簡易檢索 / 詳目顯示

研究生: 何凱瑀
Ho, Kai-Yu
論文名稱: 盂肱關節”鬆動合併動作”手法對肱骨頭中心移動之探討
Displacement of the Head of Humerus While Performing “Mobilization with Movements” in Glenohumeral Joint
指導教授: 徐阿田
Hsu, Ar-Tyan
學位類別: 碩士
Master
系所名稱: 醫學院 - 物理治療學系
Department of Physical Therapy
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 67
中文關鍵詞: 關節轉動中心鬆動合併動作肩關節活動度
外文關鍵詞: Shoulder, Mobilization with Movement, Joint center, Mobility
相關次數: 點閱:69下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   實驗背景及目的 鬆動合併動作是由一位紐西蘭物理治療師Brian Mulligan所發展的治療手法,在肩關節,鬆動合併動作的手法常使用於治療喙凸下夾擠症候群、冰凍肩及旋轉袖肌腱炎、、、等等的病人,在治療夾擠症候群病人方面,其手法是由治療師施予肱骨頭一向後的鬆動術,並請病人做主動手臂抬起的動作,雖然鬆動合併動作的手法在臨床骨科物理治療上已常被使用,卻仍缺乏科學證據來支持它的效果。因此本篇研究即在於分析屍體肩關節樣本在外展動作及鬆動合併動作時,肱骨頭中心的移動情形。實驗方法 在外展及鬆動合併動作程序方面,十位有三年以上骨科物理治療經驗的治療師參與本實驗,他們在肩關節樣本上施行被動外展及鬆動合併動作的手法,本實驗量測施行動作時所施之力量、力矩、關節角度及肱骨頭中心的移動。運動學的資料由VICON 370動作分析系統來擷取,力量及力矩則由AMTI六軸分力儀來量測,至於計算關節轉動中心的方法,則依照Gamage及Lasenby所發展的最小平方法 (least squares method)。在外展及鬆動合併動作程序前後,我們用MTS系統來量測屍體樣本之活動度,包括向後滑動量、向前滑動量、向下滑動量、轉動角度及外展角度,藉由MTS的程序可知道樣本活動度,在外展及鬆動合併動作前後是否改變。資料分析方面,我們比較做外展動作及鬆動合併動作手法時,肱骨頭中心移動之情形,主要針對空間及時間因素:在空間因素,即分析兩者產生肱骨頭中心移動之最大值;時間因素,即分析兩者在肱骨頭中心產生最大移動時之外展角度。本研究使用Wilcoxon signed ranks test來檢定,顯著差異定在0.05,我們使用SPSS 11.0來做統計分析。結果 在做被動外展動作時,肱骨頭中心移動量不大;而在做鬆動合併動作時,相較於外展動作,肱骨頭中心則顯著地在往下、往後及往外移動分別增加7.7 毫米,2.7毫米及0.5毫米。結論 於肩關節施予鬆動合併動作手法,能有效地避免夾擠症候群病人,其肱骨頭過度往上、往前的滑動情形。

      Background and Purpose. “Mobilization with Movement” (MWM) is a therapeutic technique developed by Brian Mulligan, a New Zealand physiotherapist. In shoulder joints, MWM techniques are commonly performed in patients with subacromial impingement syndrome, frozen shoulder, rotator cuff tendinitis, etc. In treating patients with impingement syndrome, this technique involves the application of a posteriorly directed force by a physical therapist to generate posterior translation of humeral head while the patient is actively elevating his/her arm. Even though MWM technique has became a popular treatment technique in orthopedic practice, there is a lack of scientific evidence to support its efficacy and the underlying mechanisms. The purpose of this study was to analyze the displacement of humeral head center during glenohumeral abduction and the MWM trials. Methods. Ten physical therapists were recruited in this study. They performed passive abduction and the MWM technique on a fresh cadaveric shoulder model. Outcome measures were the applied forces, torques, joint angles, and displacement of the head of the humerus. Kinematical data were collected by VICON motion analysis system; forces and torques were measured by an AMTI 6-axis load cell. We calculated the joint center of rotation by means of the least squares method developed by Gamage and Lasenby. Before and after abduction and MWM procedures, a biaxial material testing system (MTS: 858 MINI Bionix) equipped with an x-y table was used to measure the magnitudes of anterior-posterior gliding, posterior-anterior gliding, inferior gliding, rotation angles and abduction angles of the specimen. We compared spatial and temporal parameters between abduction and the MWM technique. These parameters included the magnitudes of peak linear angular displacements, and temporal parameters were the time and the angle of abduction where peak displacements occurred in abduction trial and MWM trial. The Wilcoxon signed ranks test was used for statistical analysis with an α level of 0.05. Results. In the abduction trial, the humeral head was centered at glenoid fossa with only slight translations (usually less than 0.6 mm). Comparing with abduction trial, there were significant increased in displacements of humeral head posteriorly (7.7 mm), inferiorly (2.7 mm), and laterally (0.5 mm) during MWM trial. Conclusion. The MWM technique can effectively prevent the humeral head from anterior and superior translation.

    ABSTRACT --------------------------------------------------------------------I 中文摘要 --------------------------------------------------------------------III 致謝 --------------------------------------------------------------------V CONTENTS --------------------------------------------------------------------VI FIGURE LIST -----------------------------------------------------------------IX TABLE LIST ------------------------------------------------------------------XI APPENDIX LIST ---------------------------------------------------------------XII CHAPTER 1 INTRODUCTION 1 1.1 Introduction -------------------------------------------------------------1 1.2 Literature Review --------------------------------------------------------2 1.2.1 Clinical Effect of “Mobilization with Movement” Technique -----------2 1.2.2 Clinical Features and Etiology of Subacromial Impingement Syndrome ----4 1.2.3 Kinematical Features of Glenohumeral Joint ----------------------------5 1.2.3.1 Normal Glenohumeral Joint -------------------------------------------5 1.2.3.2 Kinematics of Subacromial Impingement Syndrome ----------------------6 1.2.4 Method for Estimating the Center of Humeral Head ----------------------8 1.2.5 Purpose -----------------------------------------------------------------10 CHAPTER 2 MATERIALS AND METHOD 12 2.1 Subjects ------------------------------------------------------------------12 2.2 Specimen ------------------------------------------------------------------12 2.3 Instrumentation -----------------------------------------------------------14 2.4 Method of Measuring Rotational Center -------------------------------------17 2.4.1 Derivation of the Coordinate of the Center of the Humeral Head --------18 2.4.2 Accuracy --------------------------------------------------------------21 2.5 Experimental procedures ------------------ --------------------------------22 2.5.1 MTS testing procedures------------- -----------------------------------22 2.5.2 Abduction and MWM procedures-------------------------------------------24 2.6 Data analysis -------------------------------------------------------------26 2.6.1 Data Collected from Abduction and MWM Procedures ----------------------26 2.6.2 Data Collected from MTS Procedures -------------- ---------------------28 CHAPTER 3 RESULTS 30 3.1 Accuracy and Reliability --------------------------------------------------30 3.1.1 Estimation of The Center of Head of Humerus ---------------------------30 3.1.2 Variability -----------------------------------------------------------31 3.2 Joint Angles --------------------------------------------------------------32 3.3 Applied Forces ------------------------------------------------------------36 3.4 Translation of Center of Humeral Head ------------------------------------38 3.5 The MTS Data --------------------------------------------------------------44 CHAPTER 4 DISCUSSION 45 4.1 Intrasession Reliability and Intersession Reliability ---------------------45 4.2 The Patterns of Humeral Head Center Displacement --------------------------45 4.2.1 Comparison with Previous Studies in vitro -----------------------------46 4.2.2 Comparison with Previous Studies in vivo ------------------------------47 4.2.3 Possible Causes Influencing the Displacement of Humeral Head Center ---49 4.2.3.1 The Forces Applied to Rotator Cuff Tendons ------------------------48 4.2.3.2 Flexion and External Rotation Angles ------------------------------50 4.3 The Mobility Data Measured from MTS Procedures ---------------------------51 4.4 Study limitations ---------------------------------------------------------51 CHAPTER 5 CONCLUSION 54 REFERENCES---------------------------------------------------------------------55

    1.Mulligan R. Manual therapy: “Nags”, “Snags”, “MWMS” etc. Wellington: Hutcheson Bowman & Stewart Ltd; 1999:87-103.

    2.Backstrom KM. Mobilization with movement as an adjunct intervention in a patient with complicated De Quervain’s tenosynovitus: a case report. J Orthop Phys Ther. 2002;32:86-94.

    3.Paungmali A, O’Leary S, Souvlis T, Vicenzino B. Hypoalgesic and sympathoexcitatory effects of mobilization with movement for lateral epicondylalgia. Phys Ther. 2003;83(4):374-383.

    4.Abbott JH. Mobilization with movement applied to the elbow effects shoulder range of movement in subjects with lateral epicondylalgia. Man Ther. 2001;6(3):170-177.

    5.Abbott JH, Patla CE, Jensen RH. The initial effects of an elbow mobilization with movement technique on grip strength in subjects with lateral epicondylalgia. Man Ther. 2001;6(3):163-169.

    6.Konstantinou K, Foster N, Rushton A, Baxter D. The use and reported effects of mobilization with movement techniques in low back pain management; a cross-sectional descriptive survey of physiotherapists in Britain. Man Ther. 2002;7(4):206-214.

    7.van der Windt, DA, Kose BW, de Jong BA, Bouter LM. Shoulder disorders in general practice: incidence, patient characteristics, and management. Ann Rheum Dis. 1995;54:959-964.

    8.Magee DJ. Orthopedic Physical Assessment (3rd ed).Philadelphia: Saunders WB; 1997:175:240.

    9.Flatow EI, Soslowsky LJ, Ticker JB, Pawluk RJ, Hepler M, Ark J, et al. Excursion of the rotator cuff under the acromion. Patterns of subacromial contact. Am J Sports Med. 1994;22:779-788.

    10.Zuckerman JD, Mirabello SC, Newman D, Gallagher M, Cuomo F. The painful shoulder: part II. Intrinsic disorders and impingement syndrome.

    11.Budoff JE, Nirschl RP, Guidi EJ. Debridment of partial thickness tears of the rotator cuff without acromioplasty - Longterm follow-up and review of the literature. J Bone Joint Surg.1998;80A:733-748.

    12.Michener LA, McClure PW, Karduma AR. Anatomical and biomechanical mechanisms of subacromial impingement syndrome. Clin Biomech. 2003;18:369:379.

    13.Chen SK, Simonian PT, Wickiewicz TL, Otis JC, Warren RF. Radiographic evaluation of glenohumeral kinematics: a muscle fatigue model. J Shoulder Elbow Surg. 1999;8:49-52.

    14.Neer CS. Impingement lesions. Clin Orthop.1983;70-77.

    15.Ludewig PM, Cook TM. Translation of the humerus in persons with shoulder impingement syndromes. J Orthop Sports Phys Ther.2002;32(6):248:259.

    16.Graichen H, Stammberger T, Bonel H, Englmeier K, Reiser M, Eckstein F. Glenohumeral translation during active and passive elevation of the shoulder-a 3D open-MRI study. J Biomech. 2000;33:609-613.

    17.Eisenhart-Rothe RM, Jager A, Englmeier KH, Vogl TJ, Graichen H. Relevance of arm position and muscle activity on three-dimentional glenohumeral translation in patients with traumatic and atraumatic shoulder instability. Am J Sports Med.2002;30, 514-522.

    18.Fu FH, Harner CD, Klein AH. Shoulder impingement syndrome: a critical review. Clin Orthop. 1991;269:162-173.

    19.Ludewig PM, Cook TM. Alterations in shoulder kinematics and associated muscle activity in people with symptoms of shoulder impingement. Phys Ther. 2000;80(3):276-291.

    20.Deutsch A, Altchek DW, Shwartz E, Otis JC, Warren RF. Radiological measurement of superior displacement of the humeral head in the impingement syndrome. J Shoulder Elbow Surg. 1996:5:186-193.

    21.Paletta GA,Warner JJ, Warren RF, Deutsch A, Altchek DW. Shoulder kinematics with two-plane X-ray evaluation in patients with anterior instability or rotator cuff tearing. J Shoulder Elbow Surg.1997;6:516:527.

    22.Sharkey NA, Marder RA. The rotator cuff opposes superior translation of the humeral head. Am J Sports Med.1995;23:270-275.

    23.Warner JP, Micheli LJ, Arslanian LE, Kennedy J, Kennedy R. Patterns of flexibility, laxity, and strength in normal shoulders and shoulders with instability and impingement. Am J Sports Med. 1990;18(4):366-375.

    24.Harryman D, Sidles JA, Clark JM, McQuade KJ, Gibb TD, Matsen FA. Translation of the humeral head on the glenoid with passive glenohumeral motion. J Bone Joint Surg. 1990;72A:1334:1343.

    25.Brenneke SL, Reid J, Ching RP, et al. Glenohumeral kinematics and capsule-ligamentous strain resulting from laxity exams. Clin Biomech. 2000;15:735-742.

    26.Debski RE, Wong EK. Woo S, et al. In situ force distribution in the glenohumeral joint capsule during anterior-posterior loading. J Bone Joint Surg. 1999;17:769-775.

    27.Meskers CGM, van der Helm FCT, Rozendaal LA, Rozing PM. In vivo estimation of the glenohumeral joint rotation center from scapular bony landmarks by linear regression. J Biomech. 1998;31:93-96.

    28.Gamage HU, Lasenby J. New least squares solutions for estimating the average centre of rotation and the axis of rotation. J Biomech. 2002;35:87-93.

    29.Panjabi MM. Center and angles of rotation of body joints: a study of errors and optimization. J Biomech. 1979;12:911.

    30.Halvorsen K, Lasser M, Lundberg A. A new method for estimating the axis of rotation and the center of rotation. J Biomech.1999;32:1221-1227.

    31.Silaghi M, Plaenkers R, Boulic R, Fua P, Thalmann D. Local and global skeleton fitting techniques for optical motion capture. In: Magnenat-Thalmann, N, Thalmann D (Eds), Modeling and motion capture techniques for virtual environments, lecture notes in artificial intelligence, No.1537. Berlin, Springer;1998:pp.26-40.

    32.Thompson WO, Debski RE, Boardman ND, Taskiran E, Warner JP, Fu FH, Woo LY. A biomechanical analysis of rotator cuff deficiency in a cadaveric model. Am J Sports Med. 1996;24(3):286-293.

    33.Apreleva BM, Hasselman CT, Debski RE, Fu FH, Woo L, Warner JP. A dynamic analysis of glenohumeral motion after simulated capsulolabral injury. J Bone Joint Surg. 1998;80A:474-480.

    34.Wuelker N, Schmotzer H, Thren K, Korell M. Translation of the glenohumeral joint with simulated active elevation. Clin Orthop Res. 1994;309:193-200.

    35.Blasier RB, Soslowsky LJ, Malicky DM, et al. Posterior glenohumeral subluxation: active and passive stabilization in a biomechanical model. J Bone Joint Surg. 1997; 79-A:433-440.

    36.Kaltenborn F. Manual mobilization of the extremity joints. Oslo:Olaf Norlis Bokhandel; 1989.

    37.Pagnani MJ, Tennessee N, Deng XH, Warren RF, Torzilli PA, Altchek DW. Effect of lesions of the superior portion of the glenoid labrum on glenohumeral translation. J Bone Joint Surg. 1995; 77-A:1003-1010.

    38.Hsu AT, Ho S, Ho L, Hedman T. Joint position during anterior-posterior glide mobilization: its effect on glenohumeral abduction range of motion. Arch Phys Med Rehabil. 2000;81:210-214.

    39.Hsu AT, Ho S, Ho L, Hedman T. Immediate response of glenohumeral abduction range of motion to a caudally directed translational mobilization: a flesh cadaver simulation. 2000;81:1511-1516.

    40.Hsu AT, Ho L, Chang JH, Chang GL, Hedman T. Characterization of tissue resistance during a dorsally directed translational mobilization of the glenohumeral joint. Arch Phys Med Rehabil. 2002;83:360-366.

    41.Terry GC, Hmmon D, France P, et al. The stabilizing function of passive shoulder restrains. Am J Sports Med. 1991; 19(1):26-34.

    42.Warner JP, Deng X, Warren R, et al. Static capsuloligamentous restrains to superior-inferior translation of the glenohumeral joint. Am J Sports Med. 1992; 20(6):675-685.

    下載圖示 校內:立即公開
    校外:2004-07-29公開
    QR CODE