簡易檢索 / 詳目顯示

研究生: 張伯偉
Chang, Po-wei
論文名稱: 以線性矩陣不等式方法設計直昇機降落於船舶之混合H2/H_inf飛行控制
LMI-Based H2/H_inf Control Design for a Helicopter Landing on a Moving Ship
指導教授: 楊憲東
Yang, Ciann-dong
學位類別: 博士
Doctor
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 159
中文關鍵詞: 直昇機降落船舶線性矩陣不等式混合型H2/H_inf控制
外文關鍵詞: helicopter landing on ship, mixed H2/H_inf control, LMI
相關次數: 點閱:81下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以具有六自由度的高複雜度性直昇機非線性動態模型,建構直昇機/船舶動態介面模擬系統,以提供精確的直昇機降落航行中船舶之動態分析.為了完整描述此動態系統,吾人考慮之外擾,包括:陣風模型與CFD數值計算得到之海上船舶激流模型.面對此具備著外擾以及直昇機非線性動態模型之複雜系統,吾人利用線性矩陣不等式(LMI)方法,來設計飛行控制器,以提供直昇機降落於船舶之姿態控制內迴路.因此,吾人採用對於系統不確定性以及外加擾動具有良好之控制表現的混合型H2/H_inf控制器.
    本論文以真實之Lynx型直昇機為研究主體,並藉由Matlab/Simulink數值軟體,建立直昇機/船舶動態介面數值模擬環境.本論文將直昇機控制迴路架構分為:內迴路之姿態控制系統與外迴路路徑控制導引系統.首先針對內迴路控制中,以不同控制性能之混合型H2/H_inf狀態回授控制器,作直昇機降落船舶之飛行模擬並對其響應加以分析.模擬結果顯示,要求較好H_inf控制性能可展現較好命令追蹤性能;反之,要求較好H2控制性能可展現較好抑制風場外擾性能.再針對外迴路控制中,以不同導引控制迴路之增益值,作直昇機降落船舶之飛行模擬並對其響應加以分析.模擬結果顯示,不同增益值可變化直昇機逼近理想降落路徑程度.最後針對系統對混合型H2/H_inf狀態回授以及輸出回授控制器對直昇機降落船舶飛行動態之影響.模擬結果顯示,兩者控制器在面對不同偏向跡流風場的作用下,均可提供飛行姿態穩定控制.因此,以上模擬可以提供完整資訊於直昇機內外迴路控制器,幫助控制器決策提供較好的系統響應.

    A nonlinear dynamic model of a helicopter with highly complicated six-degree-of-freedom motions has been proposed in this dissertation. We establish a helicopter/shipboard dynamic interface by analyzing the relative motion between the helicopter and a cruising ship in different sea states, to provide the precise dynamic analysis of the helicopter/shipboard landing operation. To describe the dynamical system of landing helicopter totally, we take the wind gust model and CFD solutions of ship airwake into account as the disturbance inputs. To provide the helicopter/shipboard landing operation an attitude control, we use the Linear Matrix Inequality (LMI) method to design the inner loop attitude controller for such a complicated system with having influences provided by external disturbances and system uncertainties. Therefore, we design a mixed H2/H_inf controller with balanced H_inf and H2 robust stable flight performance, which can provide good control performances, when the system is facing different kinds of disturbances and uncertainties at the same time.
    Further, we consider a real helicopter system, a Lynx type helicopter, as our control plant in this dissertation. By using Matlab/Simulink numerical software, we can build a simulation platform for the helicopter/shipboard dynamic interface to analyze and construct virtual movie of the helicopter/shipboard landing operation. The structure of helicopter's flight control loop is separated into the inner loop attitude control system for command tracking and the outer loop guidance control system for following the standard landing path, respectively. Firstly, by given a specified outer loop guidance gain, the inner loop control system with different performance of mixed H2/H_inf controller is used to estimate the landing performance. Continuously, by given the trade-off performance of mixed H2/H_inf controller, the outer loop guidance control with different control gain is used to evaluate the landing performance. Finally, the mixed H2/H_inf state-feedback and output-feedback flight controllers with trade-off performances are applied to simulate the helicopter shipboard landing operation. It also shows that the mixed H2/H_inf state-feedback controller has better control response than the mixed H2/H_inf output-feedback controller, since it feedbacks each state variable of the system to the controller according to our simulation results. Besides, both controllers can be addressed by adjusting the lading path deviation which is caused by the ship airwake and wind gust. After having controller implementation, the helicopter can reach the goal of landing on the ship-deck safely.

    摘要.....................................................................................................................i ABSTRACT........................................................................................................iii ABSTRACT IN CHINESE OF EACH CHAPTER...............................................vi CONTENTS......................................................................................................xiii LIST OF FIGURES.............................................................................................xv LIST OF TABLES............................................................................................xxii NOMENCLATURE........................................................................................xxiii CHAPTER I INTRODUCTION............................................................................1 1.1 Literature Survey............................................................................................1 1.2 Dissertation Contribution................................................................................8 1.3 Dissertation Organizations..............................................................................9 CHAPTER II HELICOPTER FLIGHT DYNAMIC MODEL.................................12 2.1 Helicopter Nonlinear Dynamic Model............................................................12 2.2 Helicopter Actuator Model.............................................................................20 2.3 Wind Gust Model...........................................................................................21 2.4 Ground Effect Model......................................................................................23 2.5 Helicopter Linear Dynamic Model..................................................................26 CHAPTER III SHIP DYNAMIC MODEL..............................................................36 3.1 Ship Dynamic Model.......................................................................................36 3.2 Ship Airwake Model........................................................................................39 3.3 Flight Glide Path for Helicopter Landing Operations........................................41 CHAPTER IV MIXED H2/H_inf CONTROLLER DESIGN...................................47 4.1 Control Problem Description............................................................................47 4.2 State-Feedback Controller Design....................................................................50 4.3 Output Feedback Controller Design............................................................56 4.4 Helicopter Speed Command Tracking Controller Design..........................60 CHAPTER V INTEGERATED HELICOPTER/SHIP SIMULATION.....................73 5.1 Coordinates Transformations........................................................................73 5.2 The Helicopter/Ship Dynamic Interface Simulation System..........................77 5.2-1 Lynx Type Helicopter Dynamic Model..........................................................78 5.2-2 Inner-Loop Attitude Control.........................................................................79 5.2-3 Outer-Loop Guidance Control................................................................81 5.2-4 2000-Tons Class of Frigate Dynamic Model..............................................83 5.2-5 Calculation of Ship Airwake Model.......................................................88 5.3 The Helicopter/Ship Dynamic Interface Simulation....................................90 5.3-1 Inner-Loop Control with Multi-Objectives Controllers....................................90 5.3-2 Outer-Loop Guidance with Different Control Gains............................94 5.3-3 Comparisons of State and Output Feedback Design..................................96 CHAPTER VI CONCLUSIONS AND FUTURE WORKS..................................147 REFERENCE................................................................................................149 APPENDIX.................................................................................................155 PUBLICATION LIST....................................................................................158 VITA...............................................................................................................159

    [1] Baitis, A. E., 1975, "The Influence of Ship Motions on Operations of SH-2F Helicopters From DE-1052-Class Ships: Sea Trial with USS BOWEN (DE-1079)." Bethesda, MD, Naval Ship Research and Development Center.
    [2] Baitis, A. E., and Woolaver, D. A., 1975, "Trial Results of Ship Motions and Their Influence on Aircraft Operations for ISCS GUAM", DTVSRDC, Bethesda, MD.
    [3] Wilkinson, C.H., Roscoe, M. F., and VanderVliet, G. M., 2001, "Determining Fidenlity Standards for the shipboard Launch and Recovery Task," AIAA Modeling and Simulation Technologies Conference and Exhibit, Montreal, Canada.
    [4] Healey, J.V., 1987, "The Prospects for Simulating the Helicopter/Ship Interface," Naval Engineers Journal, pp. 45-63.
    [5] Rhoades, M.M., 1990, A Study of the Airwake Aerodynamics Over the Flight Deck of an AOR Model Ship, M.S. Thesis, Department of Aeronautical Engineering, Naval Postgraduate School, Monterey, CA.
    [6] Williams, S.L. and Long, K.R., 1997, "Dynamic Interface Tests and the Pilot Rating Scale," Proceedings of the 53rd Annual Forum of the American Helicopter Society (Virginia Beach, VA), American Helicopter Society, Reston, VA, pp. 438-449.
    [7] Lee, D. and Horn, J.F., 2004, "Simulation of Pilot Workload for Helicopters Operating in a Turbulent Ship Airwake," Proceedings of the AIAA Atmospheric Flight Mechanics Conference, AIAA Paper 2004-5360, Providence, RI.
    [8] Lee, D., Sezer-Uzol, N., Horn, J.F., and Long, L.N., 2005, "Simulation of Helicopter Shipboard Launch and Recovery with Time-Accurate Airwakes," AIAA Journal of Aircraft , Vol. 42, No. 2, pp.448-461.
    [9] Lee, D. and Horn, J.F., 2004, "Analysis of Pilot Workload in the Helicopter/Ship Dynamic Interface Using Time-Accurate and Stochastic Ship Airwake Models," AIAA Atmospheric Flight Mechanics Conference and Exhibit, Providence, RI.
    [10] Bradley, R., Macdonald, C.A., and Buggy, T.A., 2005, "Quantification and Prediction of Pilot Workload in the Helicopter/Ship Dynamic Interface", Journal of Aerospace Engineering, Vol. 219, pp. 429-443.
    [11] Padfield, G.D., 1996, "Helicopter Flight Dynamics: The Theory and Application of Flying Qualities and Simulation Modeling", AIAA Education Series, Virginia.
    [12] Johnson, W., 1994, "Helicopter Theory", Dover , New York.
    [13] Korvin-Kroukovsky B. V., and Jacobs, W.R., 1952, "Pitching and Heaving Motions of a Ship in Regular Waves", SNAME Trans. 65, pp590-632.
    [14] Salvesen,N.,Tuck,E.O., 1970, "Ship Motion and Sea Loads", Transcations of the Society Of Naval Architects and Marine Engineers, Vol.78, pp.250-287.
    [15] Kim,C.H., Chou,F.S., and Tien D., 1980, "Motions and Hydrodynamic Load of a Ship Advancing in Oblique Waves", Transcations of the Society Of Naval Architects and Marine Engineers, Vol.88, pp.225-256.
    [16] Fang,M.C., Lee,M.L. and Lee,C.K., 1993, "Time Simulating of Water Shipping for a Ship Advancing in Large Longitudinal Waves", Journal of Ship Research, Vol.37, No. 2, pp.126-137.
    [17] Tate, S. J., Padfield, G. D., 1994, "Achieving Level 1 Flying Qualities at the Helicopter/Ship Dynamic Interface - First Experience using the DRA Advanced Flight Simulator", presented at the Rotorcraft Simulation Conference of the Royal Aeronautical Society, London, UK.
    [18] Journée, J. M. J., 2005, Ship Motions Program - SEAWAY for Windows, http://www.shipmotions.nl/#LINK1.
    [19] Benstein, D.S., and Haddad, W.M., 1989, "LQG control with an H_inf performance bound: A Riccati equation approach", IEEE Transactions on Automatic Control, Vol.34, No.3, pp.293-305.
    [20] Doyle, J., Zhou, K. M., Glover, K. and Bodenheimer, B., 1994, "Mixed H2 and H_inf Performance-Objectives .2. Optimal-Control", IEEE Transactions on Automatic Control, Vol. 39, No. 8, pp.1575-1587.
    [21] Zhou, K. M., Glover, K., Bodenheimer, B. and Doyle, J., 1994, "Mixed H2 and H_inf Performance-Objectives .1. Optimal-Control", IEEE Transactions on Automatic Control, Vol. 39, No. 8, pp.1564-1574.
    [22] Khargonekar, P. P., and Rotea, M. A., 1991, "Mixed H2/H_inf control: A convex optimization approach", IEEE Transactions on Automatic Control, Vol. 36, No. 7, pp.824-837.
    [23] Scherer, C.W., 1995, "Multiobjective H2/H_inf control", IEEE Transactions on Automatic Control, Vol. 40, No. 6, pp.1054-1062.
    [24] Boyd, S., Balakrishnan, V., Feron, E. and Ghaoui, L. E., 1993, "Control system analysis and synthesis via linear matrix inequalities", Proceeding of the American Control Conference, San Francisco, USA: pp.2147-2154.
    [25] Boyd, S. and El Ghaoui, L., 1993, "Method of centers for minimizing generalized eigenvalues", Linear Alebra and its Applications 188-189: pp.63-111.
    [26] Gahinet, P. and Apkarian, P., 1994, "A Linear Matrix Inequality Approach to H_inf Control", International Journal of Robust and Nonlinear Control, Vol. 4, No. 4, pp.421-448.
    [27] Gahinet, P. and Nemirovski, A., 1997, "The projective method for solving linear matrix inequalities", Mathematical Programming, Vol. 77, No. 2, pp.163-190.
    [28] Apkarian, P., Becker, G., Gahinet, P., and Kajiwara, H., 1996, "LMI Techniques in Control Engineering from Theory to Practice", Workshop Notes in the 35th Conference on Decision and Control, Kobe, Japan.
    [29] Seto, D., Ferriera, E. and Marz, T., 2000, "Case Study: Development of a Baseline Controller for Automatic Landing of an F-16 Aircraft Using Linear Matrix Inequalities (LMIs)", Carnegie Mellon, Software Engineering Institute: 1-55: Research report CMU/SEI-99-TR-020.
    [30] Yang, C.D., and Sun, Y.P., 2001, "Mixed H2/H_inf Design for Micro-satellite Attitude Control," Transactions of the Aeronautics and Astronautical Society of the Republic of China, Vol.33, No.2, pp.79-85.
    [31] Prempain, E. and Postlettwaite, I., 2004, "Static H-infinity Loop Shaping Control of a Fly-by-wire Helicopter", Workshop on Linear Matrix Inequalities in Control, also in Proceeding of the 43rd IEEE Conference on Decision and Control, Toulouse, France, LAAS-CNRS.
    [32] Chen, P.C., Jeng, Y.F., Chang, Y.H., Wang, Y.M., and Chen, G., 2004, "Robust gain-scheduled control of vertical takeoff aircraft with actuator saturation via LMI method", Asian Journal of Control, Vol. 6, No. 1, pp.112-122.
    [33] Storvik, M., 2003, "Guidance system for automatic approach to a ship", a thesis presented for the Master of Science Degree, Norwegain University of Science and Technology, pp.1-100.
    [34] Kung C.C., "Simulation of the Helicopter Launch/Recovery Dynamic System", United Ship Design & Development Center Tech. Report USDDC-221-T854(93), 2004.
    [35] A. Yue, MSc, DIC, DPhil, 1990, "Improvement of Helicopter Handling Qualities Using H_inf-Optimisation", IEE PROCEEDINGS, Vol. 137, Pt. D, NO. 3.
    [36] Takahashi, M. D., 1994, "Hinf Helicopter Flight Control Low Design With and Without Rotor State feedback", AIAA J. Guidance, Control and Dynamics, Vol. 17, No. 6.
    [37] U.S. Military Handbook MIL-HDBK-1797, 19 December 1997.
    [38] U.S. Military Specification MIL-F-8785C, 5 November 1980.
    [39] Hoblit, F. M., 1988, Gust Loads on Aircraft: Concepts and Applications, AIAA Education Series, pp.1-306.
    [40] Cheeseman, I.C. and Bennett, W.E., 1957, "The Effect of the Ground on a Helicopter Rotor in Forward Flight", Aeronautical Research Council R&M No 3021.
    [41] Xin, Hong., Prasad, J.V.R., Peters, D.A., Nagashima, T., and Iboshi, N., 1998, "Finite state inflow model for simulation of helicopter hovering in ground effect", Annual Forum Proceedings - American Helicopter Society, Vol. 2, pp. 777-784.
    [42] Chou, D. W. and Yang, C. D., 2000, "Constructing Helicopter Dynamic Simulation", Transactions of the Aeronautical and Astronautical Society of the Republic of China, Vol.32, No.3.
    [43] Platt, J. R., 1998, "Wind detection in a microcosm: ship/aircraft environment sensors", IEEE Aerospace and Electronic Systems Magazine, Vol. 13, No. 2, pp.26-33.
    [44] Zan, S.J., Syms, G.F., and Cheney, B.T., 1998, "Analysis of Patrol Frigate Air Wakes", Presented at the NATO RTO Symposium on Fluid Dynamics Problems of Vehicles Operating near or in the Air-Sea Interface, Amsterdam, The Netherlands.
    [45] Camelli, F.E., Soto, O., Lohner, R., Sandberg, W.C., and Ramamurti, R., 2003, "Topside LPD17 Flow and Temperature Study with an Implicit Monolithic Scheme", AIAA Paper 2003-0969, 41st AIAA Aerospace Sciences Meeting & Exhibit, Reno, Nevada.
    [46] Wilkinson, C. and Roscoe, M.F., 2002, "DIMSS - JSHIP's Modeling and Simulation Process for Ship/Helicopter Testing and Training", AIAA Paper 2002-4597, AIAA Modeling and Simulation Technologies Conference and Exhibit, Monterey, CA.
    [47] Wilkinson,C.H., Roscoe, M.F. and VanderVliet, G.M., 2001, "Determining Fidelity Standards for the Shipboard Launch and Recovery Task", AIAA Paper 2001-4062, AIAA Modeling and Simulation Technologies Conference and Exhibit, Montreal, Canada.
    [48] He, C., Kang, H., Carico, D. and Long, K., 2002, "Development of a Modeling and Simulation Tool for Rotorcraft/Ship Dynamic Interface Testing", American Helicopter Society 59th Annual Forum, Montreal, Canada.
    [49] Wadcock, A. J., Yamauchi, G. K., Heineck, J. T., Silva, M. J., Long, K. R., 2004, "PIV measurements of the wake of a tandem-rotor helicopter in proximity to a ship", Annual Forum Proceedings - American Helicopter Society, pp.1-23.
    [50] Polsky, S.A, and Bruner, C.W.S., 2000, "Time-Accurate Computational Simulations of an LHA Ship Airwake", 18th AIAA Applied Aerodynamics Conference, Denver, CO.
    [51] Polsky, S.A., 2002, “A Computational Study of Unsteady Ship Airwake", 40th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV.
    [52] Sezer-Uzol, N., Sharma, A., and Long, L.N., 2005, "Computational Fluid Dynamics Simulations of Ship Airwake", Journal of Aerospace Engineering, Vol. 219, No. 5, pp. 369–392.
    [53] Polsky, S. and Naylor, S., 2005, "CVN Airwake Modeling and Integration: Initial Steps in the Creation and Implementation of a Virtual Burble for F-18 Carrier Landing Simulations", AIAA Modeling and Simulation Technologies Conference and Exhibit, San Francisco, CA.
    [54] Woodson, S.H. and Ghee, T.A., 2005, "A Computational and Experimental Determination of the Air Flow Around the Landing Deck of a US Navy Destroyer (DDG)", 23rd AIAA Applied Aerodynamics Conference, Toronto, Ontario, Canada.
    [55] Carico, G..D., Fang, R., Finch, R. S., Geyer Jr., W. P., Krijns, C., and Long, K., 2003, "Helicopter/Ship Qualification Testing", RTO-AG-300 Vol. 22, NATO, Neuilly-sur-Seine.
    [56] Anon., 2000, "Aeronautical Design Standard - Performance Specification – Handling Qualities for Military Rotorcraft", Tech. Rep. ADS-33E-PRF.
    [57] Hess, R.A., Aug. 2005, "A simplified Technique for Modeling Piloted Rotorcraft Operations Near Ships", Proceedings of the AIAA Atmospheric Flight Mechanics Conference and Exhibit, San Francisco, California.
    [58] Huang, C.W., Investigation of onboard helicopter flight safe operating envelopes, M.S. Thesis, National Defense University, Taiwan, 2006.
    [59] Lumsden, R. B., Wilkinson, C. H., and Padfield, G. D., 1998, "OP02 Challenges at the Helicopter-Ship Dynamic Interface", Proceedings of the 24th European Rotorcraft Forum, Marseilles, France.
    [60] Bay, J. S., 1999, Fundamentals of Linear State Space Systems, McGraw-Hill, pp.280-292.
    [61] Zhou, K., and Doyle, J., 1998, Essentials of Robust Control, Prentice-Hall.
    [62] Sanchez-Pena, R. S., and Sznaier, M., 1998, Robust System Theory and Applications, John Wiley & Sons, New York.
    [63] Jeng, Y.-F., Chen, P.-C., and Chang, Y.-H., 2005, "Design of A Class of Extended Dynamic Linear Controller via LMI Approach", Jounal of the Chinese Institiude of Engineers, Vol. 28, No. 3, pp.423-432.
    [64] Joint Tactics, Techniques, and Procedures for Shipboard Helicopter Operations, 1997.

    下載圖示 校內:2009-08-13公開
    校外:2009-08-13公開
    QR CODE