簡易檢索 / 詳目顯示

研究生: 徐楷翔
Hsu, Kai-Hsiang
論文名稱: Faecalibacterium prausnitzii菌株在結腸癌細胞模型中對於腸道損害的保護力
The protection of Faecalibacterium prausnitzii strains against intestinal damage in a Caco-2 cell model
指導教授: 陳振暐
Chen, Jenn-Wei
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2022
畢業學年度: 111
語文別: 英文
論文頁數: 39
中文關鍵詞: 普拉梭菌益生菌跨上皮電阻結腸癌細胞艱難梭菌感染
外文關鍵詞: Faecalibacterium prausnitzii, probiotics, TEER, Caco-2, CDI
相關次數: 點閱:66下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Abbreviation I Abstract II 中文摘要 IV Acknowledgment V List of Figures IX List of Tables X List of Supplementary XI Chapter 1.Introduction 1 Chapter 2.Materials and Methods 4 2.1F. prausnitzii strains and growth conditions 4 2.2Isolation of F. prausnitzii strains 4 2.3Morphology of F. prausnitzii 4 2.4Short term tolerance test 5 2.4.1Resistance to acid 5 2.4.2Resistance to bile salt 5 2.5The limitation of growth in acid and bile salt 5 2.5.1The growth of bacteria in different pH 5 2.5.2The growth of bacteria in the bile salt effect 5 2.6Cell culture preparation 6 2.7Caco-2 gene expression quantitative analysis in F. prausnitzii CM effect 6 2.7.1Cell preparation 6 2.7.2RNA extract and cDNA synthesis 6 2.7.3Real-time PCR 6 2.8Toxin preparation 7 2.9Trypan blue assay 7 2.10Trans Epithelial Electric Resistance (TEER) measurement 8 2.11Statistical analysis 8 Chapter 3.Results 9 3.1Isolation of F. prausnitzii strains 9 3.2Short term tolerance 9 3.3The bacteria growth in acid or bile salt effect 9 3.4Trypan blue assay 10 3.5Trans Epithelial Electric Resistance (TEER) measurement 10 Chapter 4.Discussion 11 Chapter 5.References 14 Figures 18 Tables 27 Supplementary figures 32

    1. Lopez-Siles, M., et al., Faecalibacterium prausnitzii: from microbiology to diagnostics and prognostics. Isme j, 2017. 11(4): p. 841-852.
    2. Martín, R., et al., Functional Characterization of Novel Faecalibacterium prausnitzii Strains Isolated from Healthy Volunteers: A Step Forward in the Use of F. prausnitzii as a Next-Generation Probiotic. Front Microbiol, 2017. 8: p. 1226.
    3. Martín, R., et al., Faecalibacterium prausnitzii prevents physiological damages in a chronic low-grade inflammation murine model. BMC Microbiol, 2015. 15: p. 67.
    4. Rashed, R., R. Valcheva, and L.A. Dieleman, Manipulation of Gut Microbiota as a Key Target for Crohn's Disease. Front Med (Lausanne), 2022. 9: p. 887044.
    5. Carlsson, A.H., et al., Faecalibacterium prausnitzii supernatant improves intestinal barrier function in mice DSS colitis. Scand J Gastroenterol, 2013. 48(10): p. 1136-44.
    6. Qiu, X., et al., Faecalibacterium prausnitzii upregulates regulatory T cells and anti-inflammatory cytokines in treating TNBS-induced colitis. J Crohns Colitis, 2013. 7(11): p. e558-68.
    7. Sokol, H., et al., Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A, 2008. 105(43): p. 16731-6.
    8. Barkas, F., et al., Electrolyte and acid-base disorders in inflammatory bowel disease. Ann Gastroenterol, 2013. 26(1): p. 23-28.
    9. Lapidus, A. and C. Einarsson, Bile composition in patients with ileal resection due to Crohn's disease. Inflamm Bowel Dis, 1998. 4(2): p. 89-94.
    10. Roychowdhury, S., et al., Faecalibacterium prausnitzii and a Prebiotic Protect Intestinal Health in a Mouse Model of Antibiotic and Clostridium difficile Exposure. JPEN J Parenter Enteral Nutr, 2018. 42(7): p. 1156-1167.
    11. Balsells, E., et al., Global burden of Clostridium difficile infections: a systematic review and meta-analysis. J Glob Health, 2019. 9(1): p. 010407.
    12. Rohlke, F. and N. Stollman, Fecal microbiota transplantation in relapsing Clostridium difficile infection. Therap Adv Gastroenterol, 2012. 5(6): p. 403-20.
    13. Hayashi, H., et al., Inhibition and redistribution of NHE3, the apical Na+/H+ exchanger, by Clostridium difficile toxin B. J Gen Physiol, 2004. 123(5): p. 491-504.
    14. Hayashi, A., et al., The Butyrate-Producing Bacterium Clostridium butyricum Suppresses Clostridioides difficile Infection via Neutrophil- and Antimicrobial Cytokine-Dependent but GPR43/109a-Independent Mechanisms. J Immunol, 2021. 206(7): p. 1576-1585.
    15. Packeiser, H., et al., An extremely simple and effective colony PCR procedure for bacteria, yeasts, and microalgae. Appl Biochem Biotechnol, 2013. 169(2): p. 695-700.
    16. Ohura, K., et al., Establishment and Characterization of a Novel Caco-2 Subclone with a Similar Low Expression Level of Human Carboxylesterase 1 to Human Small Intestine. Drug Metab Dispos, 2016. 44(12): p. 1890-1898.
    17. Wrzosek, L., et al., Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii influence the production of mucus glycans and the development of goblet cells in the colonic epithelium of a gnotobiotic model rodent. BMC Biol, 2013. 11: p. 61.
    18. Pineiro, M. and C. Stanton, Probiotic bacteria: legislative framework-- requirements to evidence basis. J Nutr, 2007. 137(3 Suppl 2): p. 850s-3s.
    19. Duncan, S.H., et al., Growth requirements and fermentation products of Fusobacterium prausnitzii, and a proposal to reclassify it as Faecalibacterium prausnitzii gen. nov., comb. nov. Int J Syst Evol Microbiol, 2002. 52(Pt 6): p. 2141-2146.
    20. Barcenilla, A., et al., Phylogenetic relationships of butyrate-producing bacteria from the human gut. Appl Environ Microbiol, 2000. 66(4): p. 1654-61.
    21. Zhou, D., et al., Sodium butyrate attenuates high-fat diet-induced steatohepatitis in mice by improving gut microbiota and gastrointestinal barrier. World J Gastroenterol, 2017. 23(1): p. 60-75.
    22. Li, G., et al., Microbiota metabolite butyrate constrains neutrophil functions and ameliorates mucosal inflammation in inflammatory bowel disease. Gut Microbes, 2021. 13(1): p. 1968257.
    23. Couto, M.R., et al., Microbiota-derived butyrate regulates intestinal inflammation: Focus on inflammatory bowel disease. Pharmacol Res, 2020. 159: p. 104947.
    24. Breyner, N.M., et al., Microbial Anti-Inflammatory Molecule (MAM) from Faecalibacterium prausnitzii Shows a Protective Effect on DNBS and DSS-Induced Colitis Model in Mice through Inhibition of NF-κB Pathway. Front Microbiol, 2017. 8: p. 114.
    25. Hu, W., et al., Biodiversity and Physiological Characteristics of Novel Faecalibacterium prausnitzii Strains Isolated from Human Feces. Microorganisms, 2022. 10(2).
    26. Koziolek, M., et al., Investigation of pH and Temperature Profiles in the GI Tract of Fasted Human Subjects Using the Intellicap(®) System. J Pharm Sci, 2015. 104(9): p. 2855-63.
    27. Hourigan, S.K., et al., Fecal Transplant in Children With Clostridioides difficile Gives Sustained Reduction in Antimicrobial Resistance and Potential Pathogen Burden. Open Forum Infect Dis, 2019. 6(10): p. ofz379.
    28. Xu, J., et al., Faecalibacterium prausnitzii-derived microbial anti-inflammatory molecule regulates intestinal integrity in diabetes mellitus mice via modulating tight junction protein expression. J Diabetes, 2020. 12(3): p. 224-236.
    29. Vrieze, A., et al., Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology, 2012. 143(4): p. 913-6.e7.
    30. Ueda, A., et al., Identification of Faecalibacterium prausnitzii strains for gut microbiome-based intervention in Alzheimer's-type dementia. Cell Rep Med, 2021. 2(9): p. 100398.

    無法下載圖示 校內:2027-11-28公開
    校外:2027-11-28公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE