| 研究生: |
陳志源 Chen, Zhi-Yuan |
|---|---|
| 論文名稱: |
鐵微粒表面被覆奈米銀層之研究 Coating of Ag Nanoshells on Iron Micro-powders |
| 指導教授: |
陳東煌
Chen, Dong-Hwang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | EMI 、無電鍍 |
| 外文關鍵詞: | EMI shielding materials |
| 相關次數: | 點閱:50 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要係於鐵金屬微粒表面被覆一層銀金屬奈米薄膜,以製得同時具有電性與磁性損失效果之核殼型金屬複合微粒,也同時具有防止鐵金屬表面氧化的保護效果。關於銀金屬奈米薄膜的被覆程度,評估微乳化、多元醇、及無電鍍等三種方法。經由TEM及XPS分析顯示,以無電鍍法配合使用乙二醇為溶劑所製備出的Fe@Ag複合微粒,其表面銀奈米層的覆蓋率與均勻性較佳。以此複合法進一步製備具不同銀被覆量之兩種鐵微粉(R-2521 & IF-029)的Fe@Ag複合微粒,發現其表面銀奈米層的緻密性與被覆量皆隨著被覆次數增加而增加。由R-2521型鐵微粉製得之複合微粒,當銀的被覆次數增至第5次時,表面會有長短不一的銀奈米棒形成。值得注意得,IF-029類型之鐵微粒在表面吸附有油酸分子情況下,有助於銀奈米層的被覆。利用TGA分析Fe@Ag複合微粒的熱重變化,結果顯示被覆完整的銀奈米層確實有助於提昇鐵微粉的抗氧化性。以IF-029型鐵微粉為例,隨著銀被覆量由0wt%增加至10.5wt%,其氧化溫度約由300℃明顯提高至約450℃。電磁遮蔽的檢測結果顯示,R-2521型之Fe@Ag複合微粒的電磁遮蔽效率及頻率範圍並未因銀的被覆而有明顯改變;但IF-029型Fe@Ag複合微粒之遮蔽效率及頻率範圍則似與Ag的被覆量有關。此外,本論文也在水溶液系統中,以傳統無電鍍法於中空玻璃微球表面被覆一層緻密且均勻的銀奈米薄層,製得中空SiO2@Ag複合微粒。同時,也在無敏化/活化情況下,以無電鍍法直接於鐵氧磁粉表面被覆銀奈米層,製得Ferrite@Ag複合微粒,銀的被覆量則隨銀濃度的增加而增加。
In this thesis, Fe-core/Ag-shell composite micro-particles were prepared for large electric and magnetic losses. The thin Ag nanoshells not only increased the conductivity but also protect the iron powders from oxidation. Three methods were evaluated for the fabrication of Ag nanoshells on the iron powders:(1) microemulsion technique, (2) polyol process, (3) electroless plating method. From the analyses of TEM and XPS, it was found that the combination of polyol process and electroless plating method gave a better coating of Ag nanoparticles on the surface of iron powders. Using the combined method, two types of Fe@Ag composite micro-particles (R-2521&IF-029) were prepared. The repeated coating increased the surface coverage and the Ag amount coated. For R-2521 type, Ag nanorods with different lengths were formed on the particle surface when the coating number was above 5. It was noteworthy that, for IF-029 type, the oleic acid adsorbed on the powder surface facilitated the coating of Ag nanoshells. The thermogravietric analysis (TGA) revealed that the anti-oxidation property of iron powders was significantly enhanced by the complete coating of Ag nano-shells. For IF-029 type, the oxidation temperature of composite powders with 10.5wt% Ag was raised largely from 300 to 450℃. For R-2521 type, the shielding effectiveness (SE) was not significantly affected by the coating of Ag. But for IF-029, the SE seemed to be affected by the Ag amount coated. In addition, the complete coating of Ag nanoshells on the surface of hollow glass micro-spheres was also achieved using the conventional electroless plating method. Without sensitization and activation, ferrite@Ag composites powders were also prepared by electroless plating method.
[1] S. Hamilton, “EMI Shielding for Plastic Encolsures”, NewElectronics, 28(4), pp.22 (1987)。
[2] 劉有台, “電磁遮蔽性:紡織品之發展與應用”, 化工資訊月刊, 9, pp.66 (2002)。
[3] 王彙中、馬振基, ”EMI/RFI 遮蔽用導電性高分子複合材料”, 塑膠資訊, 33, pp.1 (1999)。
[4] 陳柏宏編譯, “電磁干擾與防止對策”, 文笙書局 (1996)。
[5] S. Yasufuku,“Thechnical Progress of EMI Shielding Materials in Japan”,
IEEE, 6(6), pp.21 (1990)。
[6] N. V. Mandich, “EMI shielding by Electroless Plating of ABS Plastics”, Plating and Surface Finishing, 81(10), pp.60 (1994)。
[7] J. J. Mason and Y. Zaka, “EMI/RFI Shielding of Plastic Components by Sputter Deposited Metallic Coatings”, Transactions of the Institute of Metal Finishing, 64(3), pp.110 (1986)。
[8] D. M. Bigg, “Conductive Polymeric Compositions”, Polymer Engineering and Science, 17(12), pp.842 (1977)。
[9] R. A. Crossman, “Conductive Composites Past, Present and Futrue”, Polymer Engineering and Science, 25(8), pp.507 (1985)。
[10] K. Nakajima and K. Higuchi, “Manufacture of Thin Wall Magnesium Alloy Enclosure”, Proceeding 52th Annual Conference IMA, May 22, pp.15 (1995)。
[11] Y. J. Huang, B. H. Hu, I. Pinwill, W. Zhou and D. M. R. Taplin, “Effects of Process Settings on the Porosity Levels of AM60B Magnesium Die Castings”, Materials and Manufacturing Processes, 15(1), pp.97 (2000)。
[12] K. Kimura, K. Nishi, M. Ishizuka and S. Miyahars, “Sub-notebook Computer Cooling Technology via Hybrid Housings”, The 6th Intersociety Conference on Thermal Phenomena, pp.35 (1998)。
[13] L. W. Shacklette, N. F. Colaneri, V. G. Kulkarni and B. Wessling, “EMI Shielding of Intrinsically Conductive Polymers”, Journal of Vinyl and Additive Technology, 14(2), pp.118 (1992)。
[14] 洪文祺, “新型編織碳纖維複合材料電磁屏蔽效應之研究”, 中山大學碩士論文 (2001)。
[15] R. M. Gresham, ”EMI/RFI Shielding of Plastics”, Plat. and Sur. Fin., February, pp.63 (1988)。
[16] G. G. Bush,“Measurement Techniques for Permeability, Permittivity and
Emi Shielding: A Review”, IEEE, pp.333 (1994)。
[17] W. Graf and E. F. Vance,“ Shielding Effectiveness and Electromagnetic
Protection”, IEEE Trans. Ele. Comp. Vol.30, No.3, pp.289 (1988)。
[18] L. Ferraris and W. Chang-Yu “EMI shielding-common problems and containment strategies” Electromagnetic Compatibility Proceedings, pp.86 (1997) 。
[19] E. F. Norman, “Formulating cost-effective conductive composites”, Plastics Engineering, June, pp.29 (1981)。
[20] 卓盛鵬編譯, EMC的基礎和實踐, 全華書局, pp.3 (1998)。
[21] W. Duff, “EMC Design of Electronic Systems”, EMC expo,88 International Conference on Electromognetic Compatibility, May, pp.10 (1988)。
[22] 李煥松,“電磁相容性(EMC)測試”, 電子月刊第五卷第八期 (2001)。
[23] J. Butler,“Shielding Effectiveness- Why Don’t We Have a Consensus
Industry Srandard?”, IEEE, pp.29 (1997)。
[24] 經濟部,“資訊電子產品外殼塑件防EMI技術”, 工業技術人才培訓計畫講義(2001)。
[25] 黃振燦, “塑膠導電及電磁干擾之遮屏”, 塑膠資訊, 8, pp.51 (1998)。
[26] 盧敏彥, 導電塑膠應用─電磁干擾屏蔽, 化工資訊, pp.15 (1998)。
[27] A. P. Hale,“ Electromagnetic Shielding”, IEEE, International
Electromagnetic Compatibity Symposium Record , New York, pp.330 (1973)。
[28] K. Nakajima and K. Higuchi, “Manufacture of Thin Wall Magnesium Alloy Enclosure”, Proceeding 52th Annual Conference IMA,, May 22, pp.15 (1995)。
[29] Y. J. Huang, B. H. Hu, I. Pinwill, W. Zhou and D. M. R. Taplin, “Effects of Process Settings on the Porosity Levels of AM60B Magnesium Die Castings”, Materials and Manufacturing Processes, 15 (1), pp.97 (2000)。
[30] 陳燈桂, 電磁干授遮蔽性複合材料之研究, 國立台灣大學, 碩士論文(1988)。
[31] 沈永清, 化工資訊, 9, pp.6 (1998)。
[32] 財團法人工業研究院, 導電性高分子專題調查報告 (1998)。
[33] A. C. Guyton,Textbook of Medical Physiology. Philadelphia,PA:Saunders (1996)。
[34] R. Schulz, V. Plantz and D. Brush, Shielding Theory and Practice, IEEE Transactions on Electromagnetic Compatibility, 30(3), August (1988)。
[35] R. J. Donald White:A Handbook Series on Electromagnetic Interference and Compativility Vol. 3. “EMI Control Method and Techniques”, Don White Consultants, Inc. Gumantown, Maryland (1973)。
[36] P. France,“EMI Shielding-Conductive Plastics and Elastomers,”Innovation pp.128 (1987)。
[37] 針谷 學藏,”防電磁波干擾材料電磁波之評估方法上效果”, 日本工業材料,pp. 22 (1989)。
[38] R.B. SchulZ, V.C.Plantz and D.R. Brush,”Shielding Theory and Practice”,
IEEE, pp.187 (1988)。
[39] “EMI電磁波干擾之實務”, 無線電界雜月刊社編 (1987)。
[40] 塚田憲一, 工業材料(日), Vol. 44, No.9, pp.56 (1996)。
[41] 清水康敬, ”電磁波干擾材料與電波吸收材料”, 日本工業材料, 44, 9, pp.26 (1996)。
[42] 沈永清, 化工資訊, vol.10 (1999)。
[43] 吳漢標, 陳翊民, “微波吸收材料性質分析與應用”, 工業材料, 128, pp.8 (1997)。
[44] B. Lax and K.T. Button,“Microwave Ferrite and Ferrite Magnetics,”New. York, McGraw-H-ill, Chapter 4 (1962)。
[45] M. Streetly,“Hiding from radar”, Interavia 11, pp.1191 (1988)。
[46] R. N. Johnosn, “Radar-Absorbing Material:A Passive Role in An Tctive Scenario”, Analysis and Technology Radar-Absorbing Material, pp.375 (1986)。
[47] E. F. Knott, J. F. Shaeffer and M. T. Tuley,“Radar Cross Section”,
2nd ed., Artech House Boston. London, Chapter 7 (1993)。
[48] C.I. Chung, and D.E. McClelland, "Stress at Polymer/Metal Interface During Melting in Extrusion", Poly. Eng. Sci, 23(2), pp.101 (1983)。
[49] C.I. Chung, E.M. Mount, III and J.G. Watson, "Analytical Melting Model for Extrusion: Melting Rate of Fully Compacted Solid Polymers", Poly. Eng. Sci., 22(12), pp.729 (1982)。
[50] P. L. Luisi, “Enzymes Hosted in Reverse Micelles in Hydrocarbon Solution”, Angew. Chem. Int. Ed. Engl., 24, pp.439 (1985)。
[51] M. P. Pileni, “Sturcture and Reactivity in Reverse Micelles”, Elsevier Science:New York (1989)。
[52] 陳鎮華, “逆微胞系統中製備超微粒子的研究”, 國立成功大學化學工程系碩士論文 (1996)。
[53] S. P. Moulik and B. K. Paul, ” Struture,Dynamics and Transport- Properties of Microemulsions”, Adv. Colloid & Interface Sci, 78, 99 (1998)。
[54] G. L. Messing, S. Hirano, H. Hausner, “Oscillatory Shear Induced Order and Shear Processing of Model Hard Sphere Suspensions”, Ceramic Powder Science III, 12, pp.349 (1990)。
[55] 化工資訊月刊, 13(5), 44 (1999)。
[56] B. Beaudoin, M. Figlarz and B. Blin, Solid State Ionics, “Pd-coated Ni nanoparticles by the polyol method: an efficient hydrogenation catalyst” , 32(33),
pp.198 (1989)。
[57] P. Silvert, R. Urbina and N. Duvauchelle, “Preparation of colloidal silver dispersions by the polyol process. Part 1:synthesis and characterization”,
J. Mater. Chem., 6, pp.573 (1996)。
[58] 周更生, 微粉應用技術研討會論文集, 台北, pp.1 (1999)。
[59] 楊聰仁, 無電鍍鎳技術與運用, 化工資訊, 46, 6, pp.18 (1993)。
[60] 黃立杰, Ni & Cu-Ni金屬鍍層光纖之製作及機械性質量測, 中華大學碩士論文 (2000)。
[61] 蘇癸陽, “實用電鍍理論與實際”, 復文書局, pp.230 (1983)。
[62] 余鐵城, “表面處理”, 全華科技圖書股份有限公司, pp.202 (1990)。
[63] 田福助,”電化學理論與應用”,四版 (1990)。
[64] 吳思瀚,”鎳超微粒子之製備研究”, 成功大學碩士論文 (1998)。