interaction of the acetyltransferase region of p300 and the DNA-binding domain of Sp1 on and through DNA binding. Genes Cells 5, 29-41, 2000
Tai, D. J., Su, C. C., Ma, Y. L., and Lee, E. H. SGK1 phosphorylation of IKKand p300 up-regulates NF-B activity and increases NMDA receptor NR2A and NR2B expression. J. Biol. Chem. 284, 4073-4089, 2009
Thompson PR, Wang D, Wang L, Fulco M, Pediconi N, Zhang D, An W, Ge Q, Roeder RG, Wong J, Levrero M, Sartorelli V, Cotter RJ, Cole PA. Regulation of the p300 HAT domains via a novel activation loop. Nat. Struct. Mol. Biol.11, 308–315, 2004
Wang, Y. N., and Chang, W. C. Induction of disease-associated Keratin 16 gene expression by epidermalgrowth factor is regulated through cooperation of transcription factors Sp1 and c-Jun. J. Biol. Chem. 278, 45848-45857, 2003
Wang, Y. N., Chen, Y. J., and Chang, W. C. Activation of extracellular signal-regulated kinase signaling by epidermal growth factor mediates c-Jun activation and p300 recruitment in Keratin 16 gene expression. Mol. Pharmacol. 69, 85-98, 2006
Wierstra, I. Sp1: emerging roles--beyond constitutive activation of TATA-less housekeeping genes. Biochem. Biophys. Res. Commun. 372, 1-13, 2008
Xiao, H., Hasegawa, T., and Isobe, K. p300 Collaborates with Sp1 and Sp3 in p21waf1/cip1 promoter activation induced by histone deacetylase inhibitor. J. Biol. Chem. 275, 1371-1376, 2000
Yang, W., Hong, Y. H., Shen, X. Q., Frankowski, C., Camp, H. S., and Leff, T. Regulation of transcription by AMP-activated protein kinase. J. Biol. Chem. 276, 38341–38344, 2001
Yang, S. H., Sharrocks, A. D., and Whitmarsh, A. J. Transcriptional regulation by the MAP kinase signaling cascades. Gene 320, 3–21, 2003
Yao, T. P., Oh, S. P., Fuchs, M., Zhou, N. D., Ch’ng, L. E., Newsome, D., Bronson, R. T., Li, E., Livingston, D. M., and Eckner, R. Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300. Cell 93, 361–372, 1998
Yu, F. Chou, C. W. and Chen, C. C. TNF-alpha suppressed TGF-beta-induced CTGF expression by switching the binding preference of p300 from Smad4 to p65. Cell. Signal. 21, 867-872, 2009
Yuan, L. W., and Gambee, J. E. Phosphorylation of p300 at Serine 89 by Protein Kinase C. J. Biol. Chem. 275, 40946-40951, 2000
Yuan, L. W., Soh, J. W., and Weinstein, I. B. Inhibition of histone acetyltransferase function of p300 by PKCdelta. Biochim. Biophys. Acta. 1592, 205–211, 2002
Zanger, K., Radovick, S., and Wondisford, F. E. CREB binding protein recruitment to the transcription complex requires growth factor-dependent phosphorylation of its GF box. Mol. Cell 7, 551-558, 2001