簡易檢索 / 詳目顯示

研究生: 張家維
Jhang, Jia-Wei
論文名稱: 船舶減速與燃油轉換之減排效益-以高雄港為例
The Benefits of Reducing Emissions by Decreasing Vessel Speed and Fuel Transfer: an Example at Kaohsiung Port
指導教授: 張瀞之
Chang, Ching-Chih
學位類別: 碩士
Master
系所名稱: 管理學院 - 交通管理科學系
Department of Transportation and Communication Management Science
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 60
中文關鍵詞: 減速燃油轉換散裝船貨櫃船
外文關鍵詞: Speed reduction, Fuel transfer, Bulk, Container
相關次數: 點閱:139下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文採用作業基礎模型(activity-base model),計算高雄港主要類型散裝船及貨櫃船之油耗與排放,並引入以下四種情境:(1)距港口20海浬減速至12節、(2)距港口40海浬減速至12節、(3)距港口20海浬減速至12節並做燃油轉換、(4) 距港口40海浬減速至12節並做燃油轉換,探討實施船舶減排方案前後之效果,接著以CATCH模型評估船舶減排方案之成本效益。研究結果顯示:(1)在20海哩減速至12節時,貨櫃船減少約41%的CO2與SO2之排放,散裝船減少約14%的CO2與SO2之排放;在40海哩減速至12節時,貨櫃船減少約83%的CO2與SO2之排放,散裝船減少約28%的CO2與SO2之排放;在20海哩減速至12節並做燃油轉換時,貨櫃船減少約48% SO2排放,散裝船約減少43%的SO2排放;在40海哩減速至12節並做燃油轉換時,貨櫃船減少約97% SO2排放,散裝船約減少87%的SO2排放。(2)船舶越大所具的環境效益越高,在不考慮減速與燃油轉換之情況下,散裝船的Capesize每一延噸海浬所排放的CO2約為2.8克,SO2為0.05克;Handysize每一延噸海浬所排放的CO2則為6.68克,SO2為0.11克;貨櫃船中的Post-Panamax每一延噸海哩所排放的CO2為15.71克,SO2為0.27克; Small每一延噸海哩所排放的CO2則為21.69克,SO2為0.37克。若加入減速則Capesize每一延噸海浬所排放的CO2為2克,SO2為0.034克;Handysize每一延噸海浬所排放的CO2 為4.78克,SO2為0.081克; Post-Panamax每一延噸海哩所排放的CO2為2.69克,SO2為0.046克;Small每一延噸海哩所排放的CO2為3.71克,SO2為0.063克。減速的情況下再加入燃油轉換則Capesize每一延噸海浬所排放的SO2為0.006克;Handysize每一延噸海浬所排放的SO2為0.015克; Post-Panamax每一延噸海哩所排放的SO2為0.008克; Small每一延噸海哩所排放的SO2為0.012克。(3)在實施減速及燃油轉換方案時,以CATCH模行評估執行方案效益,貨櫃船於執行20海哩及40海哩減速與燃油轉換方案時均有環境及成本效益;但散裝船在20海哩及40海哩減速且執行燃油轉換,需要付出額外的成本,以capesize為例,其減排成本在20海浬與40海浬時,分別為432美元/噸及443美元/噸。

    The aim of this research is to assess the benefits of vessel reducing speed and fuel transfer for large merchant vessels (bulk and container) entering Kaohsiung Port. This thesis adopts an activity-based model to calculate fuel consumption and emissions, as well as setting up four scenarios: (1) vessel decrease in speed to 12 knots away from port 20 nm. (2) vessel decrease in speed to 12 knots away from port 40 nm. (3) vessel decrease in speed to 12 knots and transfer fuel away from port 20 nm. (4) vessel decrease in speed to 12 knots and transfer fuel away from port 40 nm. Then using the CATCH model, the effectiveness of reducing emissions is assessed. The findings are as follows: (1) In scenario one, container vessels reduced about 41% of CO2,SO2 emissions; bulk vessels reduced about 14% CO2,SO2 emissions. In scenario two, container vessels reduced about 83% CO2,SO2 emissions; bulk vessels reduced about 28% CO2,SO2 emissions. In scenario three, container vessels reduced about 48% SO2 emissions; bulk vessels reduced about 43% of SO2 emissions. In scenario four, container vessels reduced about 97% SO2 emissions; bulk vessels reduced about 87% SO2 emissions. (2) Bigger vessels demonstrated higher environmental benefits. Without any reduction policy, in the case of bulk carriers, Capesize emitted 2.8g CO2 and 0.05g SO2 per nm, Handysize emitted 6.68g CO2 and 0.11g SO2 per nm. In regard to container vessels, Post-Panamax emitted 15.71g CO2 and 0.27g SO2 per nm, Small emitted 21.69g CO2 and 0.37g SO2 per nm. If adding a vessel speed reduction scenario, Capesize emitted 2g CO2 and 0.034g SO2 per nm; Handysize emitted 4.78g CO2, and 0.081g SO2 per nm. Post-Panamax emitted 2.69g CO2 and 0.046g SO2 per nm; Small emitted 3.71g CO2 and 0.063g SO2 per nm. Under conditions of speed reduction and
    adding a fuel transfer scenario, Capesize emitted 0.006g SO2 per nm; Handysize emitted 0.015g SO2 per nm; Post-Panamax emitted 0.008g SO2 per nm, and Small emitted 0.012g SO2 per nm. (3) Using the CATCH model to assess the effectiveness of the four scenarios, it was found that container vessels have both environmental and cost benefits, but bulk carriers must assume extra expenses. For example, the reduction emission cost for Capesize in scenario 3 is 432 USD/ton, and it is 443 USD/ton in scenario 4.

    Table of Content I List of Tables II List of Figures III Chapter 1 Introduction 1 1.1 Research background 1 1.2 Research motivation 4 1.3 Research purpose 5 1.4 Research framework 6 Chapter 2 Literature Review 9 2.1 Vessel emission 9 2.2 Emission Reduction Measure 13 2.3 Speed reduction 16 2.4 Summary 18 Chapter 3 Methodology 24 3.1 Fuel consumption of vessel 24 3.2 Cost analysis using CATCH 28 3.3 Scenarios 29 3.4 Summary 31 Chapter 4 Empirical analysis 33 4.1 Fuel consumption and emission using decreased vessel speed 33 4.1.1 Emissions reduction scenarios using a single vessel 37 4.2 Implementation of emission reduction scenarios in Kaohsiung Port in 2011 42 4.3 Assessment emission reduction measures using the CATCH model 47 Chapter 5 Conclusions and Future Suggestions 53 5.1 Conclusions 53 5.2 Suggestions 54 5.3 Research limitations 54 5.4 Future suggestions 55 References 56

    Corbett, J., & Koehler, H. (2003).Updated emissions from ocean shipping. Journal of Geophysical Research,108,4650.
    Corbett, J., & Koehler, H. (2004).Considering alternative input parameters in an activity-based ship fuel consumption and emissions model: Reply to comment by Øyvind Endresen et al. on ‘‘Updated emissions from ocean shipping’’. Journal of Geophysical Research,109 (D23303)
    Corbett, J., Wang, H., & Winebrake, J.(2009).The effectiveness and costs of speed reductions on emissions from international shipping. Transportation
    Research Part D, 14, 593-598.
    Cariou, P.(2011). Is slow steaming a sustainable means of reducing 〖CO〗_2 emissions from container ship. Transportation Research Part D,16,260-264.
    Cariou, P., & Cheaitou, A.(2012). The effectiveness of a European speed limit versus an international bunker-levy to reduce 〖CO〗_2 emissions from container ship. Transportation Research Part D,17,116-123.
    Endresen, O.,& Sorgard, E.(2003). Emission from international sea transportation and environmental impact. Journal of Geophysical Research,108(D17),4560.
    Eyring, V., Kohler, H., Aardenne, J., & Lauer, A. (2005). Emissions from international shipping: The last 50 years. Journal of Geophysical Research,110(D17305).
    Endresen, O., Sorgard, E., Behrens, H. L., Brett, P. O., & Isaksen, I.S.A.(2007). A historical reconstruction of ship’s fule consumption and emissions. Journal of Geophysical Research,112(D12301).

    Eide, M., Endresen, O., Skjong, R., Longva, T.,& Alvik,S.(2009).
    Cost-effectiveness assessment of CO2 reducing measures in shipping.
    Maritime Policy & Management,36(4),367-384.
    Entec.(2010). UK ship emissions inventory ,Entec UK Limited. Retrieved date March 11, 2013, http://uk-air.defra.gov.uk/reports/cat15/1012131459_21897_Final_Report_291110.pdf
    Georgakaki, A., Coffey, R.A.,Lock, G.,& Sorenson, S.C. (2005). Transport and Environment Database System (TRENDS): Maritime air pollutant emission modelling. Atmospheric Environment, 39, 2357-2365
    Hulskotte., J.H.J & Gon., H.A.C. (2010).Fuel consumption and associated emissions from seagoing ships at berth derived from an on-board survey. Atmospheric Environment,44,1229-1236.
    Ha Tsi Ming & Tien Wen-kwo (2010).An analysis of possible risks of marine diesel engine fuel switching. Marine Technology,38,69-83.
    Intergovernmental Panel on Climate Change(2007).Climate Change 2007:Synthesis Report. Retrieved date September 2, 2012, http://www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4_syr.pdf
    International Maritime Organization(2009). Second IMO GHG Study 2009. Retrieved date August 9, 2012, http://www.imo.org/blast/blastData.asp?doc_id=12612&filename=GHG%20StudyFINAL.pdf
    Lindstad, H.,Asbjornslett, B., & Stromman, A.(2011).Reductions in greenhouse gas emission and cost by shipping at lower speeds. Energy policy,39,3456-3464.
    MAN Diesel A/S.(2004).Propulsion Trends in Container Vessels. Retrieved date February 22, 2013, http://www.mandieselturbo.com/files/news/filesof4672/5510-0040-01ppr_low.pdf
    MAN Diesel A/S.(2007). Propulsion Trends in Bulk Carriers. Retrieved date February 22, 2013, http://www.mandieselturbo.com/files/news/filesof5479/5510-0007-02ppr_low.pdf
    Matthias, V., Bewersdorff, I., Aulinger, A.,& Quante, M. (2010). The contribution of ship emissions to air pollution in the North Sea regions. Environmental Pollution,158, 2241-2250.
    Miola, A.,& Ciuffo, B.(2011)Estimating air emissions from ship:Mata-analysis of modeling approaches and available data sources. Atmospheric Environment,45,2242-2251.
    McArthur, D., & Osland, L. (2013). Ships in a city harbour : An economic valuation of atmospheric emissions. Transportation Research Part D,21,47-52.
    Organization for Economic Cooperation and Development(2010).
    Reducing Transport Greenhouse Gas Emissions. Retrieved date August 9, 2012, http://www.internationaltransportforum.org/Pub/pdf/10GHGTrends.pdf
    Psaraftis, H., & Kontovas, C.(2009).〖CO〗_2 emission statistics for the world commercial fleet. WUM Journal of Maritime Affairs,8(1),1-25.
    Paxian, A., Eyring, V., Beer, W., Sausen, R., & Wright, C. (2010). Present-Day and Future Global Bottom-Up Ship Emission Inventories Including Polar Routes. Environmental Science and Technology,44 (4), 1333–1339.

    Psaraftis, H., & Kontovas, C.(2010). Balancing the economic and environmental performance of maritime transportation. Transportation Research Part D,15,458-462.
    Schrooten, L., Vlieger, I., Panis, L., Chiffi, C., & Pastori, E. (2009).Emissions of maritime transport: A European reference system. Science of the Total Environment,408,318-323.
    Tzannatos, E.(2010). Cost assessment of ship emission reduction methods at berth: the case of the Port of Piraeus, Greece. Maritime Policy & Management,37(4),427-445.
    Tzannatos, E.(2010). Ship emissions and their externalities for the port of Piraeus-Greece. Atmospheric Environment,44,400-407.
    United Nations Conference on Trade And Development(2011). Review of maritime transport 2011. Retrieved date August 9, 2012, http://unctad.org/en/Docs/rmt2011_en.pdf
    United Nations Conference on Trade And Development(2012). Review of maritime transport 2012. Retrieved date March 20, 2013, http://unctad.org/en/PublicationsLibrary/rmt2012_en.pdf
    Ushakov, S., Halvorsen, N., Valland, H., Williksen, D., & Esoy, V. (2013). Emission characteristics of GTL fuel as an alternative to conventional marine gas oil. Transportation Research Part D,18,31-38.
    Yang, Z.L., Zhang, D., Caglayan, O., Jenkinson, I.D., Bonsall., S., Wanga, J., Huang M.,& Yan, X.P. (2012). Selection of techniques for reducing shipping NOx and SOx emissions. Transportation Research Part D,17, 478–486.

    Yau, P.S., Lee, S.C., Corbett, J.J.,Wang, C., Cheng, Y.,& Ho, K.F.(2012). Estimation of exhaust emission from ocean-going vessels in Hong Kong. Science of the Total Environment,431,299-306.
    Reference from website
    Ship & Bunker, November 14, 2012.
    http://shipandbunker.com/
    Google map, November 15, 2012.
    http://maps.google.com.tw/
    Environmental Protection Bureau Kaohsiung City Government, November 15, 2012.
    http://61.218.233.198/dispPageBox/AQMPCP.aspx?ddsPageID=AQMPC3
    Wan Hai Lines Ltd. , November 15, 2012.
    http://web.wanhai.com.tw/content_detail.jsp?content_id=30344&web=whltw
    Commodity Information Price, November 15, 2012.
    http://cip.chinatimes.com/
    Port of Kaohsiung, Taiwan International Ports Corporation, Ltd., November 16, 2012.
    http://www.khb.gov.tw/

    無法下載圖示 校內:2018-07-23公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE